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ABSTRACT
Cloud storage services are serving a rapidly increasing num-
ber of mobile users. However, little is known about the dif-
ferences between mobile and traditional cloud storage ser-
vices at scale. In order to understand mobile user access
behavior, we analyzed a dataset of 350 million HTTP re-
quest logs from a large-scale mobile cloud storage service.
This paper presents our results and discusses the implica-
tions for system design and network performance. Our key
observation is that the examined mobile cloud storage ser-
vice is dominated by uploads, and the vast majority of users
rarely retrieve their uploads during the one-week observa-
tion period. In other words, mobile users lean towards the
usage of cloud storage for backup. This suggests that delta
encoding and chunk-level deduplication found in traditional
cloud storage services can be reasonably omitted in mobile
scenarios. We also observed that the long idle time between
chunk transmissions by Android clients should be shortened
since they cause significant performance degradation due to
the restart of TCP slow-start. Other observations related to
session characteristics, load distribution, user behavior and
engagement, and network performance.
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1. INTRODUCTION
With the abundant and pervasive personal content genera-

tion witnessed today, the use of cloud storage for storing and
sharing personal data remotely is increasing rapidly. The
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personal cloud storage market is estimated to have a com-
pound annual growth rate of 33.1% between 2015 and 2020
[5]. Major players such as Google, Microsoft, Apple, Baidu,
and Dropbox are competing to offer users the best qual-
ity of service while keeping their costs low. Cloud storage
providers are working hard to meet their growing number of
mobile users. For instance, Dropbox redesigned its mobile
app, adding new functionality, and it tapped mobile ISPs for
improved user experience [4].

Both improving user experience and keeping costs low
can benefit from an in-depth understanding of the following
two system aspects:
• User behavior pattern, including workload variation,

session characteristics, and usage patterns (e.g., occa-
sional vs. heavy use). Insight gained can help opti-
mize performance and reduce cost at both the server and
client.

• Data transmission performance, where factors that in-
crease latency must be identified and addressed to im-
prove user QoE (Quality of Experience), a key factor in
user loyalty.

Unfortunately, little is known about these two system as-
pects in mobile cloud storage services. Recent seminal work
examined user behavior in Dropbox [12, 8] and Ubuntu One
[16]. Other research focuses on the traffic inefficiencies re-
sulting from the synchronization of frequent local changes
[21, 22]. However, all these studies are specific to traditional
PC clients, rather than mobile users. While some work noted
the unique challenges of synchronizing data of mobile users
in cloud storage services [10], both the user access behavior
and network performance properties in large-scale mobile
cloud storage services remain unexplored. Indeed, mobile
users might behave quite differently from PC-based users
when using cloud storage services. For instance, mobile
users may modify file content less often due to the inconve-
nience of editing files on mobile terminals. Also, the proper-
ties of mobile devices might limit transmission performance
due to connectivity, power and even software constraints.

This paper fills this void by examining a unique dataset
collected from a large-scale mobile cloud storage service
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for a one-week period. The dataset consists of 349 million
HTTP request logs generated by 1.1 million unique mobile
users. Our analysis first separates the series of requests of
each user into more fine-grained sessions with the session
interval empirically learned from the dataset. We then char-
acterize session attributes and usage patterns. Finally, we ex-
amine data transmission performance and diagnose the per-
formance bottlenecks using packet-level traces collected at
both the server and client sides. Our main findings and their
implications are as follows:
• Sessions and burstiness. The inter-file operation time

of individual users follows a two-component Gaussian
mixture model, where one component captures the in-
session intervals (mean of 10s), and the other corre-
sponds to the inter-session intervals (mean of 1 day).
This model allows us to characterize user behavior at ses-
sion level. For example, users store and retrieve files in
a bursty way, as they tend to perform all file operations
within a short time period at the beginning of sessions,
and then wait for data transmission to finish.
• Storage-dominated access behavior. In a single ses-

sion, mobile users either only store files (68.2% of
sessions), or only retrieve files (29.9% of sessions), but
they rarely perform both. The mixture-exponential dis-
tribution model for average file size reveals that 91% of
the storage sessions store files that are around 1.5 MB
in size. Surprisingly, over half of the mobile users are
predominantly interested in the cloud storage for back-
ing up their personal data, and they seldom retrieve data.
In contrast, PC-based users are far more likely to fully
exploit both storage and retrieval processes.
• Distinct engagement models. User engagement exhibits

a bimodal distribution, where users either return soon to
the service or remain inactive for over one week. No-
tably, about 80% of the users that use multiple mobile
terminals will not return to download their uploads in the
following week. On the other hand, users that use both
mobile and PC clients account for 14.3% of users, and
they are more likely to retrieve their uploads very soon.
• Device type effects on performance. The mobile device

type (either Android or iOS) has a significant impact on
chunk-level transmission performance. We show that the
root cause lies in the idle time between chunk transmis-
sions. A large TCP idle time might trigger the restart of
TCP slow-start. As a result, as many as 60% of idle in-
tervals on Android devices restart TCP slow-start for the
next chunk, compared with only 18% for iOS. Moreover,
the small TCP receive window size advertised by servers
limits upload performance, independent of device type.

Our results show that mobile users tend to use the cloud
storage service for backup of personal data. This suggests
opportunities for simplifying the design, and for optimizing
the performance of mobile cloud storage services. In par-
ticular, expensive delta encoding and chunk-level deduplica-
tion implemented in traditional cloud storage services [21,
22] have limited benefits in mobile scenarios. Instead, we

posit a smart auto backup function that defers uploads
in order to reduce the peak load and reduce cost. Some
cost-effective storage solutions for infrequently accessed ob-
jects, like f4 [26], can also easily reduce cost. In addition,
providers can leverage the distinct usage patterns of users for
effective in-app advertisement. Finally, to improve network,
the effect of long idle intervals between chunks should be
mitigated by using larger chunks or batching the transmis-
sion of multiple chunks.

Another contribution of this work is that we have
made our dataset publicly available for the community at
http://fi.ict.ac.cn/data/cloud.html. We hope the dataset will
be used by other researchers to further validate and investi-
gate usage patterns in mobile cloud storage services.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the background and dataset, while Section
3 presents an in-depth analysis of user behavior. Section 4
investigates data transmission performance. We discuss the
caveats of our analysis in Section 5, and related work in Sec-
tion 6. Finally, Section 7 concludes our work.

