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‘Mobility-on-Demand (MOD) vehicles: a big market

Over 1 million Uber/lyft 150 million DiDi
drivers in the U.S. [1] drivers. [2]

MOD market size is reaching $228 billion by 2022.[3]

[1] Statista’s reports: “How many uber drivers are there?” , https://therideshareguy.com/how-many-uber-drivers-are-there,2021.

[2] Statista’s reports: https://new.qg.com/rain/a/20211211A0750J00,2021.

[3] Statista’s reports: “Global mobility on demand market forecast & opportunities by 2022,” https://www.techsciresearch.com/report/globaI-mobility-gn-
demand-market/1254.html,2017




‘MOD market is facing challenges

»MOD Drivers are earning less. » The situation is getting much worse
due to COVID-19.
ﬁ/ers for Uber, Lyft are earning Ies ﬁber and Lyft are getting less unproﬁtable,b}
than half of what they did four years COVID-19 s still a drag on their business
ClgO, StUdy ﬁnds Uber lost $6.7 billion in 2020, while Lyft lost $1.8 billion
;»*F"saba"1811clw~~'a‘d n Fy \'«?smn‘; N

Drivers earned 53% less in 2017 than they did in 2013




A new earning market: MOVE-CS
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‘MOVE-CS: achieving win-win collaboration

»For Uber and Lyft drivers, installinga > Selling road data to map companies
dashboard camera can boost their (e.g., Google Maps and IvI5).

earnings by 5% to 15%.
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Win-win situation between MOVE-CS platform and drivers.




‘However, MOVE-CS failed after two-year operation.

» Payver pays the drivers to collect road data on the move, which is effective at the
beginning, but after two years, payver had to bankrupt itself in April 2019.

7 =

Can we resurrect the MOVE-CS market?




‘MOMAN-CS: a similar but successful market

» A similar market named MOD-Human-Crowdsensing (MOMAN-CS) led by
Gigwalk preserve its success since 2010.
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Can we apply the model of MOMAN-CS to resurrect the MOVE-CS market?
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‘MOMAN-CS: a similar market led by Gigwalk

» Two central questions need to be answered.

Q1

{ Why MOVE-CS failed but MOMAN-CS is still successful? ]

Q2

[ How to apply the MOMAN-CS model to the MOVE-CS market? J




‘User Studies
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‘Crowdsourcing-based User Studies
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Surveying 581 drivers
on Amazon MTurk

[ Drivers’ Distribution ]
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46.6%




‘Crowdsourcing-based User Studies

g amazon
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[ Drivers’ Distribution ]

L

Surveymg 581 drlvers
on Amazon MTurk

Gender

= Male = Female

Driving Frequency

9.8
12.9%

e

= Daily = Weekly
Monthly = Yearly
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‘Payver: a failed MOVE-CS platform

Moaelest rigizen the move (Drivers are invisible toJ
D. Get paid according to the data value =~ | eachlother
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Blind competitive model
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Simple operation model based on blindly competitive rewards




‘MOMAN-CS: a similar market led by Gigwalk
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System Overview
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Analyzing a large-scale vehicle dataset

é: MOD vehicle
]l : Passenger

Trajectory

Occupancy
status

Profits

12,493 MOD vehicles

* 4,400 km? metropolitan area

e 15 seconds interval, 92 GB data
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‘Pick-up profit analysis via spatial-temporal dimension
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Pick-up profits of MOD drivers have huge spatial-temporal differences
in different zones and time periods.
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‘MOD drivers’ behavior analysis via 2D slicing
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(a) Drivers™ short-term behavior analysis

Most drivers (about 88.2%) in low-yield zones have a
tendency of moving out (towards higher-yield zones).
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MOD drivers’ behavior analysis via 2D slicing
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Drivers have explicit preference for
short-term, immediate gains.
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MOD drivers’ behavior analysis via 2D slicing
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Drivers have explicit preference for
short-term, immediate gains.
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A considerable portion (30%) of drivers
drive from high-yield zones to low-

vield zones for picking up passengers
with a high occurrence (21.1%).
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Surprisingly,
earnings are 17.5% more

than the average level (5126.6
monthly raise).

their hourly
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MOD drivers’ behavior analysis via 2D slicing
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Drivers have explicit preference for
short-term, immediate gains.

