
Towards Parallel Spatial Query Processing for Big Spatial Data

Yunqin Zhong1 2 ∗, Jizhong Han1, Tieying Zhang1 2, Zhenhua Li3, Jinyun Fang1, Guihai Chen4

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2Graduate University of Chinese Academy of Sciences, Beijing, China

3Peking University, Beijing, China
4Shanghai Jiaotong University, Shanghai, China

∗Corresponding author, e-mail: zhongyunqin@ict.ac.cn

Abstract—In recent years, spatial applications have become
more and more important in both scientific research and in-
dustry. Spatial query processing is the fundamental functioning
component to support spatial applications. However, the state-
of-the-art techniques of spatial query processing are facing
significant challenges as the data expand and user accesses
increase. In this paper we propose and implement a novel
scheme (named VegaGiStore) to provide efficient spatial query
processing over big spatial data and numerous concurrent user
queries. Firstly, a geography-aware approach is proposed to
organize spatial data in terms of geographic proximity, and this
approach can achieve high aggregate I/O throughput. Secondly,
in order to improve data retrieval efficiency, we design a two-
tier distributed spatial index for efficient pruning of the search
space. Thirdly, we propose an “indexing + MapReduce” data
processing architecture to improve the computation capability
of spatial query. Performance evaluations of the real-deployed
VegaGiStore system confirm its effectiveness.

Keywords-spatial data management; distributed storage; s-
patial index; spatial query; spatial applications;

I. INTRODUCTION

In recent years, spatial applications such as Web-based
Geographical Information System (WebGIS) and Location-
Based Social Networking Services (LBSNS) have become
more and more important in both scientific research and
industry. Spatial query processing is the fundamental func-
tion component to support spatial applications. However,
the state-of-the-art techniques of spatial query processing
are facing significant challenges as the data expand and
user accesses increase [1]. With the development of earth
observation technologies, the spatial data are growing ex-
ponentially year by year (currently in a petabytes scale),
and their categories are becoming more diverse including
multi-dimensional geographic data, multi-spectrum remote
sensing imageries, high-resolution aerial photographs, and
so on. Besides, as spatial applications become more popular,
concurrent user accesses to spatial applications are becoming
highly intensive.

The spatial data objects are generally nested and more
complex than basic data types(e.g., string). They are stored
as multi-dimensional geometry objects, e.g., points, lines
and polygons. Moreover, the spatial query predicates are
complex. Typical spatial queries are based not only on the

value of alphanumeric attributes but also on the spatial
location, extent and measurements of spatial objects in a
reference system. Therefore, spatial query processing over
big spatial data requires intensive disk I/O accesses and
spatial computation.

The state-of-the-art techniques of spatial query processing
mainly include SDB (spatial database) [2] and KVS (key-
value stores). SDB provides spatial query language (i.e.
spatial SQL) [3], and performs well when handling relatively
small spatial datasets in megabytes or gigabytes [4]. How-
ever, since spatial queries are usually both I/O intensive and
computing intensive, e.g., a single query may take minutes or
even hours in SDB [5], the I/O and computation capabilities
of SDB can hardly meet the high performance requirement
of spatial queries over big spatial data. The emerging KVS
systems, such as Bigtable [6], HBase [7] and Cassandra
[8], are proved to be feasible alternatives to store big semi-
structured data for its scalability. They has been adopted in
some I/O intensive applications, e.g., Bigtable has been used
to store satellite imagery for Google Earth [6]. However,
the data in key-value stores are organized regardless of
geographic proximity, and they are indexed by key-based
structure (e.g., B+ tree) rather than spatial index. Therefore,
KVS cannot process spatial queries efficiently.

Driven by the above problems, in this paper we propose
and implement a novel scheme (named VegaGiStore) to
provide efficient spatial query processing over big spatial
data and numerous concurrent user queries. Firstly and most
importantly, we propose a geography-aware data organiza-
tion approach to achieve high aggregate I/O throughput. The
big spatial data are partitioned into blocks according to the
geographic space and block size threshold 1, and these blocks
are uniformly distributed on cluster nodes. Then the geo-
graphically adjacent spatial objects are stored sequentially
in terms of space filling curve which could preserve the
geographic proximity of spatial objects. In practical spatial
applications, most clients only focus on a relatively small
area and query for adjacent spatial objects within the area.
Thereby concurrent clients can be served in parallel by

1The block size threshold is the maximum size of a block. The partition-
ing process does not finish until the total size of spatial objects within a
partitioned region is smaller than the threshold.

different cluster nodes and adjacent spatial objects can be
streamed to clients sequentially without random I/O seeks.

Secondly, in order to improve data retrieval efficiency,
we design a two-tier distributed spatial index for efficient
pruning of the search space. The index consists of Quadtree-
based [9] global index and Hilbert-ordering local index,
where the global index is used to find data blocks and local
index is used to locate spatial objects.

Thirdly, we propose an “indexing + MapReduce” data
processing architecture to improve the spatial query compu-
tation capability. This architecture takes advantage of data-
parallel processing techniques to provide both intra-query
parallelism and inter-query parallelism, and thus can reduce
individual spatial query execution time and afford a large
number of concurrent spatial queries.