2. DATASET AND WORKLOAD
This section begins with an overview of the mobile cloud

storage service that we examine in this paper, followed by
the description of the dataset in use and its limitations. Fi-
nally, we present the temporal pattern of workload from mo-
bile devices, which will facilitate the understanding of sys-
tem artifacts.

2.1 Overview of the Examined Service
The service that we examined is one of the major personal

cloud storage services in China, serving millions of active
users per day. The service is very similar to other state-of-
the-art cloud storage services, like Google Drive and Mi-
crosoft OneDrive. Users are offered to store, retrieve, delete
and share 1 files through either a PC client or a mobile app.
This paper focuses on the first two operations (i.e., store and
retrieve), because the last two operations (i.e., delete and
share) do not go through the storage front-end servers, where
we collected our data.

Users are allowed to select multiple files to store or re-
trieve at one time. Uploading a file does not automatically
delete the local copies of the files. That said, a local copy of
the uploaded file might be kept on the device. HTTP is used
to move data between cloud servers and clients. The basic
object for a HTTP request is a chunk of data with a fixed size
of 512 KB (except for the last chunk of HTTP content). Each
chunk is uniquely identified by an MD5 hash value derived
from the chunk data. Files larger than the maximum chunk
size are split into chunks for transmission and storage. A file
can be identified using either a URL or its MD5 hash value,
or both.

1Delta updates (also known as direct modifications on files)
are currently not supported. In other words, any change to
the local copy of a file that results in change of the file’s
MD5 value will eventually lead to a new file to be uploaded.
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The mobile app is available for both iOS and Android de-
vices. To store or retrieve a file, a mobile device first contacts
a pre-defined metadata server. For storage, the mobile device
sends the file’s metadata (i.e., the file name and MD5 hash
value) to a metadata server. The metadata server first checks
whether or not the file has been already uploaded to a storage
server. If storage server has already kept a copy of the file,
the metadata server adds the file to the user’s space and tells
mobile device not to upload the file. This deduplication pro-
cess aims to avoid redundant uploads of the same content,
so as to reduce the workload of storage servers. Otherwise
(i.e., if the file version has not been identified on any stor-
age server), the metadata server sends the client the identity
of the closest storage front-end server to contact. The mo-
bile device then sends some file information (including the
file name, the file size, the file MD5, the number of chunks
and the corresponding MD5 values of individual chunks) to
the front-end server via a file storage operation request, and
then initiates the storage process of chunks with chunk stor-
age requests.

In the case of a retrieval query, the mobile device asks
a pre-defined metadata servers for the MD5 hash value of
the requested file (indicated by the unique URL), which is
then used to request the file relevant information from a stor-
age server via a file retrieval operation request, followed
by requests of individual chunks (i.e., chunk retrieval re-
quests). For ease of description, file storage/retrieval oper-
ation request is denoted as file operation, while chunk stor-
age/retrieval request is shortened as chunk request.

Users are allowed to store or retrieve multiple files at a
time, and several files might be transferred in parallel. For
example, the mobile app allows users to backup multiple
photos at a time. Users can also issue file storage or re-
trieval requests when other files are being transferred. For
a single file, HTTP requests can use one or more TCP con-
nections. TCP connections can also carry HTTP requests
from more than one file. Within a specific TCP connection,
chunks are sequentially requested, i.e., a new chunk request
will not be issued until the receiver explicitly acknowledges
(at the HTTP level) the previous chunk2.

2.2 Dataset Description
HTTP request logs. We collected HTTP-level request logs
from all storage front-end servers of the examined mobile
storage service. We focus on the logs from mobile devices
in this paper. Table 1 lists an example of the main fields
contained in a log entry.

The device ID uniquely identifies a device, while the user
ID is uniquely bound to a registered user account. Both de-
vice ID and user ID are anonymized in our datasets. The
data volume measures the volume of uploaded (resp. down-
loaded) data for a chunk storage (resp. retrieval) request.
The request processing time measures the duration between
the first bytes received by front-end server and the last bytes
sent to mobile client. The average RTT is the average

2The batched store/retrieve operations [11] of multiple
chunks are not yet supported.

Table 1: Main fields of logs.

Field Example
Timestamp 19:10:01 Aug. 4 2015
Device type Android or iOS
Device ID 33ab8c95437fd
User ID 1355653977
Request type file operation/chunk request
Data volume 512 KB
Req. processing time 4.398s
Average RTT 89.238ms
Proxied or not yes

of all RTTs measured for the TCP connection on which
the HTTP request is transferred. Finally, whether the re-
quest is proxied or not is obtained from the HTTP header
X-FORWARDED-FOR.

We collected all the log entries of HTTP requests origi-
nated from mobile devices for one week in August 2015. In
total, we obtained 349,092,451 logs from 1,148,640 active
mobile users (identified by user ID) using 1,396,494 mobile
devices (identified by device ID), where 78.4% of the ac-
cesses were from Android devices, and the rest from iOS
devices. Geographically, users are located in China as well
as in overseas countries. A user might use several mobile
devices to access the service.

Users can use both mobile devices and PC clients to ac-
cess the service. In our dataset, there are 164,764 such users,
accounting for 14.3%. We also collected the HTTP request
logs generated by these users when they accessed via PC
clients, corresponding to 59,647,797 logs. Note that since
we use complete HTTP request logs (as opposed to sam-
pling the logs), the information of all the used devices (ei-
ther mobile devices or PC devices) of a user is included in
our dataset. In addition, to examine the disparity between
mobile users and PC client users, we extract 1,206,592,592
request logs from over 2 million PC-based users during the
same period of time. These logs are used for usage pattern
analysis in §3.2.

Packet-level traces. We also captured packet-level traces
(128-byte packet) for storage and retrieval flows originated
from mobile devices at one of the storage front-end servers.
The packet-level traces are desired for the investigation of
TCP behavior and its impact on the cloud storage service.
In total, we obtained the packet-level traces of 40,386 flows,
including both storage and retrieval flows.

2.3 Dataset Limitations
Due to privacy constraints, none of our traces include in-

dividual file information or chunk hashes. This prevents
us from linking HTTP requests that are associated with the
same file. Instead, we group requests into sessions based on
the inter-file operation times (See §3.1 for details). A session
corresponds to the activities of a user in a period of time prior
to a relatively longer inactivity period of time (e.g., logging
out). A session can contain multiple file operations.



In addition, we analyze the cloud storage performance
by examining the TCP behavior of storage/retrieval flows.
As TCP is sender driven, packet traces at client side (i.e.,
TCP sender when storing data), which are not included in
the dataset, are required when analyzing the performance of
storage flows. We resort then to a number of active measure-
ments for this purpose (See §4).

