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ABSTRACT

The key technology of NFV is software dateplane, which has at-
tracted much attention in both academia and industry recently. Yet,
in practice, there is very little understanding about its performance
till now. We make a comprehensive measurement study of NFV
software dataplanes in terms of packet processing throughput and
latency, the most fundamental performance metrics. Specifically,
we compare two state-of-the-art open-source NFV dataplanes, BESS
and ClickOS, using commodity 10GbE NICs under various typical
workloads. Our key observations are that (1) both dataplanes have
performance issues processing small (<128B) packets; (2) it is not
always the best to colocate all VMs of a service chain on one server
due to NUMA effect. We propose resource allocation strategies to
remedy the problems, including carefully adding vNIC queues and
CPU cores to vNFs, and distributing VNFs of a service chain to sep-
arate servers. To essentially address these problems and scale their
performance, software dataplanes need to improve the support for
NIC queues and multiple cores.
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1 INTRODUCTION

Middleboxes are ubiquitous in today’s networks and provide impor-
tant network functions to operators [18]. Traditionally, middleboxes
are deployed as dedicated proprietary hardware. Network function
virtualization (NFV) is now emerging to replace hardware boxes
with virtual software instances running on commodity servers. NFV
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holds great promises to improve flexibility and efficiency of net-
work function management. Thus it is quickly gaining momentum
in the industry [4].

A key enabling technology to NFV is software dataplane. It
provides a virtualized platform for hosting software middleboxes
with high performance packet I/O to userspace. A number of NFV
dataplanes have been developed recently. For example BESS [6]
and NetVM [8] use KVM for virtualization and Intel DPDK for
packet I/O. ClickOS [12] relies on Xen and netmap [15] instead for
virtualization and packet I/O, respectively.

Despite the progress, there is a lack of understanding on NFV
dataplane performance in the community.

A software dataplane desires high-performance packet process-
ing, flexible programming interfaces, security/isolation between
colocating VNFs, and so forth [8, 12]. Among these performance
metrics, packet processing capability and latency are fundamental
and critical since they determine the basic usability of a software
dataplane. Hence it is the focus of our study. Specifically, we ask
the questions, how well do these software dataplanes perform packet
processing in practice? More importantly, what are the areas of im-
provement to make software dataplanes be more competent against
hardware so they can be widely adopted by the industry?

Existing work and their evaluation do not address these questions
well. Most work (e.g. BESS [6]) focuses on raw packet I/O without
software middleboxes running as VMs on top. Some (e.g. ClickOS
[12]) report performance of different software middleboxes only
when deployed individually. More importantly, no performance
comparison is done across NFV dataplanes under the same envi-
ronment. Thus, it is unclear whether these NFV dataplanes can
achieve line rate with different packet processing logic in software
middleboxes, what their bottlenecks are if any, what the latency
would look like, and how they would perform against each other
in various settings such as NF chaining and colocation.

In this paper, we present the first measurement study of NFV
dataplanes that provides answers to the above questions. We strate-
gically choose two popular open source NFV dataplanes, BESS [6]
and ClickOS [12], that differ widely in virtualization and packet
I/O technologies. As a first step we focus on their packet process-
ing throughput and latency running on commodity servers and
10GbE NICs. We use two basic virtual network functions (VNFs):
L3 forwarding and firewall.

Our measurements reveal several major findings:

(1) Both BESS and ClickOS can achieve line rate with medium
to large packets (>128B), even when CPU is clocked down
to 1.2GHz. In a practical setting with mixed packet sizes and
low utilization, both dataplanes can handle typical traffic.

(2) Both dataplanes cannot achieve line rate processing small
packets (< 128B) by a 2.6GHz CPU core. We observe that
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adding more vNIC (queues) and correspondingly more vC-
PUs achieves line rate for 64B packets. For ClickOS we be-
lieve the bottleneck is its high CPU usage, which cannot be
resolved due to its lack of SMP support.

(3) Performance also degrades in the NF chaining scenario, with
ClickOS being more sensitive to chain length. Perhaps sur-
prisingly, placing all VNFs of the chain on the same server
does not necessarily lead to best performance, because the
NUMA effect may further degrade performance when there
are too many VNFs to be put to the same CPU socket. In this
case simply assigning VNFs to different servers and using
NICs to chain them can eliminate the NUMA effect.