We have implemented VegaGiStore on top of Hadoop
[10], an emerging open-sourced cloud platform. VegaGiS-
tore can support numerous concurrent spatial queries for
various spatial applications like Web Mapping Services
(WMS), Web Feature Services (WFS) and Web Coverage
Service (WCS) [1]. Compared with the traditional meth-
ods, VegaGiStore improves the average speed-up ratio by
70.98%− 75.89% when processing spatial queries on a 17-
node cluster, and its average spatial query performance is in-
creased by about 10.3−13.5 times better than that of single-
node spatial databases. Moreover, its average I/O throughput
is improved by 99%−235% than that of compared key-value
stores. In summation, our contributions in this paper can be
summarized as follows:

1) We present a feasible scheme for efficient processing
of spatial queries over big spatial data. We tack-
le the problem through three significant approaches:
geographical-aware organization approach for high
I/O throughput; two-tier distributed spatial index for
data retrieval efficiency; “indexing + MapReduce”
spatial querying architecture for parallel processing.
Our scheme can be easily integrated into a cloud
computing platform (e.g., Hadoop [10]) to support
parallel spatial query processing.

2) We have implemented a spatial data management
system termed VegaGiStore on top of HDFS (Hadoop
Distributed File System) [11] and MapReduce frame-
work [12]. VegaGiStore provides multifunctional spa-
tial queries which most key-value store systems do
not have, and it is transparent to spatial applications.
Besides, the system evaluations show that VegaGiStore
outperforms spatial databases and emerging key-value
stores while processing concurrent spatial queries from
numerous clients in practical spatial applications.

The rest of the paper is organized as follows. Section II
details the parallel spatial query processing scheme. Section
III presents the performance evaluation. Section IV reviews
the related work. Finally, Section V concludes this paper.

II. PARALLEL SPATIAL QUERY PROCESSING SCHEME

A. Geography-aware Spatial Data Organization Approach
1) Spatial Data Partitioning: We propose a geography-

aware quadripartition method to partition a large map layer.
The scheme is designed to guarantee that data within a
partitioned region are stored on one node, and all spatial
data are distributed across cluster according to geograph-
ical space. Spatial data objects are logically or physically
organized in multi-scale map layers. Spatial object has three
attributes: ID(identifier), MBR(Minimum Bounding Rectan-
gle) and object value. A map layer also has three attributes:
unique name, MBR and resolution. MBR is an expression
of the maximum extents of a 2-dimensional spatial object.
MBR is frequently used as an indication of the general
position of spatial object, and it is used as spatial metadata
for first-approximation spatial query and spatial indexing
purpose. Therefore, Spatial applications could access spatial
data within different regions from different nodes to provide
spatial information services for numerous users.

Input: Region(i.e., MBR of map layer)
Output: Partitioned Subregions
1: Initiate(region)
2: MSIZE ← 64MB
3: {0, 1, 2, 3} ← {NW,NE, SE, SW }
4: Boolean isValid ← Verify(region)
5: if isValid then
6: for i=0 to 3 do
7: subregion[i] ← Partition(region)
8: end for
9: else

10: exit(0)
11: end if
12: for i=0 to 3 do
13: Verify_Partition(subregion[i])
14: end for

Figure 1. Verify_Partition(region). Procedure of partitioning a region

The partitioning process is described as follows, and the
respective pseudo code is shown in Fig.1.

1) Input and Initialization Process. Input a map lay-
er/region and compute the size of objects including
the real data size and additional indices size.

2) Verification Process. If the region size is larger than
threshold MSIZE, then set isValid flag to “TRUE”,
and go to Step 3; else the region size is not smaller
than MSIZE, set isValid to “FALSE” to indicate that
it need not to be partitioned.

3) Partition Process. Partitioning the region into four
quadrants according to its MBR, and each quadrant
represents one subregion.

4) Computing the size of four subregions respectively,
and go to Step 2 to verify each subregion recursively
and determine whether the subregion should be further
partitioned or not.

5) The partitioned process will be executed recursively
until all subregions are not larger than MSIZE.

6) If all partitioned regions satisfied valid requirements,
return “0”; else terminate the partition procedure.

According to the principle of geographic proximity, s-
patial objects within a region are combined into one data
block, so the threshold size MSIZE should be set as large
as the HDFS block size in order to guarantee spatial data
within a region are stored on the same node, typically set
to 64MB, and it can be varied according to dataset amounts
and cluster scale. Otherwise, the spatial data within a region
may be stored on more than one node, which will reduce
data retrieval performance.

According to the partition procedure, three deductions are
described as follows.

• Let κ denote the size of square region, and there are
2κ × 2κ spatial objects in the region whose size is κ.

• The upper-left point is defined as the first object of
region.

• The first κ bits of coordinate(x,y) of the first ob-
ject are “0”, i.e., x = xn · · ·xκ00 · · · 0 and y =
yn · · · yκ00 · · · 0, where n denotes size of the parent
region. The higher (n − κ) bits of coordinates of
objects within the region are identical, which is defined
as region code, i.e., region code is represented as
(ynxn)(yn−1xn−1) · · · (yκxκ).

Fig.2 shows an example of partitioning a region by
quadripartition scheme. The region size κ = 4, its sub-
regions are represented by solid line squares, it contains
24 × 24 = 256 spatial objects which represented by dotted
square.

301

302

31

2

02 03

32

2
303

1

00

33

01

300

Figure 2. Quadripartition

2

02 03

32

2

1

00

33

01

Figure 3. Hilbert-order storage.