2.4 Workload Overview
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Figure 1: Temporal variation of workload: (a) the data vol-
ume, (b) number of files that are retrieved/stored. The mark-
ers represent 12PM and 24PM of each day.

We first report the temporal pattern of the mobile cloud
storage workload in Figure 1. Request logs are grouped
into one-hour frame bins. For each bin, the total data vol-
ume of storage and retrieval, which reflects the load on stor-
age servers, is plotted in Figure 1a, while the number of
stored and retrieved files, which reflects the load on meta-
data servers, is shown in Figure 1b. We observe a clear di-
urnal pattern with a sharp surge around 11PM when users
are at home where they are likely to have access to WiFi. In
fact, the mobile app provides users the option to transfer files
only via a WiFi network. We can also observe that retrievals
contribute more data volume to the workload than storages.
In contrast, the number of stored files per hour is over two
times of that of retrieved files. This implies that retrieved file
objects are much larger than the stored ones, which is also
confirmed by our analysis in §3.1.

The above observations on workload variation have two-
fold implications. First, both storage servers and metadata
servers would be highly over-provisioned for most of the
time, since the server capacity is often designed to bear the
peak load. Elastic scale-in and scale-out of the service as
such are needed to address this over-provision problem. Sec-
ond, the huge data volume greatly challenges the storage
space and bandwidth. In this context, a thorough analysis
of the system artifacts (§3) and performance (§4) can shed
light on avenues for system and revenue optimizations.

... ...

time

store/retrieve chunk

session length

...

begin end begin 

T

Figure 2: File operation interval and session identification
methodology for a user. The white boxes represent file op-
erations, while the hatched boxes show chunk requests.

3. USER BEHAVIOR ANALYSIS

3.1 Session Characteristics
We first examine the inter-file operation time. The anal-

ysis leads to the session identification. We then analyze the
session size and build models to capture the intrinsic proper-
ties of file sizes.

3.1.1 File Operation Interval and Session Iden-
tification

Our dataset captures a user’s activity as a stream of HTTP
requests with their associated timestamps as shown in Figure
2. A file operation request, which carries the requested file
information to storage front-end servers, corresponds to the
beginning of file storage or retrieval (white box in Figure
2). The file operation interval (T in Figure 2) measures the
time duration between each file operation request and the
previous operation of the same user. We separate sessions
based on the distribution of file operation interval. Here, a
session is formally defined as a sequence of HTTP requests
(including both file operations and chunk requests) made by
a user during a period of time, in which the time difference
between any two sequential file operations is less than τ ,
where τ is a parameter that should be empirically derived.
In other words, a file operation request begins a new session
of the user if it is more than τ away from the previous file
operation, i.e., T > τ .

Figure 3 plots the histogram distribution of the file oper-
ation intervals for the request streams of all users extracted
from our dataset, based on the logarithmically scaled inter-
file operation time. We observe a valley around the 1-hour
mark. Based on the session identification methodology in
[18], this suggests setting τ to one hour. We further fit a two-
component Gaussian mixture model, where the expectation
maximization (EM) method [7] is used to find the maximum
likelihood estimate of the model parameters. As shown in
Figure 3, one component corresponds to within-session in-
tervals with an average around 10s. The other captures the
inter-session intervals with an average around 1 day, corre-
sponding to the behavior that some users return to the service
after a one-day period. This model further confirms that set-
ting τ to 1 hour is reasonable as the 1-hour mark is equally
likely to be within the two components.



Figure 3: Histogram of time between sequential file opera-
tions of individual users (bars), which is fit with a mixture of
Gaussians with two clusters: one for intra-session intervals
and one for inter-session intervals.

By applying the session identification methodology, we
obtain 2,377,124 sessions, which are further classified into
3 classes: store-only (i.e., containing only file storage re-
quests), retrieve-only (i.e., containing only file retrieval re-
quests) and mixed (i.e., containing both storage and retrieval
requests). Surprisingly perhaps, we find that more than 68%
of the sessions are store-only. On the other hand, only 2%
of the sessions include both storage and retrieval processes,
which strongly suggests that users tend to perform a sin-
gle type of task within one single session. The dominance
of store-only sessions implies that the mobile cloud storage
service is write-dominated, which is quite different from tra-
ditional PC-based cloud storage services, which are read-
dominated [12, 16].

3.1.2 Burstiness within sessions
To explore whether users perform all file operations at the

beginning of sessions, we measure for each session the user
operating time as the time between the first file operation re-
quest and the last one. Figure 4 depicts the distribution of
user operating time, normalized by the session length as de-
fined in Figure 2. Since in sessions containing only one file
operation, file operations are always performed at the begin-
ning of sessions, our analysis only considers those having
more than 1 file operation, which are further divided into
based on the number of file operations. Figure 4 shows that
regardless of the number of file operations, for over 80%
of the sessions, the normalized user operating time is below
0.1, indicating that users tend to perform all the file opera-
tions at the beginning of the sessions, then wait for the finish
of the upload or download. Interestingly, the more files in
a session, the higher the likelihood that all the file operation
requests are sent early the session. For example, users issued
all requests within 3% of the session length in the sessions
with more than 20 file operations. This is likely caused by
the mobile app that allows users to store or retrieve multiple
files (e.g., batch backup of photos in mobile devices). The
device then issues these file operation requests within a short
time period.
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Figure 4: Cumulative distribution of user operating time, i.e.
the time between the first file storage/retrieval operation and
the last one in a session. The time is normalized by the ses-
sion length.

The burstiness of store and retrieve activity within a ses-
sion is a challenge for the load balance in the back-end
servers [18]. In addition, since metadata servers are only
used at the beginning of sessions, it is very important to de-
couple the metadata management and the data storage man-
agement (as opposed to involving metadata management
during the whole session), in order to alleviate the load on
metadata servers.

3.1.3 Session size
Next, we examine the session size, which is measured as

the volume of data transferred in individual sessions during
our observation period. We first show in Figure 5a the cu-
mulative distribution (CDF) of the number of file operations
in individual sessions3. We observe that users tend to re-
trieve or store very few files within a session, which is evi-
denced by the fact that, independent of session types, 40%
of the sessions contain only one file operation. Neverthe-
less, around 10% of the sessions contain over 20 files, pos-
sibly corresponding to synchronization of multiple files in a
directory to/from the cloud.

