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Abstract—With the popularity of Mobility-on-Demand (MOD)
vehicles, a new market called MOD-Vehicular-Crowdsensing
(MOVE-CS) was introduced for drivers to earn more by collect-
ing road data. Unfortunately, MOVE-CS failed after two years of
operation. To identify the root cause, we survey 581 drivers and
reveal its simple operation model based on blindly competitive
rewards. This model brings most drivers few yields, resulting in
their withdrawals. In contrast, a similar market termed MOD-
Human-Crowdsensing (MOMAN-CS) remains successful thanks
to a complex model based on exclusively customized rewards.
Hence, we wonder whether MOVE-CS can be resurrected by
learning from MOMAN-CS. Despite considerable similarity, we
can hardly apply the operation model of MOMAN-CS to MOVE-
CS, since drivers are also concerned with passenger missions that
dominate their earnings. To this end, we analyze a large-scale
dataset of 12,493 MOD vehicles, finding that drivers have explicit
preference for short-term, immediate gains as well as implicit
rationality in pursuit of long-term, stable profits. Therefore, we
design a novel operation model for MOVE-CS, at the heart
of which lies a spatial-temporal differentiation-aware task rec-
ommendation scheme empowered by submodular optimization.
Applied to the dataset, our design would essentially benefit
both the drivers and platform, thus possessing the potential to
resurrect MOVE-CS.

I. INTRODUCTION

Recent years have witnessed the prosperity of the Mobility-
on-Demand (MOD) vehicle market, led by Uber, Lyft, DiDi,
and so forth [1]. As of December 2020, Uber and Lyft had
each incorporated over one million drivers in the U.S. [2],
and the global market size is predicted to reach $228 billion
by 2022 [3]. Meanwhile, however, we notice that many MOD
drivers have suffered from shrinking earnings year by year
from 2013 to 2020 [4], probably owing to more competition
among them; the circumstance is further aggravated in the past
nearly two years due to the recent COVID-19 pandemic [5]. As
a result, a new market termed MOD-Vehicular-Crowdsensing
(MOVE-CS) was introduced in 2017, pioneered by the Payver
platform [6]. Payver pays the drivers to collect road data on
the move, mainly according to the road length and the specific
segments, typically at $0.01-0.05 per mile.

After receiving the collected road data from the drivers,
Payver usually sold them to demanding companies such as

digital map construction corporations (e.g., Google Maps [7]
and lvl5 [8]). Thereby, the platform and the drivers seemed
to have achieved a win-win situation. After only three months
of operation, Payver had taken in nearly 2000 Uber and Lyft
drivers, collecting the data of more than 500K-mile roads and
boosting their earnings by 5% to 15% [9]. Unfortunately, after
two years of operation, there remained few participant drivers,
and thus Payver had to bankrupt itself in April 2019 [10].

To figure out the root cause of the aforementioned adver-
sity, we surveyed 581 MOD drivers (clarified in Sec. II-A)
via Amazon Mechanical Turk, a well-known crowdsourcing
platform [11]. They comprise 41.2% of women and 58.8% of
men, aging from 20 to 60; 43.6%, 77.3%, and 90.2% of them
drive at least once every day, week, and month, respectively.
The survey results unveil that MOVE-CS drivers’ withdrawals
are highly related to the simple operation model adopted by
Payver based on blindly competitive rewards. Specifically,
because each driver collects data for certain road segments
without knowledge of others, they often end up with low-value
collected data for repetitive road segments. Hence, this model
leads most drivers into few or even negative yields (e.g., when
the sensing task is performed while the vehicle is vacant),
triggering their opt-outs from the MOVE-CS market.

Contrary to MOVE-CS, we spot that a similar market
named MOD-Human-Crowdsensing (MOMAN-CS), led by
Gigwalk [12], preserves its success since 2010. It hires people
to collect merchandise data (e.g., the location, price, and
sales) for specific vendors, and has incorporated 1.7 million
participants by 2021 [12]. Behind the success of Gigwalk,
we find there is a complex operation model with exclusively
customized rewards. Specifically, for a task, Gigwalk posts
an initial reward and only allows one person to accept it;
if no one takes it on for a long time, the reward will be
increased. Now that the operation model of MOMAN-CS is
capable of incentivizing humans effectively, and humans steer
the vehicles, we wonder if this model can be applied to vehicle
incentivization in hopes of resurrecting the MOVE-CS market.