(4) The end-to-end per-packet latency is small for both software
dataplanes. Out of all components, the NF processing delay
is the most significant source of latency. Batching helps re-
duce per-packet latency at high packet sending rates, and its
configuration has salient impact on latency performance. Fi-
nally, latency increases with a longer NF chain and ClickOS
suffers more due to the inefficient netmap VALE switch that
does not use zero-copying.

The results provide useful implications for efficient resource
management of NFV deployment in practice. For a telecom or ISP
that deploys NFV to run her middleboxes, our results suggest that
a dynamic resource allocation strategy can be adopted to oppor-
tunistically adjust the CPU speed or number of cores of the VNF
and save energy without sacrificing performance. Most production
networks are mildly utilized, suggesting that significant savings
of electricity cost can be realized using this approach. Our results
on NF chaining also shed light on VNF placement, an important
management task of an NFV cluster. We show that it is better to
place VNFs on separate servers (on the same CPU socket) and chain
them up using NICs in order to eliminate the NUMA effect, when
it is impossible to assign them to one CPU socket.

Our study also provides helpful implications for the research
community on performance optimization of software dataplane.
The results consistently suggest that an important research direc-
tion is to configure multiple cores and NIC queues, which can
fundamentally scale the performance of software dataplane in de-
manding scenarios, especially as the network evolves to 100G and
beyond. We also find that the NFs need to be carefully written in
order to reduce latency, because they are usually optimized only for
throughput with aggressive batching that hurts latency especially
at low packet sending rates. We comment that performance of cur-
rent software dataplanes may not be solid enough for production
use. Yet by further optimizing the architecture, they have strong
potential to deliver competent performance similar to hardware
middleboxes in the near future.

2 BACKGROUND
We start by providing background of BESS and ClickOS.

2.1 BESS

The BESS software dataplane composes of three components: Intel
DPDK [3] as the high-performance userspace packet I/O frame-
work, BESS [6] as the programmable dataplane, and KVM as the
hypervisor to isolate the VNFs.
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DPDK. The Intel DPDK framework allows applications to poll data
directly from the NIC without kernel involvement, thus providing
high-performance userspace network I/O. To achieve line rate, a
DPDK process occupies the CPU core and constantly polls the NIC
for packets.

BESS. BESS [2], previously known as SoftNIC [6], is a programmable
dataplane abstraction layer that allows developers to flexibly build
software that leverages NIC features with minimal performance
loss. One can develop her own packet processing pipeline with
a series of modules. A module can interact with a physical NIC
(pNIC) and/or a vNIC of a VM. When two modules are connected
in a pipeline, a traffic class (TC) is created. A TC is assigned with a
unique worker thread running on a dedicated core to move packets
between the modules. A worker may be assigned to multiple TCs.
KVM. BESS provides a backend vNIC driver based on vhost-net
which allows it to interact with KVM. We thus choose KVM as the
hypervisor environment for it.

2.2 ClickOS

ClickOS. ClickOS [12] is another popular NFV platform. It com-
poses of netmap [15] and VALE [16] as the packet I/O framework,
Click [10] as the programmable dataplane, and Xen as the hyper-
visor. By redesigning the virtual network drivers in Xen, ClickOS
achieves very high packet processing performance. Meanwhile, by
leveraging Click users can flexibly build software middleboxes.
VALE and netmap. VALE is a virtual software switch for packet
/0 based on netmap [15]. ClickOS modifies VALE to support pNIC
directly. A key difference between VALE and TCs in BESS (or DPDK
based software dataplanes) is that VALE does not use dedicated
threads/cores to move packets between modules; the sending thread
does the work of copying packets into the Rx queue.

3 METHODOLOGY

We explain our measurement methodology in detail here.

3.1 Hardware Setup

We conduct our measurements using both physical machines rented
from Aptlab[1] and our own servers. We use two ¢6220 nodes in
Aptlab with 2 Xeon E5-2650v2 processors (8 cores each, 2.6Ghz),
64GB DDR3 1.86GHz Memory and an Intel X520 10GbE PCle dual
port NIC to do all throughput experiments. For delay experiments,
we use our own testbed: two servers with 1 Xeon E5-2640v2 pro-
cessors (8 cores each, 2.0Ghz), 32GB DDR3 1.3GHz Memory and an
Intel X520 10GbE PCle dual port NIC. We use two types of servers
since Aptlab provides more powerful machines for high through-
put, and our servers provide better latency as they are connected
back-to-back without any hardware switch or network virtualiza-
tion. Note the two types of servers we use are very similar in terms
of their CPU, memory, and NIC. We confirm experimentally that
when Aptlab server CPU is downclocked to 2.0Ghz, the results are
quantitatively the same with our servers.