2) SOFile: We design a spatial objects placement struc-
ture termed SOFile(Spatial Object File). The SOFile is creat-
ed during partitioned process, and the spatial objects within
a subregion are stored in a SOFile named by the subregion’s
GC value. Moreover, the raster data are stored as tile objects
in SOFile, whereas the vector data are stored as WKB(Well-
Known Binary) objects. Taking geographic proximity into
consideration, the geographically adjacent objects should
stored in sequential disk pages. Spatial objects within a
partitioned subregion are stored into the SOFile by space
filling curve, and they are organized in Hilbert order instead
of Row-wise order or Z order because it has better locality-
preserving property [1].

X-value of 1st tile(4B) Y-value of 1st tile(4B) K-value of region(4B)

offset of 1st tile(4B) length of 1st tile(4B)

Reserved bits(4B)

offset of 2nd tile(4B) length of 2nd tile(4B)

offset of 2k *2k tile(4B) len of 2k *2k tile(4B)offset of rest tiles length of rest tiles

real data of 1st tile real data of 2nd tile data of rest tiles data of the 2k *2k tile

Local

Index

Data

Figure 4. Structure of SOFile for raster data model. SOFileRaster is
designed for raster data placement, which contains local indices header
and raster objects.

Each SOFile consists of geographically adjacent spatial
objects within a specific subregion, and one SOFile oc-
cupies one data block. Since there are two convention-
al spatial data models in spatial applications, we have
design two different structures of SOFile for raster tiles
and vector geometry objects, respectively. The structure of
SOFile for raster data model is shown in Fig.4, which is
called SOFileRaster. Moreover, Fig.5 shows the structure of
SOFile(termed SOFileVector) for vector data model.

HC of 1
st

WKBobject(4B) GC value of region(4B) K-value of region(4B)

offset of 1st WKBobject(4B) length of 1st WKBobject(4B)

MBR of region(16B)

offset of 2ndWKBobject(4B)

offset of 2k *2kobject(4B) len of 2k *2k object(4B)offset of rest objects length of rest objects

1st WKBobject data 2nd WKBobject data data of rest objects data of the 2k *2k objects

length of2ndWKBobject(4B)
Local

Index

Data

Figure 5. Structure of SOFile for vector data model. SOFileVector is
designed for vector geometry object placement, which contains local indices
header and WKB objects.

Both SOFileRaster and SOFileVector are inherited from
SOFile structure, which includes local index header and
real data part. Since the raster data and vector data have
different function for spatial queries, we design different
index structure for the two spatial data models. The local
index header is the main distinction between SOFileRaster
and SOFileVector, which will be described in SectionII-B2.
The local index header contains meta data information of
block and index items of spatial objects; the data content
part contains real data of spatial objects within the region.
Moreover, the size of SOFile is the sum length of indices and
real data part. The spatial objects are organized in Hilbert
order and assigned unique HC(Hilbert Code), and adjacent
spatial objects are stored on sequential disk pages so that
it can guarantee geographic proximity and storage locality.
Fig.3 shows an example that spatial objects within region
R31 are stored in Hilbert order.

The leaf node of global index tree is pointed to a data
block file whose suffix is “.sof”(spatial object file) on
HDFS, and the non-leaf node represents a region that should
be partitioned into four smaller subregions for its size is
larger than threshold MSIZE. Fig.6 shows an example
of hierarchical directory structure details of region(κ = 4)
stored on HDFS, which is corresponding to quadripartition
schematic shown in Fig.2. The ellipse represents storage
directory corresponding to non-leaf node, and rectangle
represents data block file corresponding to leaf node. HDFS
creates one block for each file, and file blocks are distributed

NameSpace in NameNode

DataNode 1

blk_xxx
Index Data

blk_aaa
Index Data

DataNode 2

blk_bbb
Index Data

blk_ccc
Index Data

DataNode M

blk_ccc
Index Data

blk_xxx
Index Data

DataNode N

blk_bbb
Index Data

blk_aaa
Index Data

blk_xxx:

DataNode1,DataNode M

Global Code

0
1.sof 2.sof

00.sof 01.sof 02.sof 03.sof 30 31.sof 32.sof 33.sof

3

300.sof 301.sof 302.sof 303.sof

metadata of 300.sof.meta

Other DataNodes

blk_sss
Index Data

blk_***
Index Data

Figure 6. Hierarchical structure for spatial data on HDFS(κ = 4)

across cluster nodes for load balancing. As shown in Fig.6,
the directory hierarchy is quadtree-like structure, the root
node of quadtree represents the root directory identified
by “Global Code”, and its four children nodes represent
subdirectories and “.sof” files.

B. Two-tier Distributed Spatial Index

The VegaGiStore system must be able to retrieve from a
large collection of objects in some space those lying within
a particular area without scanning the whole datasets, so the
spatial index is mandatory. In order to improve spatial data
access performance and optimize spatial queries, we propose
a scalable distributed spatial index to accelerate positioning
spatial objects on HDFS. Considering geographic proximity
and storage locality, the geographically adjacent data should
be stored into the same node.

Our proposed distributed spatial index is a two-tier scal-
able index including global index and local index. There are
two salient features of the spatial index. The global index is
based on the revised distributed quadtree index [13], which
is used to determine the data block location. The local index
is built by space filling curve and is used to locate spatial
objects within a block. Moreover, the distributed index is
designed and tuned for spatial applications, which is oriented
to improve spatial data retrieval efficiency on HDFS.