Since there is considerable similarity between the two
markets, most mechanisms in MOMAN-CS can be borrowed
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to improve MOVE-CS. For example, road data collection in
MOVE-CS can be divided into exclusive sensing tasks for
drivers to choose. Also, those unpopular road segments can
be assigned with more rewards. Nevertheless, we find a key
obstacle during the applying process, i.e., the drivers are also
concerned with passenger missions which typically dominate
their earnings. Therefore, the task selection strategy in MOVE-
CS should differ significantly from that in MOMAN-CS.

To address this obstacle, we analyze a large-scale
dataset1 of 12,493 MOD vehicles’ service records for one
month (03/01/2017–03/31/2017) in a 4,400 km2 metropolitan
area with 10.3 million residents, including each passenger mis-
sion’s pick-up/drop-off locations, time-variant occupied/vacant
statuses, and fine-grained vehicle trajectories (explicated in
Sec. II-B). The results reveal that
(1) On a daily basis, we observe that the majority (88.2%)

of drivers move from low-yield zones to high-yield zones
for picking up passengers, showcasing their explicit pref-
erence for short-term, immediate gains.

(2) On a monthly basis, however, we note that a considerable
portion (30%) of drivers still drive from high-yield zones
to low-yield zones for picking up passengers with a
high occurrence of 21.1%. Surprisingly perhaps, we find
their hourly earnings to be 17.5% more than the average
level ($126.6 monthly raise), uncovering their implicit
rationality in pursuit of long-term, stable profits.

Motivated by these findings, we present Long-Short-Term
Profit-combined Task Recommendation (LSTRec), a novel
operation model for MOVE-CS, whose primary goal is to sat-
isfy both drivers’ explicit preference for short-term gains and
their implicit need of long-term profits. To this end, LSTRec
actively recommends tasks to the drivers with balanced intel-
ligence, in order to not only attract more participants, but also
bring sufficient profits to regular drivers. Meanwhile, LSTRec
should also take the platform’s profit into account. In practice,
in some cases the interests of drivers and the platform are in
correspondence, e.g., when the platform recommends a task
enabling a driver to go from a low-yield zone to a high-yield
zone, this driver is very likely to accept it even with a relatively
low reward. In other cases, their interests might be in conflict,
e.g., for an unpopular road segment whose information is
however valuable to the platform, the platform has to offer
a relatively high reward to motivate drivers.

To address the challenges mentioned above, we design
a spatial-temporal differentiation-aware task recommendation
scheme empowered by submodular optimization. In specific,
based on the historical MOD vehicle dataset, we first construct
a two-dimensional pick-up profit heatmap. Then, we predict
the evolution of the profit heatmap by exploiting Recurrent
Neural Networks (RNN). With the above information, we
formulate a task recommendation problem considering both
new and regular drivers’ concerns, as well as the platform’s
profit. Unfortunately, it is NP-hard to find the optimal solution

1We collected all the data (excluding user-sensitive information) under a
well-organized IRB with informed consent of involved drivers and passengers.

to the problem (the computation cost increases exponentially
with the number of drivers). To resolve this, following the
methodology of submodular optimization, we devise a near-
optimal algorithm, leveraging greedy local-search to achieve
an acceptable approximation ratio (1−e−2)/2 with polynomial
time complexity.

Using the aforementioned large-scale MOD vehicle dataset,
we emulate the operation process of the original MOVE-
CS model and LSTRec respectively on a common commod-
ity server. Results show that with LSTRec , 87.3% of the
recommended tasks cater for drivers’ explicit preference of
short-term gains; meanwhile, all the drivers are expected to
make positive earnings and 50% of them make 3.2× more
earnings (than with the original MOVE-CS model), serving
their implicit need of long-term profits. Besides benefiting the
drivers, LSTRec brings 34.3% more profit to the platform.
Thus, we feel that our proposed novel model has the potential
to resurrect the MOVE-CS market.

II. MOTIVATION

In this section, we investigate the reasons behind the down-
turn of the MOVE-CS market via user studies and large-scale
data analysis, and explore potential methods to resurrect it
referring to the thriving MOMAN-CS market.

A. Crowdsourcing-based User Studies

Methodology. To investigate why the above two markets
faced completely different fates, we conduct user studies [13]
with 581 MOD drivers via Amazon Mechanical Turk. The re-
spondent pool is restricted to qualified drivers. The participants
comprise 41.2% of women and 58.8% of men, including North
Americans (34.4%), Europeans (12.7%), Asians (38.6%), and
others (14.3%, such as Australians and Africans), aging from
20 to 60; 43.6%, 77.3%, and 90.2% of them drive at least once
every day, every week, and every month, respectively.