For most experiments, one node runs a packet generator to send
packets of different sizes to the other node, which acts as the hy-
pervisor hosting VNFs to process packets. Packets are sent back
through another NIC of the hypervisor to the first node, which is
also our vantage point.
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3.2 Software Dataplane Settings

For BESS, we use Linux kernel 3.19.0, QEMU/KVM 2.2.1, DPDK
2.20, and the latest BESS source code [2]. For ClickOS, we use Linux
kernel 3.9.10, Xen 4.4.2, ClickOS 0.1 and netmap commit 3ccdada
respectively. We use an older version of netmap that works with
the modified Xennet library provided by ClickOS for Xen backend
and frontend NIC drivers.

Figure 1 illustrates the packet I/O pipeline in our measurements
with a single VNF. Each VNF has two vNICs, vNICO as the ingress
NIC and vNIC1 as the egress NIC to its next hop. In general, for
both BESS and ClickOS, first a packet is moved by the pNICO driver
to the backend of vNIC0, which then sends it to the frontend driver
in the VNF. After being processed by the VNF, the packet is sent
to the frontend and then backend of vNIC1. Finally it is sent to an
output NIC in the hypervisor.

Xen - Hypervisor (Dom0) | Xen DomU - VNF

KVM - Hypervisor KVM - VNF

I
I
PpNICO | pNICO—

PNICI < 3 pNICI <

BESS . ClickOS

Figure 1: Packet I/O pipeline with a single VNF.

3.3 Network Functions

We use two NFs in this study, L3 forwarding (L3FWD), and firewall.
We cannot use generic software such as Snort or Bro because they
are not written with DPDK or Click to exploit software dataplane
capability. Our measurements with simple NFs serve as the upper
bound of performance, because more complicated NFs cost more
CPU cycles and cannot enjoy better performance. We assign 1 vCPU
and 1GB memory to each VNF unless stated otherwise.

L3FWD. We use the ip_pipeline example code provided by DPDK
as the L3FWD implementation in BESS. The ClickOS implementa-
tion is done by concatenating FromDevice, StaticIPLookup, and
ToDevice elements. In both implementations we insert 10 entries
to the routing table.

Firewall. We build the firewall based on the same ip_pipeline in
BESS. In ClickOS, the implementation uses FromDevice, IPFilter,
and ToDevice elements. We use 10 rules to filter packets.

We also use the simple L2 forwarding in the NF chaining experi-
ment only though. We do not consider it a NF as it does not have
any packet processing logic.

L2FWD. We directly use the LZFWD provided out-of-the-box from
12fwd of DPDK for BESS. In ClickOS, we implement LZFWD by con-
necting the FromDevice and ToDevice elements between vNICs.

4 THROUGHPUT RESULTS

We investigate the throughput performance of BESS and ClickOS
in different scenarios in this section. The thesis of the evaluation
is simple: can these NFV dataplanes achieve line rate, and if not,
what are the bottlenecks? Is it possible to improve? We first look
at the baseline scenario with a single software middlebox, run-
ning different NFs with varying CPU speed (§4.1). Based on the
results we analyze and identify performance bottlenecks of both
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dataplanes (§4.2). We then deploy multiple NFs in a scenarios that
is commonplace in practice: NF chaining where packets go through
the middleboxes sequentially for processing (§4.3).

4.1 Baseline Performance

We start with just a single VNF. Since software packet processing
is CPU-intensive, we want to see if CPU speed is the bottleneck
here. In this set of experiments, we vary the CPU speed from the
configurable range of 1.2GHz to 2.6GHz for our CPU without Turbo
Boost, and investigate the throughput with different packet sizes.