1) Global Index: The global quadtree index is created
during quadripartition process. The large map layer is par-
titioned into four quadrants recursively until all subregions
are satisfied the threshold. Meanwhile, all spatial objects
belong to the map layer is partitioned according to their
geographical space, and adjacent objects are sequentially
stored into a SOFile. Once a large map layer is split into
several subregions, the spatial data are partitioned into many
data blocks and uniformly spread across HDFS DataNodes.

The global index is quadtree-based, and the glob-
al tree structure is represented by Global Code (GC).
GC is quaternary code, where GC = c1c2, · · · , cs =
y1x1y2x2, · · · , ysxs. GC value can be computed by (1),

where s and κ denote the size of region and its subre-
gions, (x, y) denotes the coordinates of objects, and ci ∈
{0, 1, 2, 3}.

GC =
s∑

κ=1

(2yκ + xκ)× 4s−κ (1)

According to (1), each region has an unique GC value
used to construct global index. As shown in Fig.2, the
quaternary numerics denote GC values of regions, e.g.,
region R300 = 303, R301 = 301, we can derive that the
GC value of their parent node is 30.

Since the non-leaf node of global index tree only pointed
by its GC value, the size of global tree is very small and the
global index is resident in memory during retrieval process.
Besides, <GC,MBR> pairs of regions are maintained in
the HashMap structure, which are used to obtain MBR
information for further spatial query computation.

2) Local Index: The local index is created when subre-
gion data is written into SOFile, and indices data are stored
in the SOFile as well. Therefore, the leaf nodes of global
quadtree are pointed to the header of spatial object file.
The local index is used for indexing spatial objects within
SOFile, and the local index header is illustrated as follows.

• Metadata information. For the SOFile structure, the
first word is reserved for data version; the second and
third words are (x, y) coordinate of 1st object; the
fourth word is the κ value of the region; the region
is determined by its κ value and coordinate(x,y) of
the first tile object while processing raster data. For
the SOFileVector structure, the first four words are
MBR(Minimum Bounding Rectangle) information of
the region represented by four double values; the fifth
word is HC(Hilbert Code) value of the first WKBobject;
the sixth and the seventh word is GC value and κ value
of region, respectively.

• Index item. The index item contains two fields: offset
and length. It means that local index of each spatial
object is corresponding to a <offset, length>pair, and
the index items of spatial objects are written into block
sequentially.

• Indices length. There are 2κ × 2κ objects, and index
length of object is 8 bytes, so the total length of
file indices is 22κ+3 bytes. Thus the index length of
SOFileRaster and SOFileVector is (22κ+3 + 12) bytes
and (22κ+3 + 24) bytes, respectively.

C. “Indexing+MapReduce” Data Processing Architecture

We propose an “indexing + MapReduce" data processing
architecture to improve the spatial query computation ca-
pability of VegaGiStore. This architecture takes advantage
of data-parallel processing techniques to provide both intra-
query parallelism and inter-query parallelism, and thereby
can reduce individual spatial query execution time and

provide a large number of concurrent spatial queries. Our
scheme is specific to spatial queries including spatial se-
lection, spatial join and nearest neighbors, and the spatial
queries are processing in multiple phases. The first filter
phase prunes non-qualified objects with spatial index to
obtain candidate intermediate sets, and then the qualified
candidate objects are transferred as the input of refinement
phase. Finally the spatial relation computation examines the
actual object representation to determine the query results.

1) MapReduce-based Spatial Query Operator: In VegaG-
iStore, we have implemented several spatial query operators
using the map/reduce paradigm. The spatial query operators
are classified into three categories: spatial selection, spatial
join and NN(Nearest Neighbor). Moreover, the spatial se-
lection queries contain point query, range query and region
query, where the region query includes rectangle query, cir-
cle query and polygon query. Besides, the NN query consists
of k-NN(k-Nearest Neighbor). In addition, the spatial query
algorithms are encapsulated into spatial query operators, and
these operators are packaged as map/reduce spatial query
library. Therefore, an arbitrary complex spatial query can
be implemented by a combination of these query operators.

2) Parallel Execution of Spatial Query: Our scheme takes
advantage of data-parallel processing techniques so that it
could provide both inter-query parallelism and intra-query
parallelism. The inter-query parallelism is obtained by paral-
lel executing multiple spatial queries as independent jobs so
that it can support a large number of concurrent clients. The
intra-query parallelism can be obtained by parallel execution
of two independent phases within an individual spatial query.
As shown in Fig.7, the spatial query are processing in two
phases, which includes filter phase and the refinement phase.
The filter phase searches the global index and obtains the
candidate SOFile sets, and these candidates are parallel
processed by a map-reduce job at the refinement phase.
The details of spatial query execution in VegaGiStore are
described as follows.

Firstly, the filter operation prunes non-qualified spatial
objects simultaneously by searching the global index, and
returns the candidate SOFile sets. Since the global index
is kept in memory and retrieved by GC(Global Code) of
global quadtree, the filter phase will be finished in several
milliseconds. The outputs of this phase are GC values of
SOFiles that matches the query requirements, and the can-
didate SOFile sets are used as the input of next refinement
phase for further computation.

Secondly, the candidate SOFile sets are interpreted into
<ID,object> pairs and processed by a map-reduce job at
the refinement phase. Since the map-reduce framework
relies on the InputSplit and RecordReader, we implemen-
t SOFileInputSplit and SOFileRecordReader to generate
<ID,WKBobject> pairs for Mapper. The map and reduce
procedures are described as follows.