To analyze the data volume of individual sessions, we
group sessions into bins, where each bin contains sessions
that store or retrieve the same number of files. We then com-
pute the average, median, 25th percentile and 75th percentile
data volume over the sessions in each bin. Figure 5b and
Figure 5c report the results for store-only and retrieve-only
sessions respectively.

The linear relationship between data volume and number
of stored files is visible for store-only sessions (Figure 5b).
The linear coefficient is about 1.5 MB, which corresponds
to the average file size. We conjecture that the prevalence
of photo backup from mobile devices enabled by the mo-
bile app results in this average file size. The cloud service
provider confirmed that most of the uploads are personal
photos taken by smart phones or tablets. This observation
reveals a difference in usage scenarios between the mobile

3We do not show the results for mixed sessions since they
are not significant.
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Figure 5: Session size when varying the number of store/retrieve operations per session.

cloud storage service and the traditional ones, in which ma-
jority of files are very small (< 100 KB) [21]. Besides, we
note that for short sessions (e.g., fewer than 10 files stored),
the variation of session data volume is small.

The data volume results for retrieve-only sessions (Fig-
ure 5c) show that they have very different characteristics.
The average is even higher than the 75th percentile value
for some bins, indicating some sessions in these bins trans-
fer a huge amount of data. Moreover, the average session
volume is surprisingly large when users retrieve only a few
files within a session. For instance, the average volume is
as large as about 70 MB in sessions retrieving only one file.
This behavior could be the result of the use of cloud storage
for file sharing. Some popular content (like videos or soft-
ware packages) can be easily shared widely through URLs
of the files. Downloading this content from a cloud plat-
form, which is known to have good content delivery network
coverage (like the one that we examine), might prove often
faster than downloading from traditional web sites [19][23].

The difference in session size characteristics between stor-
age and retrieval sessions suggest that they use the mobile
storage service for different purposes. We further examine
the usage scenarios later in this section. In addition, since the
majority of the sessions include very few file operations, the
possibility of bundling multiple files for upload will be low.
Indeed, even for the sessions that contain dozens of file op-
erations, the bundling will not significantly reduce commu-
nication overhead traffic (arising from TCP/HTTP connec-
tion setup and maintenance, metadata delivery, etc.), since
the size of one single file is large enough to achieve efficient
traffic usage [21]. Rather, due to the large file size, the cloud
service uses multiple TCP connections to accelerate upload
and download. However, cares should be taken when us-
ing multiple TCP connections on mobile devices because of
power, memory and CPU constraints [9].

3.1.4 Modeling the average file size
To further investigate the attributes of stored and retrieved

file, we compute the average file size for each session as
the session data volume normalized by the number of files.
Figure 6 plots the CCDF (complimentary CDF) of average
file size for individual sessions. We observe a clearly heavy-
tailed distribution for both types of sessions.
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Figure 6: Mixture exponential fit for average file size of in-
dividual sessions. Both axes are in logarithmic scale

Our previous analysis on session size indicates that users
might upload or download files of several typical types, like
photos and videos. To capture these different file types
and account for the observed heavy-tailed distribution, we
use the mixture-exponential distribution model [20, 27].
The PDF (probability distribution function) of a mixture-
exponential distribution is

f(x) =

n∑
i=1

αi
1

µi
e
− 1
µi

x

where ui (in MB) is the mean of the i-th exponential distri-
bution, αi represents the weight of the i-th component and∑n

i=1 αi = 1. A prominent feature of this model is that
each µi indicates a typical file size and αi can be taken as
the fraction of files with the corresponding size µi.

For each of the two session types, we iteratively determine
the number of exponential distributions (i.e., the value of n)



Table 2: Model parameters for average file size. µi is in MB.

Sess. type α1 µ1 α2 µ2 α3 µ3

store-only 0.91 1.5 0.07 13.1 0.02 77.4
retrieve-only 0.46 1.6 0.26 29.8 0.28 146.8

to be used in the mixture. Specifically, for each n, we use the
EM algorithm [7] to find the maximum likelihood estimates
of the parameters µi and αi. We identify that n = 3 achieves
a good match, as adding the fourth exponential distribution
component leads to one of the αi parameters being close
to 0 (i.e., < 0.001), indicating the negligible effect of this
component. Table 2 lists the model parameters. The corre-
sponding mixture-exponential distributions are also plotted
in Figure 6, which visually shows that the developed models
fit the empirical distributions quite well4.

We speculate that the first component of the mixture dis-
tributions, captured by α1 and µ1, corresponds to the photo
synchronization between mobile clients and the cloud stor-
age service, as the average size indicated by µ1 is about
1.5 ∼ 1.6 MB, corresponding to a typical 8Mp JPEG photo.
The value of α1 indicates that 91% of storage sessions were
synchronizing this type of files, two times that of retrieve
sessions. The second and third components for storage
sessions, which account for less than 10% of cases in to-
tal, seem to be related to users uploading short and long
videos recorded on their mobile devices. Retrieval sessions,
on the other hand, tend to download larger files, which is
evidenced by the fact that µ2 and µ3 are double those for
storage sessions. In particular, 28% of the retrieved files are
around 150 MB in size. They may be the result of down-
loading short video clips [19] based on URLs obtained from
third-party sites, like social medias and online social net-
works.

Our combined observations on session and file size have
several important implications. First, most of store-only
sessions are backing up files of size around 1.5 MB, which
is likely to be photos on mobile devices (as confirmed by
the service provider). This implies that neither data com-
pression nor delta encoding [11] can greatly improve sys-
tem efficiency for the service. This is because, on the one
hand, compression has a negligible effect on reducing pho-
tos size, and on the other hand, photos are immutable [24].
Second, a considerable fraction of retrievals (28%) down-
load large files of about 150 MB. These downloads may take
relatively long time, suggesting a need for resilience to pos-
sible failures, such as support for resuming a failed down-
load, to avoid downloading from the beginning after failures
that could be frequent for mobile network. Third, it would be
necessary to monitor the popularity of downloads to verify
whether there exist a locality of user interests, i.e. a handful
of popular files dominate the downloads. If so, web cache
proxies can reduce server workload and improve user per-
ceived performance.

4We have also designed Chi-square goodness-of-fit tests for
the fittings. Both fittings pass the test when considering the
significant level of P0 = 5%.
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Figure 7: The ratio of stored data volume to retrieved data
volume per user. (a) the impact of PC clients; (b) the impact
of using multiple mobile devices.