Drivers have implicit rationality in
pursuit of long-term, stable profits.
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Basic idea

Pick-up profit heatmap
construction
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System flow

» Pick-up heatmap construction by dual-attention RNN

Q: MOD vehicle
- o
l : Passenger
8:00

(a) MOD vehicle dataset (b) Heatmap construction (c) Heatmap prediction

» Adjust sensing reward to satisfy driver’s preferences

Satisfied ]—[ Relative low reward ]

[ Long-Short-term preference

Unsatisfied ]—[ Relative high reward ]




System flow

Submodularity based task recommendation

Algorithm 1: Greedy Local Search-based Near-
optimal Task Recommendation Algorithm.

Input: Task set S; MOD driver set M,

Sensing rewards set {cx;};

Set of drivers’ acceptance probability {pz;};

Set of tasks’ profits to the platform {u; }; Budget B;

Output: Recommended task set {x; }: Platform profit U.
1 Initialize Ao = {vo,v1}, where vo = 'ugm'lxb ({v}).

~==={_Platform ===~

r L N N N
| 3 = arg U({v —U({v
! [ Recomm ) | vr = argmax U(tv,vo}) = Ultro}):
# . | 2 Initialize n = 0, and swap = true;
l : ‘ endation J1} 3 while swap do
1] 4 swap + false;
I lla T s | Vo= {(v,0 ) Yor € VWA, Yo € A U{0}):
| i 6 while (su,ap # true) && (V. # 0) do
O b
| i1 T 7 (vi,v") = arg max w(vy,v_);
I I I I I (vp,v_)EVs .
| 11 ] 8 if Aﬂ\{t Ty {L+} satisfies constraints (7)(8) and
\ I \ I : ?T(T.+ v_ ) ) m—g then
I - H 9 An—I—l(_A {‘1 }L'{l+}
——— 10 n+n+1;
11 swap + true;
12 | Vs <= Vo\{(v4,v-) 15

13 Set x « {zk; = 1|Vk, ¥y, (k,j) € An}:

14 Compute U(x) based on x, {u;}, and {pw;}. according to
Eq. (6);

15 return x and U(x) .

(1-e2)/2 ratio near-optimal solution

v 8

v d

\ Network Pick-up rev  Sensing rev

L Ty r

N -
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‘Experimental Settings

» Real dataset
* 1 month sensing data of 12493 MOD drivers (2017.3)
* Sampling rate: 15 seconds

»Parameter settings
* Sensing target: 878 road segments

 Sensing profit: $2.5,1.5 and 0.5 per mile for the 3
times covering

» Evaluation Metrics
* Drivers’ profits
* Platform’s profit

* Sensing coverage




‘Evaluation Results—Compared with MOVE-CS

» Drivers’ profit

1

I i 30% of drivers
08! 08l 8.8x increase | W\
y 067 y 0.6
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: 3.2x increase
0.2+ = | STRec 1 0.2+ ! !
- , - - \MOVE-CS| | ' :
0 - ¢' I I I I 0 ! ! ! | ! ! ! ! I | I
-8 4 0 4 8 12 16 20 -2 0 2 4 6 8 =10
Drivers' profits ($) Profit increase ratio
(a) Drivers’ profits (b) Profit increase ratio

50% of drivers increase profits by 320%, 30% have an
iIncrease ratio of 880%, 20% suffer decreased profits




‘Evaluation Results—Compared with MOVE-CS

»Sensing coverage
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94.7% coverage

22% higher coverage than that in MOVE-CS, and the

platform’ s profit increases by 34.3%
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‘Evaluation Results—Compared with other baselines

» Impacts of different number of drivers and tasks for platform

Platform profit ($)
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Outperforms by 61.7% compared

with Hector on average

~
0]

N
(03

Platform profit ($)
an
o

-§ LSTRec - ¥ ILOCUS $~RAD

Hector -& -GA

10 30 50 70 90
# of tasks
(b) Tasks’ number

Outperforms by 44.4% compared

with Hector on average




‘Evaluation Results—Compared with other baselines

»Comparisons of near-optimality
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(a) Near-optimality

Achieving 97.2% of optimal profit
with only 0.004% of the time cost
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‘Conclusions

> Figure out the root cause of MOVE-CS’s failure by surveying 581 drivers and
analyzing a 12,493 MOD vehicle dataset.

»Propose a novel operation model to satisfy both drivers’ explicit preference for
short-term gains and their implicit need of long-term profits.

» Conduct extensive emulations based on a large-scale dataset.
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@ Big Data and Smart Computing (BDSC) Lab, Chongging University
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