• Map task. The generated <ID,WKBobject> pairs are

transferred to SpatialQueryMapper and they are par-
allel processed by TaskTrackers on the cluster nodes.
This process obtains the <ID,WKBobject> pairs that
satisfying the query conditions.

• Reduce task. the satisfied <ID,WKBobject> pairs are
transferred to Reducer. SpatialQueryReducer executes
the complex spatial relationship computation for the
final query results.

Local Index
SOFile

Filter phase

SOFileInputSplit SOFileInputSplit SOFileInputSplit

SOFileRecordReader SOFileRecordReader SOFileRecordReader

SpatialQueryMapper SpatialQueryMapper SpatialQueryMapper

Global Index

Local Index
SOFile

Local Index
SOFile

SpatialQueryReducer SpatialQueryReducer

Refinement phase

Query Results

Figure 7. Spatial query processing architecture of VegaGiStore. The filter
phase searches the global index and outputs candidate SOFile sets; then
these candidate sets are processed in parallel by a map-reduce job at the
refinement phase.

Since complex spatial query can be combined by several
spatial query operators, and these operators are map-reduce
based, the complex spatial query can be executed in parallel
on many nodes. Besides, a large number of concurrent
spatial queries can be executed simultaneously. Therefore,
VegaGiStore could achieve high throughput performance for
spatial query processing over big spatial data.

III. PERFORMANCE EVALUATION

A. Experiment Environment

Our experiments are conducted on a cluster of 17 com-
modity servers that spread across two racks(i.e., RACK1
& RACK2). RACK1 consists of 8 nodes, and each node
has two quad-core intel CPU 2.13GHZ, 4GB DDR3 RAM,
15000r/min SAS 300GB hard disk. RACK2 consists of 9
nodes and each node has a Intel Pentium 4 CPU 2.8GHz,
2GB DDR2 RAN, 7200r/min SATA 80GB hard disk. All
nodes are connected through Gigabit Ethernet switchers.

Software configurations are detailed as follows. All nodes
have identical CentOS 5.5 server edition (kernel 2.6.18), Lin-
ux Ext3 and JDK-1.6.0_20. PostgreSQL-9.0.5 cluster, bare
Hadoop-0.20.2, Cassandra-0.7.6, HBase-0.20.6 and VegaGi-
Store are deployed on the cluster. Moreover, Zookeeper-3.3.3
is deployed on 7 nodes to maintain configuration information
and distributed synchronization. Besides, we also deploy
two spatial databases in RACK1, i.e., commercial Oracle
Spatial + Oracle database cluster and open-sourced PostGIS
+ PostgreSQL cluster.

B. Test Items and Datasets

As already mentioned, spatial queries should process large
amounts of spatial data, and the spatial query efficiency
is heavily depended on both I/O and spatial computation
performance, hence we evaluate spatial query performance
in terms of two categories, including I/O metrics and spatial
query metrics. We evaluate the I/O performance by three
frequently-used I/O operations in spatial applications, which
includes random reads, sequential reads and bulk loading.
Besides, the spatial query efficiency is evaluated by conven-
tional operations, including spatial selection query, spatial
join and k-NN query.

The real spatial dataset is about 1.379TB and consists of
raster and vector datasets, which covers eight map scales
with highest resolution is 1 : 5000. The raster dataset
contains about 128, 323, 657 file-based tiles, and each tile
ranges from several bytes to tens of KBs. The vector dataset
consists of geometry objects: (a) TLP contains 314, 851, 774
point objects; (b) TLL contains 81, 991, 436 line objects; (c)
HYP contains 16, 749, 181 polygon objects.

C. Reads Operations

We evaluate two reads operations: random reads and
sequential reads, which are used in different application
scenarios. Random reads operation is often used for random
access of spatial objects within a small region, e.g., reading
the spatial object of given location <longitude, latitude>;
sequential reads operation is used to sequentially access
adjacent spatial objects within a map layer, e.g., reading all
geometry objects within specific map layer.

Let R(lon, lat) denote that reading (lon × lat) spatial
objects within region R, e.g., R(1, 1) means reading one ob-
ject, and R(80, 80) means reading 6400 spatial objects. We
conduct six groups of comparative experiments for random
reads and sequential reads, respectively. The comparisons
are VegaGiStore and four other typical systems, including
PostgreSQL cluster, bare HDFS, Cassandra and HBase.

1) Random Reads Operation: The random reads perfor-
mance is evaluated by reading spatial objects with size from
R(1, 1) to R(8, 8).

As shown in Fig.8, the average random reads performance
of VegaGiStore is increased by about 79%, 338%, 96%, 89%
than that of PostgreSQL cluster, bare HDFS, Cassandra and
HBase, respectively.

Since bare HDFS is only tuned for streaming large files, it
performs worst while randomly reading small spatial objects.
PostgreSQL cluster performs better than key-value stores be-
cause it has spatial index. Moreover, VegaGiStore performs
even better while randomly reading more spatial objects,
e.g., VegaGiStore costs 1.01ms and 20.86ms to reading 1
object and 64 objects, whereas the respective time is 1.12ms
and 38.45ms for PostgreSQL cluster. VegaGiStore gains
excellent random reads performance due to its geography-
aware data organization scheme, and hence it could provide

Figure 8. Random reads performance.

low latency random access for spatial applications involving
a large number of concurrent reads.