3.2 Usage Patterns
We next look into different aspects of the storage service

usage. Here, the analysis also uses the access logs from
PC clients, so we can, for example, understands factors re-
lated to users who use multiple devices, either mobile or PC
clients. Out of the 1,148,640 mobile users in our dataset, we
identified 164,764 users that use both mobile devices and
PCs.

3.2.1 Usage scenarios
The cloud storage service might be used for different pur-

poses. For instance, some users might use it as a backup
service, and thus mainly upload files, while other might use
it as a content distribution platform (e.g., videos or software
packages) and thus mainly download files on their devices.
We use the ratio of stored data volume to retrieved data vol-
ume of each user to identify different usage scenarios. Fig-
ure 7a plots the cumulative distribution of the ratio, where
we consider the differences between mobile users and PC
users.

We can identify three usage patterns: dominating retrieval
for those with a ratio below 10−5, dominating storage for
those with a ratio over 105, mixed usage of both storage and
retrieval for those left. We observe that mobile users follow
the dominating storage pattern more than PC users. In con-
trast, PC users have a higher likelihood to perform both stor-
age and retrieval. Figure 7b further examines the usage pat-
terns for users who use only one or more mobile devices. We



see that the number of mobile devices in use heavily impacts
usage pattern. Specifically, there is a significant reduction
in the storage dominating users when using multiple mobile
devices. This observation can be the result of the frequent
synchronization of personal data between multiple devices.

Inspired by [12], we classify users into four types: (i)
occasional users with total data volume less than 1 MB;
(ii) upload-only users with the stored/retrieved volume ratio
lover 105; (iii) download-only users with the ratio less than
10−5; and (iv) mixed users, who are not belonging to any of
the other three types. Table 3 shows the percentage of users
in each group, as well as the stored and retrieved data vol-
ume (relative to the total stored and retrieved volume during
our observation period).

We see that over half of mobile users are classified as
upload-only users and generated over 80% of the total stor-
age volume. These users are predominantly interested in the
cloud storage for backup of their personal data from their
mobile devices. In contrast, only 7.2% of users fully exploit
both storage and retrieval to synchronize files in both direc-
tions. This is further evidence that mobile users view the
service more as a backup service. Download-only users, on
the other hand, account for 15 ∼ 17%. A typical scenario
for this type of users is that users get URLs of file objects
that they are interested in retrieving the content using the
URLs directly from the cloud. In other words, they use the
cloud storage service as a content distribution platform. Fi-
nally, occasional users contribute very little load. They may
use the cloud storage service a few times but seldom come
back. Another interesting observation from Table 3 is that
the distribution of PC users across the four groups is much
more evenly than mobile users. In particular, compared with
mobile users, PC users are less likely to be classified into up-
load group, and a larger fraction of them fully exploit both
storage and retrieval.

The identification of user patterns also shed light on tar-
get advertisements (ads). For example, since upload-only
mobile users are likely to be more interested in taking pho-
tos or record video clips, the mobile terminals equipped with
good cameras, and mobile apps with a good photo editor are
potential candidates for in-app ads. Mobile cloud storage
service providers can further improve the efficiency of ad-
vertisements by looking at the actual type of files.

3.2.2 User engagement
User engagement measures the possibility of users return-

ing within a given period of time after their first visit. This
metric reflects user dependence on the service and is critical
for system optimization. We focus on the users that have at
least one session in the first observation day, so that we have
one week to observe their possible returns. In total, 233,225
users were active in the first day.

Figure 8 shows the statistics of user engagement, where
we first stratify users based on whether PC clients are used,
and then further divide those using only mobile devices into
3 groups based on the number of used devices. We observe a
bimodal distribution for user engagement, where users either
return the following day, or remain inactive for over a week
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Figure 8: User engagement: fraction of users that are active
on the first observation day and return back on the x-th day
(relative to the first day).

0 1 2 3 4 5 6 >6
0

0.2

0.4

0.6

0.8

1

# of days since the first day

P
ro

b
. 
o
f 
re

tr
ie

v
a
l 
x
 d

a
y
s
 l
a
te

r

 

 

1 mobile dev

>1 mobile dev

>2 mobile dev

mobile & pc

Figure 9: Fraction of users that uploaded files on the first day
and have at least one retrieval session on the x-th day. Day
0 in the x-axis aligns to the first day.

during our observation period [6]. The impact of multiple
devices is also notable. In particular, as many as half of the
users that use only one mobile device remain inactive in the
following week. This percentage drops greatly to less than
20% if multiple mobile devices are used. This is explained
by the fact that users synchronize their data among multiple
devices through the cloud storage service.

Since half of users are predominantly interested in upload-
ing data, we then analyze the possibility of users returning
back to retrieve the stored files that are uploaded in the first
day. Since the file-related information is not available in our
dataset, we instead examine the upper bound for this possi-
bility by considering that any retrieval session after the stor-
age session in the first day will retrieve the stored files.

Figure 9 depicts the upper bounds of the return possibility
for four types of users. Surprisingly perhaps, independent
of the number of mobile devices that were used by a user,
over 80% of users that use only mobile devices will not re-
trieve any data in the week following the storage session. On
the other hand, when both mobile devices and PC clients are
used, the possibility of retrieving files in the following sev-
eral days improves, especially on the same day of uploading
(day 0 in the figure). This observation suggests that users are
more likely to sync data uploaded by mobile devices from
PCs than from another mobile device.



Table 3: Characteristics of four types of users: number of users, stored and retrieved data volume.

User Type mobile only mobile & PC PC only
# users store v. retri. v. # users store v. retri. v. # users store v. retri. v.

upload-only 51.5% 86.6% - 53.7% 81.3% - 31.6% 74.8% -
download-only 17.3% - 84.5% 15.1% - 66.5% 17.2% - 75.5%

occasional 23.9% - - 13.2% - - 34.1% - -
mixed 7.2% 13.4% 15.5% 18.0% 18.7% 33.5% 19.1% 15.2% 14.5%

The low probability of downloading uploads within at
least one week for vast majority of users indicates that most
uploads could be deferred. The uploading deferment could
cut down the cost greatly. For instance, the uploads during
peak workload periods (e.g., 9pm to 11pm, see Figure 1)
could be deferred to the following early mornings when the
load is low. We thus posit a “smart” auto backup func-
tionality for the implementation of uploading deferment,
where users’ files (like photos) are automatically backed up
to the cloud (on users’ permission) during the low-load and
high connectivity periods (e.g. early morning with WiFi con-
nectivity at home). Such functionality will implicitly limit
manually uploads by users during peak hours. It also im-
proves the mobile app’s usability as users are relieved from
manual file operations. Indeed, the deferment should be
done carefully with the right disclosure for users, because
there is a potential for hurting the users’ QoE (Quality-of-
Experience) if they are interested in reading some of the files
soon after the uploading. Also, the effect of using multiple
mobile devices and PC clients should be taken into account,
since users may want to synchronize the data from another
device very soon after uploading.