Figure 2 demonstrates the performance of L3FWD. We observe
the following. First, performance increases with CPU speed for
small packets (64B-256B), which is expected—a faster CPU can
process more instructions and thus more packets. For 64B and
128B packets, performance improvement is commensurate with
CPU speed-up between 1.2GHz to 2.4GHz. With 64B packets for
instance, at 1.2GHz throughput of BESS and ClickOS is 4.31Mpps
and 2.10Mpps, respectively, while at 2.4GHz it roughly doubles at
8.60Mpps and 4.26Mpps, respectively. The improvement is smaller
at 2.6GHz. Second, both NFV dataplanes achieve line rate for packets
bigger than 128B, but have problems dealing with smaller packets
even at 2.6GHz. BESS can achieve 10Gbps with 128B packets at
2.4GHz, and ClickOS can process 256B packets at 10Gbps at 2.6GHz.
Yet for 64B packets, even at 2.6GHz, neither achieves line rate: BESS
tops at 9.34Mpps and ClickOS 5.34Mpps. Third, BESS outperforms
ClickOS in all cases, especially for small packets. We compare our
results with those reported in the ClickOS original paper [12] and
confirm they are similar. For example, in Figure 13 of [12], through-
put of L3FWD and Firewall with 64B packets are 4.25Mpps and
5.40Mpps, respectively, and ours are 5.34Mpps and 5.03Mpps, re-
spectively. Finally, we find that the performance difference between
L3FWD and firewall is minimal, as shown in Table 1. We thus only
show L3FWD results hereafter for brevity.

Table 1: Throughput of different NFs with varying CPU
speed. Packet size is 64 bytes.

BESS (Mpps) ClickOS (Mpps)
CPU L3FWD | Firewall | L3FWD | Firewall
1.2GHz | 4.31 4.45 2.10 1.98
1.6GHz | 5.73 5.92 2.82 2.75
2.0GHz | 7.19 7.38 3.44 3.27
2.4GHz | 8.60 8.87 4.26 4.24
2.6GHz | 9.34 9.59 5.34 5.03

We also use an empirical packet size distribution from Facebook’s
web server cluster [17] to see how the software dataplanes perform
in a practical environment. The median packet size is ~120B, and
most packets are less than 256B. We configure pkt-gen to sample
the trace and generate packets first at 10Gbps, and observe that the
average throughput in BESS is 8.662Mpps. However a production
network is rarely fully utilized. Facebook reports their median link
utilization is 10%—-20% [17]. This implies that the median packet
processing requirement is 0.87Mpps—1.73Mpps. Both BESS and
ClickOS are able to provide such capability in lowest CPU frequency
of 1.2GHz.

These observations have interesting implications for NFV re-
source allocation. They suggest that there are ample opportunities
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Figure 2: Throughput with different CPU speeds and packet sizes. We show throughput in both Mpps and Gb/s.

for the operator to downclock the CPU in order to save energy and
electricity cost in the average case. Care has to be taken though, of
course, to ensure performance does not suffer when there are sud-
den bursts of small packets. This may be a useful resource allocation
strategy for operators as well as meaningful research directions to
look into for the networking community. Our observations also
motivate us to identify performance bottlenecks in both NFV data-
planes for small packets, which we explain next.

4.2 Performance Bottlenecks

One may argue that the performance deficiency of software data-
planes in small packet regime is acceptable in practice, since small
packets may be less common. However, these systems may not be
able to achieve line rates in the emerging 40G or 100G networks [9],
even for large packets. Therefore we believe it is important for us to
understand the performance bottleneck and improve performance.

To identify bottlenecks, we conduct the following analysis. For
BESS, we observe from using monitor port command that about
5Mpps 64B packets are lost in the pipeline between pNIC0 and
vNICO. To verify the analysis, we conduct another experiment by
adding a round-robin module (RR) and another two vNICs (which is
similar to add NIC queues) to the L3SFWD VM. Traffic is evenly split
between the two input vNICs. This time throughput reaches line
rates for all packet sizes. We believe the single CPU core is bottle-
neck of BESS. To further increase the performance, it is necessary
add more vNICs (queues) and CPU cores to scale up the processing
rate.

For ClickOS, we analyze the CPU utilization of the L3FWD in-
stance with the CPU at the highest 2.6GHz. We found higher clocked
CPU cores can achieve higher throughput. This implies that more
CPU resource may be needed here. However, ClickOS currently
does not have SMP support [12], preventing us from adding more
cores to the VM. This also means adding more vNICs does not help
without more CPU. Another possible solution is to use multiple
VNFs working in parallel. This naturally requires a load balancer
(LB) to split the traffic. VALE is a simple L2 switch without any load
balancing capability [16]. Adding a LB VM does not work either
since the LB itself becomes the bottleneck. Therefore we are unable
to resolve the bottleneck without modification to ClickOS itself.

To summarize, the results here verify that BESS’s bottleneck is
the single CPU core. This can be resolved by sending traffic to two
vNICs of one VNF in parallel to fully utilize multiple vCPUs. We also
present evidence to suggest that ClickOS should add SMP support

that allows it to utilize multiple CPU cores. In any case, we note
that it is imperative for the NFV software dataplane architecture
to provide horizontal scaling of its performance, in order to better
utilize multiple cores and physical NIC queues. We believe this is
an interesting open research area as the NICs evolves to 40Gbps
and beyond.