2) Sequential Reads Operation: We also conduct six
groups of test with size from R(20, 20) to R(80, 80) for
sequential reads evaluation, and then each test case is
repeated for 10 times, finally collect the average results.

Figure 9. Sequential reads performance.

As shown in Fig.9, the average sequential reads perfor-
mance of VegaGiStore is about 198%, 856%, 336%, 309%
better than that of PostgreSQL cluster, bare HDFS, Cas-
sandra and HBase, respectively. Moreover, the VegaGiStore
performs better when reading more geographically adjacent
spatial objects, e.g., it cost only 112ms when reading 6400
spatial objects from VegaGiStore, yet the respective time is
523ms, 1187ms, 593ms and 583ms for PostgreSQL cluster,
bare HDFS, Cassandra and HBase.

VegaGiStore outperforms compared systems in reads
micro-benchmarks because it benefits from geography-aware
data organization scheme. VegaGiStore organizes the ge-
ographically adjacent spatial objects into sequential disk
pages, and hence the objects are successively streaming to
clients once seeks to the right position. Moreover, VegaGi-
Store can support a large number of concurrent reads across
multiple nodes because it preserves geographic proximity

and storage locality. Due to ignorance of geographic prox-
imity and absence of spatial index on HDFS, Cassandra and
HBase, they may access too many data blocks across mul-
tiple nodes while reading geographically adjacent objects,
which leads to low sequential reads efficiency.

D. Bulk Loading Operation

Since most spatial applications are write once read many
access model [14], the large amounts of spatial data should
be quickly imported into storage systems for rapid deploy-
ment of spatial information services. Bulk loading operation
is often used for batch import of spatial data in practical
spatial applications, e.g., loading multi-scale spatial data
across multiple map layers into storage system.

We have imported three groups of datasets into VegaG-
iStore and compared systems respectively, including Linux
Ext3(LocalFS), PostgreSQL cluster, bare HDFS, Cassandra
and HBase. There are two replicas in all systems and the
HDFS block size is set to 64MB. The three group datasets
include raster data and vector data, and they are classified as
small(64 GB), medium(512 GB) and large(1024 GB) groups.

Figure 10. Bulk loading performance.

As shown in Fig.10, the bulk loading time of compared
systems is varied with dataset size, and VegaGiStore outper-
forms other systems in all test cases.

Since there are lots of small tiles and geometry objects, the
localFS and bare HDFS perform not as well as the other four
systems. The bulk loading performance of VegaGiStore gets
even better while storing larger dataset. For the small group,
the bulk loading time of VegaGiStore is about 17.6 minutes,
which is 680%, 510%, 597%, 99%, 235% faster than that of
LocalFS, PostgreSQL cluster, bare HDFS, Cassandra and
HBase, respectively. On the other hand, it cost about 261.9
minutes for loading large(1024GB) dataset into VegaGiS-
tore, which is about 10.9, 5.13, 6.88, 1.1, 1.36 times faster
than compared systems, respectively. Besides, the average
I/O throughput of VegaGiStore is about 65.8MB/s, whereas
the I/O throughput of LocalFS, PostgreSQL cluster, HDFS,
Cassandra and HBase is about 6.9, 11.3, 8.9, 32.9, 27.3 M-
B/s, respectively. Therefore, VegaGiStore achieves highest

I/O throughput and has obvious advantages while bulk
loading big spatial data.

E. Spatial Query Performance

Since key-value stores don’t provide spatial query func-
tions, we compare the spatial queries between VegaGiStore
with two typical spatial databases, i.e.,Postgre+PostGIS and
Oracle Spatial. The datasets are imported into the three com-
pared systems, and the spatial indices of spatial objects are
created as well. Moreover, we have shown the scalability of
VegaGiStore on different number of nodes, i.e., VegaGiStore
is evaluated on cluster of 1, 2, 3, 5, 7, 9, 11, 13, 15, 17 nodes
respectively. Besides, each node runs two map tasks and one
reduce tasks in VegaGiStore while executing map-reduce
based spatial query jobs.

1) Spatial Selection Performance: We have conducted
three groups of experiments(RQ1, RQ2 and RQ3) to eval-
uate the spatial selection performance. First, we create a
rectangular region R with its size is 46.53% of the MBR of
HYP dataset; then spatial selection operations is executed in
compared systems to find all the objects of vector datasets
that geometrically interact with R; finally compute and print
the outputs, i.e., the satisfied geometry objects information.

Figure 11. RQ1 finds point objects of TLP within R.

The spatial selection operation RQ1 is to query all points
objects of dataset TLP that within region R. As shown
in Fig.11, when processing RQ1 on 2 to 17 nodes, the
execution time of VegaGiStore is reduces from 159.09s
to 12.71s, whereas the execution time of PostGIS and
Oracle Spatial is 168.72s − 76.32s and 152.21s − 69.93s,
respectively. The average speedup ratio of VegaGiStore is
about 75.32%. Moreover, it should be pointed out that the
execution time of VegaGiStore is longer than that of SDB
on single node. That is because VegaGiStore depends on
MapReduce runtime system, and the MapReduce startup is
a costly process.