3.2.3 User activity modeling
Finally, we analyze the diversity of user activity, which

is measured as the number of stored and retrieved files. We
first examine whether user activity follows the power law
distribution, which would be observed as a straight line in
the rank distribution of user activity when plotted in a log-
log scale. The power law distribution has been recognized in
several online services [25]. However, we find from Figure
10 that the rank distribution of user activity deviates from a
straight line in log-log plots (right y axis), indicating a non-
power law distribution. Instead, user activity can be well
modeled by a stretched exponential (SE) model. The CCDF
of a SE distribution is given as follows

P (X ≥ x) = e−(
x
x0

)c

where c is the stretched factor and x0 is a constant pa-
rameter. Suppose we rank N users in a descending order
of the number of stored (or retrieved) files, and the i-th
ranked user stored (or retrieved) xi files. Then, we have
P (X ≥ xi) = i/N , meaning log(i/N) = −( x

x0
)c in the SE

model. By substituting xi for yi, we have yic = −a log i+b,
where a = x0

c and b = y1
c. In other words, the log-yc plot

of ranked data that follows a SE distribution is a straight line.
We obtained the parameters by maximum likelihood estima-
tion following the method in [17].
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Figure 10: Rank distribution for the number of stored (a)
and retrieved (b) per user. The x-axis and right y-axis are
in logarithmic scale, the left y-axis is in yc scale (c is the
stretch factor of SE model).

Figure 10 also plots the SE distributions with the esti-
mated parameters; the left y-axis is in yc scale. We observe
that the SE models match the data quite well, as the log-
yc plots of ranked data (the blue lines) are close to straight
lines. The coefficient of determination (i.e.,R2), which mea-
sures the proportion of total variation of data explained by
the model, further confirms the good fit. Comparing the SE
model parameters between storage and retrieval, we observe
a smaller stretched factor c for retrieval, meaning a more
skewed distribution for retrieval activity. A possible reason
is that the most active users might synchronize personal data
from the cloud to multiple devices, and thus retrieve far more
files than the low-ranked users.

The SE model implies that while the user activity is bi-
ased, the top ranked users are not as active as the power
law predicts. This implies the influence of a small number
of “core” users cannot dominate the system. As such, sys-



Table 4: Summary of major findings and implications in user behavior.

Major findings Implications
Sessions: A two-component Gaussian mixture model
captures the intra- and inter-session intervals. And over
68% of sessions are used only for storing files.

Sessions, which can be identified using the interval
threshold derived from the model, are write-dominated.

Activity burstiness: Mobile users store and retrieve files
in a bursty way.

It is necessary to decouple the metadata management and
the data storage management in mobile cloud storage.

Session size: The majority of the sessions include very
few file operations.

The possibility of bundling multiple files for transmission
is very low.

File attribute: Over 90% of storage sessions are used to
store file objects of 1.5 MB, which are likely to be photos
on mobile devices.

Data compression and delta encoding are not necessary in
mobile cloud storage services.

Usage pattern: Over half of the mobile users are
predominantly interested in uploading objects and seldom
retrieve data. In contrast, PC-based users are far more
likely to fully exploit both storage and retrieval processes.

Mobile users are likely to use the service for backing up
personal data. In other words, mobile users use the cloud
storage service quite differently than PC-based users.

User engagement: Independent of the number of mobile
devices in use, about 80% of the mobile users will not
return in the following week to retrieve their uploads.

Uploads can be deferred to avoid the peak load period,
and the cold/warm storage solution (e.g. f4 [26]) can cut
the cost down significantly.

User activity model: The diversity of user activity is
captured by a stretched exponential distribution, rather
than a power law distribution.

System optimizations (like distributed caching, data
prefetching [16]) that aim to cover “core” users should
consider more users than that computed by a power law
model.

tem optimizations (like distributed caching, data prefetch-
ing [16]) that aim to cover “core” users need to account for
more users. Besides, mobile cloud storage system designers
as well as researchers can leverage the SE models developed
here for workload generation.

3.3 Summary and Implications
Table 5 summarizes the findings and implications of this

section, in order to shed further light on the service opti-
mizations. The findings consistently suggest that the mobile
cloud storage service is upload-dominated. It seems that mo-
bile users are more likely to use the mobile cloud storage as
a backup service than PC-based users. Mobile cloud storage
service providers and system designers can take the implica-
tions for efficiency optimization, cost reduction and revenue
improvement.

4. DATA TRANSMISSION PERFOR-
MANCE ANALYSIS

In this section, we examine the data transmission perfor-
mance of the mobile cloud storage service, with an emphasis
on the factors that limit the performance. Both HTTP access
logs and the packet-level traces collected from the storage
front-end servers are used. To eliminate the effect of HTTP
proxies on the analysis, we filtered out those requests that
were proxied by at least one proxy.

To provide a proper context for the analysis, Figure 11
depicts the timeline of uploading and downloading chunks,
with important metrics marked. Each access log in our
dataset contains the total request processing time by front-
end server (Tchunk) as well as the upstream processing time
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Figure 11: Timeline of storage and retrieval within a TCP
flow.

(Tsrv). In particular, Tchunk measures the duration between
the first bytes received by front-end server and the last bytes
sent to mobile client, while Tsrv refers to the time spent in
storing/preparing the requested content by upstream storage
servers, i.e., the servers that physically host the data. The
other two metrics Tnet and Tclt can only be extracted from
the packet-level traces, where Tnet measures RTT (Round
Trip Time), while Tclt is the time required by client to pre-
pare the next chunk in the case of uploading, or to process
the data of the latest downloaded chunk in the case of down-
loading.

Our main observations in this section include: (1) small
receive window size advertised by servers limits the upload-



ing performance; (2) mobile device type has a notable im-
pact on performance due to the difference in idle time be-
tween chunk transmissions; (3) client side processing time
is the major contributing factor to the long idle time. Up
to 60% of idle intervals in Android storage flows trigger the
restart of TCP slow-start, which results in inferior perfor-
mance.

4.1 Chunk-level Performance
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Figure 12: CDF for the time required to upload/download a
chunk. Note the difference of x-axis scale in two subfigures.

