
He	Xiao Zhenhua Li Ennan Zhai Tianyin Xu

Practical	Web-based	Delta	Sync
for	Cloud	Storage	Services	

xiaoh16@gmail.com	
July	10,	2017
Hotstorage’17



Network	Traffic	is	Overwhelming	in	Cloud	Storage

File	Sync

2

Cloud	Traffic	has	30%	CAGR	(CompoundAverage Growth Rate)

Sever	Client

Network	Traffic
Users Vendors



Delta	Sync	Improves Network Efficiency

Delta	Sync	is	crucial	for	reducing	cloud	storage	network	traffic.

10	MB
1	B

Delta	Sync

Delta	Data

3

New	File Old	File

Delta sync support in nine state-of-the-art cloud 
storage services 10	MB

Full	Sync
New	File Old	File

Full	File



No Web-based	Delta	Sync

Why	web-based	delta	sync	is	not	supported	by	
today’s	cloud	storage	services	?

4

Web	Apps	with	local	storage	or	log	
files	need	web-based	Delta	Sync

Web	is	the	most	pervasive	and	OS-
independent	 cloud	storage	access	method	

Web-based	delta	sync	is	essential	for	cloud	storage	web	
clients	and	web	apps



Contribution

• We	quantitatively study	why	web-based	delta	sync	
is	not	offered by	today’s	cloud	storage	services.	

• We	build	a	practical	web-based	delta	sync	solution	
for	cloud	storage	services.
• By	reversing traditional	delta	sync	process,	we	make	the	
overhead	affordable	at	the	web	client	side.
• By	exploiting	the	locality of	users’	edits	and	trading	off	
hash	algorithms,	we	make	the	computation	overhead	
affordable	at	the	server	side.

5



WebRsync:	Implement	Delta	Sync	on	Web

• Implementrsync on	real	cloud	storage	with nativeweb	
tech:		JavaScript + HTML5 + WebSocket
• rsync is	the	de	facto	solution	of	delta	sync	in	cloud	storage

JavaScript	Implementation	
of	Rsync

Web	Server

Local
File System

HTML5	
FileAPI

WebSocket	

Storage		Backend
Aliyun OSS	/	OpenStack Swift

High-Speed	
Internal	Network

Web Browser

C	Implementation	
of	Rsync

6



WebRsync	vs.	rsync

7

Sync time of WebRsync vs rsync

Average Client CPU utilization



Stagnation	due	to	JavaScript’s	Single-
thread Event	Loop	Model

//print	timestamp	every	100ms
setInterval(print(timestamp),100) 
//print	the	timestamp	of	every	keystone(	 start	or	end	of	a	task)
on_start(task); print(task.id, timestamp) 
on_finish(task); print(task.id, timestamp) 

8

StagMeter



1.	Send	meta	data
Wait	server

2.	Checksum	Search
and	Comparison

3.	Send	tokens	and	literal	bytes
Wait	server

High CPU Utilization	when	
computing

Timestamp	Printing	is	suspended
Web	is	under	stagation state

StagMeter	on	WebRsync

9

Sync Process (Second)



WebR2sync:		Client-side	Optimization
Reverse	Computation	Process

Client Server

Request	for
Syncing	File	f’

Checksum	List	of	f
Segmentation
Fingerprinting

Searching
Comparing

Generate	tokens
and	Literal	Bytes Construct

New	File	fACK

10

WebRsync



WebR2sync:		Client-side	optimization
Reverse	Computation	Process

• Web Reverse Rsync: Reverse complicated computation from
server to client.

Client Server

Request	for
Syncing	File	f’

Segmentation
Fingerprinting

Generate	Tokens
And	Literal	Bytes

Construct
New	File	fACK

Searching
Comparing

Checksum	List	of	f

11



Performance	of	WebR2sync

Edit Size (Byte) 

Sy
nc

 T
im

e 
(S

ec
on

d)

12

Edit Size (Byte) 

Sy
nc

 T
im

e 
(S

ec
on

d)

Issue:	Server	takes	severely	heavy	overhead.