The spatial selection operation RQ2 is to query all lines
objects of dataset TLL that within or intersect with region
R. As shown in Fig.12, the average speedup ratio of
VegaGiStore is about 72.87%, and the execution time is

Figure 12. RQ2 finds line objects of TLL interact with R.

reduced from 308.67s to 27.06s, whereas the execution time
of PostGIS and Oracle Spatial is 353.78s − 236.67s and
343.61s− 226.39s with number of nodes increased from 2
to 17, respectively.

Figure 13. RQ3 finds polygon objects of HYP interact with R.

The spatial selection operation RQ3 is to query all poly-
gons objects of dataset HYP that interact within or overlap
with region R. As shown in Fig.13, with RQ3 is processed
on 2 node to 17 nodes, the execution time of VegaGiStore
is reduced from 752.89s to 55.37s, whereas the execution
time of PostGIS and Oracle Spatial reduces not so obviously,
i.e., 812.37s−608.91s and 762.37s−508.91s, respectively.
Besides, the average speedup ratio of VegaGiStore is about
75.89%.Therefore, VegaGiStore achieves distinguished spa-
tial selection performance and has good scalability.

2) Spatial Join Performance: Spatial join query combines
objects from two datasets by geometric attributes which
satisfy spatial predicate. We conduct experiment to evaluate
the spatial join query, where the spatial predicate is inter-
section. Moreover, the intersection join query is processed
over dataset TLL(lines objects), and it answers query such
as finding roads across rivers in specific area.

We select two spatial datasets S1 and S2 with their size is
30% of TLL. The spatial join performance is evaluated by
intersection join operation, i.e., finding objects that satisfy

predicate {(r, s)|r Intersect s, r ∈ S1, s ∈ S2}.

Figure 14. Spatial join query evaluation.

As shown in Fig.14, the spatial join query performance
of VegaGiStore is much better than that of PostGIS and
Oracle Spatial. The execution time of VegaGiStore, Post-
GIS and Oracle Spatial on one node is 1458.39s, 1423.76s
and 1396.58s, respectively. However, the execution time of
VegaGiStore is reduced obviously as the cluster scales, e.g.,
the time is 91.37 s with 17 nodes, whereas the respective
time is 588.69s and 538.69s for PostGIS and Oracle Spatial.
The average speedup ratio of VegaGiStore is about 70.98%
when processing intersection spatial join query. VegaGiStore
performs better with more nodes, thus it could efficiently
process spatial join query involving large datasets.

3) kNN Performance: The kNN query predicate is to find
k objects in TLP dataset that are closet to a query point p.

Figure 15. kNN spatial query performance of different systems(k = 1, 10).

We evaluate the kNN spatial query between VegaGiStore
and spatial databases (i.e., PostGIS and Oracle Spatial)
where k = 1 and 10. As shown in Fig.15, VegaGiStore out-
performs spatial databases running on more than two nodes,
and its execution time is reduced from 620.98s to 58.17s
with nodes increased from 2 to 17, whereas the respective
time for PostGIS and Oracle Spatial is 859.28s − 298.67s
and 883.79s − 263.79s. Moreover, as shown in Fig.16, the
kNN performance of spatial databases decreases rapidly

with larger k, whereas VegaGiStore keeps at a relatively
stable level. Besides, the kNN performance of VegaGiStore
increases with more nodes, and its average speedup ratio
has achieved by about 73.85% when k ranges from 1 to 50.
Therefore, VegaGiStore could provide efficient kNN spatial
query for data-intensive spatial applications.

Figure 16. kNN query performance of VegaGiStore with different k values
and # of nodes.

IV. RELATED WORK

There are quite a few early works on spatial query
processing by integrating spatial index into SDB. They
are focus on pruning the search space while processing
queries in Euclidean space [15], e.g., Quadtree [9], R-tree
and their variants [16] are integrated into Oracle spatial
[17] and PostGIS [18]. SDB performs well with small
spatial dataset [1]. However, limited to the fixed schema
and strict ACID2 semantics, SDB cannot provide efficient
spatial queries involving big spatial data.

LDD(Location Dependent Database) is a typical spatial-
tagged database used for location-related data management.
The LDD supports location context-aware information ap-
plications in mobile environments [19]. However, LDD only
answer simple location-related attribute queries over small
textual dataset within a local area.

Key-value store systems are emerging with web-scale
data, and they are suitable for managing semi-structured
data that can be represented by key-value model. Google’s
Bigtable is used to store the satellite imagery at many dif-
ferent levels of resolution for Google Earth product [6]. The
open-sourced key-value stores such as HBase [7], Cassandra
[8] are widely used in web applications for storing textual
data or images. However, they cannot support efficient
spatial queries due to ignorance of geographic proximity and
absence of spatial index.

There are works to improve spatial query processing
through revising traditional spatial indexes in distributed
environments. [20] and [21] propose solutions to improve
spatial queries in peer-to-peer environments; parallel R-tree

2Atomicity, Consistency, Isolation, Durability

[22] is designed for shared-disk environments. However, the
spatial index only improves data retrieval efficiency, and they
are regardless of I/O throughput and spatial computation
capability. Thus, they cannot achieve high performance
spatial query processing that involves massive spatial data
and concurrent users.

Query parallelism is an significant issue of query pro-
cessing. Typical parallel databases [23] provides inter-
query and intra-query parallelisms for parallel processing
of structured data. We focus on parallel query processing of
multi-dimensional spatial data, with provision of geographic
proximity, spatial index and spatial query parallelism, our
proposal can achieve high aggregate I/O throughput and
spatial computation capability.