4.3 NF Chaining

It is common to deploy multiple software middleboxes on the same
machine. In this section we look into the NF chaining scenario,
where the processing pipeline consists of a chain of different mid-
dleboxes. We are interested to see if the performance of an NF chain
can match that of just a single NF. We compose chains of different
lengths: the 1-NF chain uses only a L3FWD; the 2-NF chain uses a
firewall followed by a L3FWD; and the 3-NF chain adds a LZFWD
to the end of the 2-NF chain.

BESS-1NF
BESS-2NF
BESS-3NF
ClickOS-1NF
ClickOS-2NF
ClickOS-3NF

Throughput (Gb/s)

suvdte

648 1288 2568 5128 10248 15008
Packet Size

Figure 3: Throughput with varying length of NF chain.

The results are shown in Figure 3 with all vCPUs running on the
same physical CPU. The performance of BESS suffers mild degra-
dation for 64B—128B packets, as can be seen from the overlapping
lines of 2-NF chain and 3-NF chain. We suspect there is a bottleneck
in chaining the vNICs of different VMs because both firewall and
L3FWD can achieve higher performance individually as shown in
§4.1. Performance of ClickOS also degrades as the chain grows,
especially for small packets. A ClickOS L3FWD achieves line rate
with 256B packets, but a 2-NF chain or 3-NF chain cannot. A 3-NF
chain cannot even reach line rate with 512B packets. Note that here
we use multiple VALE switches with independent vCPUs pinning
to different cores to chain the VMs as suggested by [12]. We be-
lieve the overhead of copying packets in VALE attributes to the
performance penalty.
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When deploying a NF chain, an important factor we must con-
sider is the affinity of vCPUs and the effect of NUMA. We can pin
each vCPU to the same physical CPU, or pin them to CPUs in differ-
ent sockets. The latter is unavoidable sometimes as the commodity
CPUs have limited cores per CPU, and DPDK-based NFV dataplanes
like BESS require many dedicated cores as mentioned in §2.1 and
§3.2.

We perform another measurement to evaluate the effect ot NUMA
on NF chaining. Figure 4 shows the result for BESS as a case study.
NUMA has a significant impact on performance. For the 2-NF chain,
assigning two vCPUs and TCs to different sockets cuts the through-
put of 64B packet by nearly half. For the 3-NF chain (the third
VNF runs in a different socket than the first two), line rate is only
reached for 512B and larger packets. The performance discrepancy
is mainly because operations between different NUMA sockets can
cause cache misses and ping pong effect [11]. To mitigate NUMA
effect, we attempt to bridge NFs in a chain via NICs across servers.
For example, in a 3-NF chain, NF1 and NF2 are located on server
A on the same NUMA socket, and NF3 is located in server B. The
two servers are connected by 10GbE NIC. We observe that this
eliminates the NUMA effect: throughput of the chain is identical
to the case when all 3 NFs share the same CPU socket as shown in
Figure 4.
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Figure 4: Throughput of NF chaining with the NUMA effect.
“*” here denotes the case when the vCPUs belong to different
sockets. “*” here denotes the case when NFs are chained up

via NICs of different servers to avoid penalty from NUMA.
To summarize, the results here show that BESS works adequately

with small performance drop in a NF chain, while ClickOS’s through-
put becomes lower with longer chains. They also demonstrate the
importance of carefully assigning cores to VMs of the chain due to
NUMA, which implies that it is not always best to colocate VNFs
of a chain on the same server. A practical strategy is to place them
on different servers to avoid NUMA effect. These observations are
useful for real NFV deployment.

5 LATENCY RESULTS

We now investigate another important performance metric—latency—
in different scenarios in this section. We use timestamps on packets
to measure the end-to-end latency. The end-to-end latency includes
transmission delay between servers, software dataplanes packet I/O
latency between pNICs and vNICs, NF packet I/O latency between
vNICs, and NF processing latency.

We first look at the impact of packet sending rate on latency
(§5.1). Then, we investigate the impact of NF and length of service
chains (§5.2).
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5.1 Impact of Sending Rate
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Figure 5: Latency with varying sending rates (128B packets).