We first examine the upload and download time of a
chunk perceived by users, which is approximated as ttran =
Tchunk − Tsrv (see Figure 11). Figure 12 plots the distribu-
tion of transmit time for individual chunks recorded in the
HTTP request logs. We surprisingly observe a significant
longer time required by Android devices, especially for up-
loading. For instance, the median time for uploading is 1.6s
for iOS devices, but as long as 4.1s for Android devices.

Since servers do not distinguish between device types, we
conjecture that the throughput gap between Android devices
and iOS devices come from the client side behavior. To this
end, we conducted a series of active measurements. In par-
ticular, we connected a Samsung Pad (Android 4.1.2) and an
iPad Air2 (iOS 8.4.1) with the mobile app installed to the In-
ternet through a laptop, which acted as an AP (Access Point)
sitting very close to our experimental devices. The laptop it-
self was connected to the Internet through WiFi. Files of the
same size were uploaded or downloaded at the same time
from two devices. We experimented with three typical file
sizes: 2 MB, 10 MB and 80 MB. Note that we did not control
bandwidth in the experiments. Packet level traces in pcap
format were dumped from the laptop for analysis. We find
that both types of devices connected to the same front-end
server.

We observe for both storage and retrieval flows, Android
clients take a longer time between two consecutive chunks
than iOS clients. The long idle time between chunks sig-
nificantly degrades the chunk transmission performance. To
illustrate this, we compare in Figure 13 the sequence num-
ber over time and the inflight size (the number of bytes in
flight) of an Android and iOS storage flow5. The inflight
5To better interpret the results, we show only the first 10
seconds of the flows.
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Figure 13: Sequence number (a) and in-flight size (b) of a
storage TCP flow observed at the client side.

size is an accurate estimation of the sending window at the
TCP sender (which is client in uploading) [30], which deter-
mines the TCP throughput. On each ACK from the server,
we compute the inflight size as the gap between the sequence
number in the last packet sent by the client and the ACKed
sequence number by the server.

We make two notable observations from Figure 13a. First,
the iPad experienced higher throughput than the Android
Pad. Second, the idle time between chunks in the Android
flow can be over 1 second, much larger than that in the iPad
flow. The large idle time of Android Pad indeed significantly
degrades the performance as shown in Figure 13b, which
shows the variation of inflight size over time, where the y-
axis is in logarithmical scale. The long idle time between
chunks in the Android flow is notable. Note that at the end
of each chunk, the inflight size drops because the client has
no data to send before the application-level acknowledge-
ment (i.e., HTTP 200 OK) from the server for the current
chunk.

Except the first chunk, the iPad begins the upload of each
chunk with a sending window size close to 64 KB, the same
as that at the end of the previous chunk. However, in the
Android flow, each chunk begins transmission with a small
sending window and takes some time to reach 64 KB in the
previous chunk. This difference results from TCP behavior
in the case of long idle time. TCP recommends resetting the
congestion window to its initial value and begin with slow
start if TCP is idle (i.e., no data has been sent) for an inter-
val exceeding an RTO (Retransmission Timeout) [1]. As we
will see later, 60% of the idle intervals between two chunks
in Android storage flows exceed an RTO, while this percent-
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sending window size at client for storage flows.

age is only 18% for iOS flows. Given that the median RTT
is around 100ms (see Figure 14), these Android flows will
require as much as 0.5s (i.e., 5 RTTs) of extra time to reach
a window size of 64 KB.

Another interesting observation from Figure 13b is that
the inflight size is limited at about 64 KB. After examining
the traces, we figured out this limitation is caused by the re-
ceive window size advertised by the TCP receiver (which
is server). Indeed, in TCP without the window scaling op-
tion, the receive window size is 65,536 bytes at most [3].
In the cloud storage service that we examine, servers do not
allow the window scaling option. To further verify this per-
formance bottleneck, we estimate the average sending win-
dow size (swnd) of upload flows using our dataset of HTTP
access logs. The average performance of a TCP flow can
be approximated as swnd/RTT , where RTT is the aver-
age RTT of the flow. As such, we have swnd/RTT =
reqsize/ttran, where reqsize is the volume of transmitted
data of the request, and ttran = Tchunk − Tsrv. That said,
swnd = reqsize ∗RTT/ttran.

Figure 15 plots the probability distribution of swnd that
is estimated using individual access logs. The concentration
around 64 KB is notable. This observation confirms that
the sending window size is limited by the advertised receive
window size of servers that disable the window scaling op-
tion. We have also examined the receive window size effect
for the retrieval flows and found that mobile clients, which
are TCP receivers when retrieving, enable the window scal-
ing option. In fact, the advertised receive window by the
Samsung Pad is as large as 4 MB, while it is 2 MB for the
iPad. Such a huge receive window, however, might not be
fully utilized and would result in waste of resources [9].

4.2 Dissecting Idle Time between Chunks
Next, we use the packet-level traces collected at front-end

servers to make an in-depth analysis of the idle time be-
tween transmissions of two consecutive chunks. Here, the
idle time refers to the TCP idle time, which is the time in-
terval in which the TCP sender has not sent any data. As
shown in Figure 11, the idle time at the TCP sender for both
storage and retrieval is the sum of server processing time
Tsrv and client processing time Tclt. While Drago et al.
[12] have shown that the sequential acknowledgment im-
pairs overall TCP flow throughput due to the waiting for
application-layer acknowledgments, we further reveal that
the idle time between chunk transmissions can even heavily
hurt the throughput of individual chunks.

We first show the distribution of Tsrv and Tclt for stor-
age flows in Figure 16a and retrieval flows in Figure 16b.
Regardless of device type (Android or iOS) and flow type
(storage or retrieval), the processing time at the server side is
around 100ms, reconfirming that servers do not distinguish
between device types. However, the processing time at the
client side of Android devices differs significantly from that
of iOS devices. In particular, Android devices spend on av-
erage 90ms more time than iOS devices in preparing data for
the next uploading chunk. While the median processing time
at the client side for retrieval flows of two types of devices is
similar, notably, the 90th percentile time for Android devices
is as high as 1s, one order of magnitude larger than that for
iOS devices. We conclude that client side processing time
(Tclt) is the major contributing factor to the long idle time in
Android flows.