Server-side	Overhead	Profiling	

Checksum	searching and	block	comparison occupy
80%	of	the	computing	time

MD5 Computing Checksum Search

13

Ø Use	faster	hash	functions	to	replace	MD5
Ø Reduce	checksum	searching	overhead



Replacing	MD5	with	SipHash	in	Chunk	
Comparison	

Hash	Function Collision	
Probability

Cycles	per	Byte	

MD5 Low 5.58	

Murmur3	 High 0.33	

Spooky	 High 0.14	

SipHash	 Low 1.13	

SipHash	remain	low	
Collision	Probability
at much	faster	speed

14

A comparison of pseudorandom hash functions 



Solve	Possible	Hash	Collision

• Replace	MD5	with	SipHash,	may	cause	potential	
collisions	(Probability	p),	so	does	MD5.

• Our	Solution:	Use	Spooky	(fastest	method,	collision	
probability	p’).
• The	probability	of	collisions	is	p*p’

• Alternative:	Use	MD5	or	other	strong	hash	
functions	as	a	global	verification.
• Compute	MD5	over	whole	file	is	expensive.

15



Reduce	Chunk	Searching	by	Exploiting	
Locality of	File	Edits.	

16

MD5-4

Hash	Table
Adler32-1 Adler32-2 Adler32-3 Adler32-4

MD5-1 MD5-2 MD5-3

Block1 Block2 Block3 Block4

Checksum
search

Compare

95%	synchronized	files	
have	less	than	10 edits.



Evaluation	Setup

17

Basic experiment setup visualized in a map of China 



Sync	Time

18

1 10 100 1K 10K 100k
Edit Size (Byte)

10-1

100

101
Sy

nc
 T

im
e 

(S
ec

on
d) WebRsync

WebR2sync
WebR2sync+
rsync

WebR2sync+	is	2-3 times faster	than	WebR2sync	
and	15-20	times	faster	than	WebRsync



Throughput	

19

0 2000 4000 6000 8000
Number of Concurrent Users

NoWebRsync

WebRsync

WebR2sync

WebR2sync+

rsync

This	throughput	is	as	4 times	as	that	of	WebR2sync/rsync
and	as 9	times	as	that	of	NoWebRsync.	



Future	Work

• Evaluate	our	approach	under	different	edit	modes	
• delete,	insert,	append

• Evaluate	traffic	efficiency	
• all	the	methods	should	have	similar	traffic	efficiency	

• Understand	the	effects	of	three	optimizations
• evaluate	them	separately	

20



Discussion

• Probability	of	collisions	of	file	checksums

• Characteristics	of	file	operations	in	real-world	
scenarios	from	the	perspective	of	sync

• Locality	measure	for	deciding	whether	to	apply	
locality-based	optimization.		

21



Conclusion

•WebR2sync+	is	a	practical	solution	for	web-
based	delta	sync
• lightweight	computation at	the	client	side
• optimized	overhead	at	the	server	side
• the	server-side	optimizations	can	be	adopted	in	
the	traditional	cloud	storage	architecture

22



Thanks!
discussion

23



WebRsync	Detailed Description

Block1

Block2

Block3

…

Adler32 MD5

Adler32 MD5

Adler32 MD5

… …

Weak	
Checksum
Search

Strong	
Checksum	
Compare

1 block offset

YES

YES

NO

NO

Matched	Tokens Literal	Bytes Construct	New	File

Client Server

1 byte offset

Rolling Adler32
O(1): Adler(i)=>Adler(i+1)

24



WebR2sync:	Flowchart	and	Data structure

Construct	New	Files
Client Server

Weak	
Checksum
Search

Strong	
Checksum	
Compare

YES

NO

NO

1 byte offset
No further Operation

YES
Block 1
Block 2
Block 3
Block 4

Block 1
Block 2
Block 3
Block 4

When	find	 a	match,	record	the	
associated	index

25



Sync	Time	decomposed

26

1 10 100 1K 10K 100K
Edit Size (Byte)

0

0.05

0.1

0.15

0.2
Sy

nc
 T

im
e 

(S
ec

on
d) Server

Network
Client

WebR2sync+	client	takes	stable	and	shorter	time.
Because	of	the	Server-side	optimization,	computing	time	is	
much	shorter	both	in	client	and	server.