In this section, we investigate the latency performance using
various packet sending rates to see if software dataplanes can offer
consistent low latency. Figure 5 shows the results with sending rates
ranging from 1Mpps to 8Mpps. We also include the result when
packets are sent at 100pps, i.e. every 10 ms. This corresponds to
short transactions for websites and distributed applications (with a
few packets), which are common in practice [20]. We fix packet size
to be 128B here, similar to the average packet size in Facebook’s
production data center ~120B as discussed in §4.1. We observe
similar results for other packet sizes.

We make several interesting observations here. First, latency
at 100pps is significantly larger than other sending rates for both
software dataplanes. For BESS, the latency is even an order of
magnitude larger. The reason for this discrepancy is that at such
low speed, packets are processed individually rather than in a batch.
Packets are fetched and sent in a batch basis to optimize for high
throughput. Thus the NFs send the processed packets out only
when the queue reaches a burst threshold or a timer expires.

Second, in BESS, per-packet end-to-end latency has an inter-
esting trend of decreasing first and then increasing when sending
rate is over 7Mpps. This can be explained as follows. The initial
decreasing trend is a clear result of BESS’s batching optimization.
However, when the sending rate hits the processing capacity of
the dataplanes, the queuing delay at pNIC Rx queue dominates.
For our own servers with a slower CPU the maximum throughput
of BESS is ~7Mpps. Hence, latency of BESS starts to increase at
7Mpps. ClickOS does not exhibit this pattern, most likely because
its batching is not as aggressive, and latency increases with sending
rates even before the queueing delay kicks in.

Based on the results here, we suggest the operators should care-
fully load balance the traffic in their NFV deployments. If traffic to
an NF is too low, latency may be high without batching; if traffic
exceeds the capacity of the VM, it is crucial to shift traffic away to
other servers before latency spikes. Meanwhile, setting the burst
threshold and timer value have great impact on latency and through-
put of software dataplanes. This is an open research question.

5.2 Impact of NF Chaining

Figure 6 depicts the latency in NF chaining scenario. Note that the
NFs has the same configuration with §4.3 with all VMs running
on the same CPU. As expected, latency increases as the chain gets
longer. BESS’s latency of a 2NF chain is 34.326 ps, less than the
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Figure 6: Average latency of NF chains of various lengths.
Packet size is 128B; sending rate is 2Mpps.

combined latency of firewall and L3FWD (45.982 ps) since there is
no redundant packet I/O on pNICs. However, we find that ClickOS’s
latency of a chain is actually larger than the combined latency of
individual NFs. This is because likely due to the netmap VALE
switch used which does not use zero-copy to share packets among
the NFs.

6 RELATED WORK

We introduce related work on NFV dataplane other than BESS and
ClickOS now. NetVM [8] and OpenNetVM[22] are NFV platforms
based on DPDK and KVM/Docker, similar to BESS. It provides high-
speed inter-VM communication with zero-copy through shared
huge pages. Systems such as ptnetmap [5] and mSwitch [7] based
on netmap address efficient transfer between VMs in a single server.
E2 [13] is a general NFV management framework focusing on
NF placement, scheduling, scaling, etc. Its dataplane uses BESS.
NetBricks [14] and Flurries [21] are NFV platform based on different
virtualization technologies and abstraction levels for VNF. We plan
to study their performance in the future.

Our measurement study provides performance comparison across
solutions with actual VNFs and complements existing work that
evaluates their own system with mostly L2 forwarding. There is lit-
tle measurement study on NFV in general. Wu et al. design PerfSight
[19] as a diagnostic tool for extracting comprehensive low-level
information regarding packet processing performance of the var-
ious elements. It focuses on virtualization layer (KVM) without
integrating with any NFV dataplane such as BESS and ClickOS.

7 CONCLUSION

In this paper, we conducted a measurement study on the perfor-
mance of BESS and ClickOS. Both dataplanes are capable of achiev-
ing 10G line rate with medium and large packets. They have perfor-
mance issues in the, small packet regime and NF chaining scenario,
which may become more severe in high speed networks. We pro-
posed to fundamentally address the limitation by architecting the
software dataplane for horizontal performance scaling, in order to
better utilize multiple cores and NIC queues. Moreover, NFs are
the major source of latency compared to dataplane, and need to be
further optimized for latency while maintaining high throughput.
Adaptive batching according to packet sending rate may be helpful
here.

Z. Niu et al.

Our study can be extended in many directions. One possibility is
to consider more complex NFs, such as NAT, VPN, etc, and practical
application traffics. We also plan to further investigate the chaining
scenario and identify ways to improve performance.
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