The long idle time between chunks of Android flows
would trigger the restart of TCP slow-start [1]. To eval-
uate this, we examine the ratio of idle time (Tsrv + Tclt)
to the estimated RTO (R̂TO). In TCP implementation [2],
RTO is computed as SRTT + max(200ms, 4 RTTVAR),
where SRTT is close to RTT, and RTTVAR is approximately
RTT/2, i.e.,

R̂TO ≈ RTT +max(200ms, 2RTT )

Figure 16c depicts the distribution for the ratio of idle time
to RTO. It is notable that Android flows experience a much
higher probability of restarts of TCP slow-start. In particular,
about 60% of Android uploading chunks that are preceded
by other chunks will start transmission with TCP slow-start,
while this percentage is only 18% for iOS flows. We observe
a similar gap for retrieval flows. This huge gap accounts for
the performance difference between Android and iOS flows
shown in Figure 12.

4.3 Summary and Implications
We have observed that the small receive window size is a

factor that limits the performance of storage flows for both
iOS and Android devices. This will greatly hurt QoE of the
mobile cloud storage service. A straightforward solution is
to enable the window scaling option at the server side. How-
ever, service providers should be aware of the cost of this op-
tion when serving million of concurrent flows. First, higher
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Figure 16: Dissecting the idle time between two consecutive chunks: (a) storage flows, (b) retrieval flows, (c) the ratio of idle
time to RTO.

bandwidth is required to support the improved throughput
of individual flows. Second, if the operating system kernel
at the server side preallocates the memory for sockets, the
large receive window size will lead to increased memory re-
quirements and a possible waste of resources in the case that
throughput is limited by network or client side factors, rather
than the receive window advertised by servers.

The effect of long idle time between chunks on TCP be-
havior of restarting slow-start may be mitigated by simply
disabling the implementation of slow start after idle (SSAI).
However, without SSAI, the connection is likely allowed to
send out a large burst after the idle period. In this case,
packet loss may happen, especially for the packets at the
tail of the burst. Once packets at the tail of the burst are
lost, expensive timeout retransmission may be need for loss
recovery [13], which yields low performance. Rather, opti-
mizations that aim at improving TCP start-up performance
might be useful [28][29]. For example, some packets can
be paced out at a certain rate until the ACK clock can be
restarted [28]. Moreover, since client side processing time
dominates the idle time (see Figure 16), system operators
should investigate the causes of long processing time on An-
droid clients and then shorten it.

On the other hand, the effect can also be mitigated by
reducing the number of intervals between chunk transmis-
sions. To this end, a larger chunk size can be used. Our
analysis has revealed that users tend to synchronize files of
size over 1.5 MB, so increasing the chunk size from 512 KB
to 1.5∼2 MB is indeed reasonable. In addition, batch com-
mands that allow several chunks to be transmitted in a single
request will also reduce the number of intervals in flows [12].

5. DISCUSSION
Threats to validity. Although our dataset consists of 349
million logs from over 1 million users, it is from only one
service provider. While our findings clearly reveal the dis-
parity between mobile users and PC-based users in using the
cloud storage services, care should be given when generaliz-
ing our findings to other mobile cloud storage services. An-
other limitation of our study is that our observation period is
only one week. For example, we cannot distinguish between

lack of downloads and infrequent downloads when identify-
ing individual users’ behavior. To reduce these threats, we
have made our dataset publicly available for the community
to further valid our findings.

Usage of mobile cloud storage. Our analysis raises an in-
teresting question: Is the mobile cloud storage a backup
service, rather than a file hosting service? The findings
in this paper consistently show that the examined service
is upload-dominated, and users access their uploads infre-
quently. However, since the dataset does not contain any file
or chunk identifications, this work has not fully answered
this question. We plan to further explore this question.

6. RELATED WORK
The usage pattern of Dropbox was first examined in [12],

where the performance degradation caused by the sequen-
tial acknowledgment is also examined. The authors further
extended their analysis to 5 cloud storage services in [11].
Mathematical models for Dropbox sessions were developed
in [14]. Bocchi et al. [8] compared three services (i.e., Drop-
box, Google Drive and OneDrive) by passively observing
traffic, showing that users of each service exhibit distinct be-
haviors. Authors in [15], on the other hand, actively mea-
sured three cloud storage platforms (i.e., DropBox, Box and
SugarSync) with a focus on the file mean transfer speed. Liu
et al. [24] examined the access patterns in a campus-wide
cloud storage system, and found most of files are rarely ac-
cessed. These studies largely focus on traditional PC-based
cloud storage platforms, so the observations might not be
applicable to mobile ones as we have shown throughout this
paper. Our work also extends these studies by examining
all users in a large-scale service, rather than users in small
regions (e.g. within a university campus) as they analyzed.

A recent study on Ubuntu One (U1) [16] considered
all users of the service by examining logs from metadata
servers, with a focus on the back-end activities and perfor-
mance. In contrast, our work examines requests logs from
data storage front-end servers, and thus has a unique view of
data transmission behavior and performance. Besides, due to
the mobile usage, the service that this paper examines shows



distinct usage patterns. For instance, the examined service is
write-dominated, while U1 is read-dominated.

A particular concern in cloud storage services is the un-
necessary traffic generated by synchronization caused by file
editing, where any change at either client side or server side
will be automatically synchronized to the other side. Li et al.
[22] studied the traffic overuse problem in Dropbox, i.e., ses-
sion maintenance traffic far exceeds the useful update traffic.
The authors extended their analysis to 6 popular services to
identify the general factors that may affect the data synchro-
nization traffic [21]. In the same vein, QuickSync, which
consists of network-aware chunker, redundancy eliminator
and batched syncer, was proposed in [10] to enable effi-
cient synchronization for mobile cloud storage. As we have
found, mobile users tend to consider cloud storage services
as backup services and most of files seem to be immutable,
the traffic overuse problem caused by frequent file editing
might be negligible.

7. CONCLUSION
This paper examines data of HTTP requests from mobile

devices in a large-scale cloud storage service, to study the
system’s artifacts and data transmission performance. Our
results suggest a backup-dominated usage pattern for mo-
bile users. This is evidenced by a number of observations,
including a write-dominated behavior at both the session and
user level, and infrequent retrieval of uploads. As for data
transmission performance, the small receive window adver-
tised by servers is a potential factor that limits the backup
performance. Perhaps more importantly, the long idle time
between chunk transmissions, which is much more signifi-
cant in Android flows, triggers the restart of TCP slow-start,
and thus greatly hurt performance. We also discussed the im-
plications of these findings on system design, application de-
velopment and transmission optimization. The implications
provide guidance to mobile cloud providers to cut down the
cost, increase indirect revenue and improve performance.
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