V. CONCLUSION

We have proposed and implemented a distributed, ef-
ficient and scalable scheme(i.e. VegaGiStore) to provide
multifunctional spatial queries over big spatial data. Firstly,
a geography-aware data organization approach is presented
to achieve high aggregate I/O throughput. The big spatial
data are partitioned into blocks according to their geographic
space and block size threshold. The adjacent spatial objects
are stored sequentially into SOFile in terms of geographic
proximity. Secondly, in order to improve data retrieval
efficiency, we design a two-tier distributed spatial index for
efficient pruning of the search space. The index consists
of quadtree-based global index and Hilbert-ordering local
index, and hence it could improve query efficiency with
low latency access. Thirdly, we propose an “indexing +
MapReduce” data processing architecture to improve the
spatial query computation capability of VegaGiStore. This
architecture takes advantage of data-parallel processing tech-
niques to provide both intra-query parallelism and inter-
query parallelism, and thus can reduce individual spatial
query execution time and afford a large number of concur-
rent spatial queries. We have compared VegaGiStore with the
traditional spatial databases (i.e., PostGIS, Oracle spatial)
and emerging distributed key-value stores (i.e.,Cassandra,
HBase). The experimental results show that VegaGiStore
has gained the best spatial query processing performance,
and thus can meet high performance requirements of data-
intensive spatial applications.

ACKNOWLEDGMENT

This work is supported by National High Technology
Research and Development Program(863 Program) of China
(Grant No.2011AA120302 and No. 2011AA120300). The
work is also funded by The CAS Special Grant for Postgrad-
uate Research, Innovation and Practice. We would like to
thank the anonymous reviewers for their valuable comments.

REFERENCES

[1] C. Yang, D. Wong, Q. Miao, and R. Yang, Advanced Geoin-
formation Science, 1st ed. CRC Press, October 2009.

[2] R. H. Güting, “An introduction to spatial database systems,”
The VLDB Journal, vol. 3, pp. 357–399, October 1994.

[3] M. Egenhofer, “Spatial sql: a query and presentation lan-
guage,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 6, no. 1, pp. 86 –95, feb 1994.

[4] S. Shekhar and S. Chawla, Spatial Databases: A Tour, 1st ed.
Prentice Hall, June 2003.

[5] Z. Shubin, H. Jizhong, L. Zhiyong, W. Kai, and X. Zhiyong,
“Sjmr: Parallelizing spatial join with mapreduce on clusters,”
in IEEE International Conference on Cluster Computing,
2009, pp. 1–8.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A distributed storage system for structured data,”
ACM Trans. Comput. Syst., vol. 26, pp. 4:1–4:26, June 2008.

[7] “Hbase.” [Online]. Available: http://hbase.apache.org

[8] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” ACM SIGOPS Operating Systems
Review, vol. 44, pp. 35–40, April 2010.

[9] H. Samet, “The quadtree and related hierarchical data struc-
tures,” ACM Comput. Surv., vol. 16, pp. 187–260, June 1984.

[10] “Hadoop.” [Online]. Available: http://hadoop.apache.org

[11] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), ser. MSST ’10. IEEE Computer Society,
2010, pp. 1–10.

[12] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, pp.
107–113, January 2008.

[13] H. Samet, “The quadtree and related hierarchical data struc-
tures,” ACM Comput. Surv., vol. 16, pp. 187–260, June 1984.

[14] X. Liu, J. Han, Y. Zhong, and C. Han, “Implementing
webgis on hadoop: A case study of improving small file i/o
performance on hdfs,” in IEEE International Conference on
Cluster Computing, 2009, pp. 1–8.

[15] V. Gaede and O. Günther, “Multidimensional access method-
s,” ACM Comput. Surv., vol. 30, pp. 170–231, June 1998.

[16] S. Brakatsoulas, D. Pfoser, and Y. Theodoridis, “Revisiting
r-tree construction principles,” in Advances in Databases and
Information Systems, ser. Lecture Notes in Computer Science,
Y. Manolopoulos and P. NÃąvrat, Eds. Springer Berlin /
Heidelberg, 2002, vol. 2435, pp. 17–24.

[17] R. K. V. Kothuri, S. Ravada, and D. Abugov, “Quadtree and
r-tree indexes in oracle spatial: a comparison using gis data,”
in Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’02. New
York, NY, USA: ACM, 2002, pp. 546–557.

[18] “Postgis.” [Online]. Available: http://postgis.refractions.net/

[19] D. L. Lee, J. Xu, B. Zheng, and W.-C. Lee, “Data man-
agement in location-dependent information services,” IEEE
Pervasive Computing, vol. 1, no. 3, pp. 65 – 72, 2002.

[20] B. Liu, W.-C. Lee, and D. L. Lee, “Supporting complex
multi-dimensional queries in p2p systems,” in Proceedings
of the 25th IEEE International Conference on Distributed
Computing Systems, ser. ICDCS ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 155–164.

[21] E. Tanin, A. Harwood, and H. Samet, “Using a distributed
quadtree index in peer-to-peer networks,” The VLDB Journal,
vol. 16, pp. 165–178, April 2007.

[22] I. Kamel and C. Faloutsos, “Parallel r-trees,” SIGMOD Rec.,
vol. 21, pp. 195–204, June 1992.

[23] D. DeWitt and J. Gray, “Parallel database systems: the future
of high performance database systems,” Commun. ACM,
vol. 35, pp. 85–98, June 1992.