We adopt the USE questionnaire methodology [14] and
use a 5-point Likert scale (ranging from Strongly Disagree to
Strongly Agree) to assess the participants’ perceptions. Results
are classified into two groups, i.e., 4 and 5 for agreement; 1,
2, and 3 for disagreement. The queries are designed to get to
the bottom of two key questions, i.e., why does the MOVE-CS
model fail to encourage MOD drivers? why is the MOMAN-
CS model effective to incentivize users?
Results. We first investigate whether the MOD drivers are
willing to perform sensing tasks. Survey results indicate 92.6%
of participants are willing to perform sensing tasks on the
move. Digging deeper, it seems related to the fact that the
majority (63.8%) of drivers take on sensing tasks with expec-
tations of extra earnings, which conforms to common sense.

Further survey on the two models shows that the blind com-
petition model adopted by Payver is not welcomed by 63.3%
of participants; 94.3% regard the repeated data collection —
which may cause a lower or even negative profit — as a major
drawback. Therefore, it is reasonable to deduce that the blind
competition model introduces uncertainty in drivers’ profits,
which severely impacts their enthusiasm for task participation.
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(a) Temporal differentiation analysis

Fig. 1: Variations of pick-up prob-
ability (top) and per-trip earn-
ings (bottom) in different time pe-
riods for the same zone.
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(a) Drivers’ short-term behavior analysis
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Fig. 2: In-depth analysis of drivers’ behavior patterns via 2D slicing. (a) Drivers’ short-term preference
on a daily basis, i.e., the percentage of drivers moving from low-yield zone to high-yield zone. (b-
c) Drivers’ long-term pursuit on an individual basis, including their occurrence ratios of driving from
high-yield zone to low-yield zone, and their average earnings in a month.

Contrarily, 95.2% of participants prefer MOMAN-CS, because
it not only has transparent rewards (70.2% agreement), but also
gives them more choices of tasks (81.3% agreement). To sum
up, MOVE-CS’ downfall was likely a result of the employed
blind competition model failing to offer drivers stable profits,
while MOMAN-CS motivates participants successfully with its
exclusive task selection and transparent reward.

B. Large-scale Dataset Collection and Analysis

Dataset collection. Cooperating with an MOD company, we
acquire a large-scale MOD driver dataset; all the user-sensitive
information is removed according to the local IRB protocols.
This dataset comprises 92 GB service records of 12,493
MOD vehicles for one month (03/01/2017–03/31/2017) in a
4,400 km2 metropolitan area with 10.3 million residents. Each
record contains an anonymized vehicle ID, the trajectory time
series with an interval of 15 seconds, and an occupied/vacant
state indicator. Moreover, with the trajectory series, we calcu-
late the pick-up profits according to the existing policies on
MOD vehicle fares [15].
Pick-up profit analysis. The pick-up profit denotes the
average profit of MOD drivers from picking up passengers
in a zone during a time period (e.g., 1 hour). It is highly
dependent on the pick-up probability and the per-trip earnings
in this zone. Hence, in the following, we randomly select
an area (about 256 km2) of the city, and divide it into
14×18 uniform zones. Then, we analyze the spatial-temporal
differences of pick-up profits in each zone and time period in
terms of the pick-up probability and the per-trip earnings.

We initially analyze the temporary diversity of pick-up
probability and per-trip earnings during different time periods
in a randomly selected zone. As demonstrated in Fig. 1a, both
the pick-up probability (top) and the per-trip earnings (bottom)
vary significantly with time. In particular, the pick-up prob-
ability and per-trip earnings is distributed between 5.0% and
19.1%, $1.96 and $2.91, respectively. Moreover, both pick-
up probability and per-trip earnings roughly follow periodic
patterns, e.g., Fig. 1a illustrates that the pick-up probability
from midnight to 6 a.m. is always smaller than that of the
other periods in a day, as most citizens are in sleep. Next,
we analyze their spatial diversities in different zones during
a time period (e.g., 6 p.m. to 7 p.m.). As demonstrated in
Figs. 3a and 3b, similarly, both the pick-up probability and
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(b) Per-trip earnings

Fig. 3: Pick-up profits in different zones during the same time period,
in terms of pick-up probability and per-trip earnings ($).

the per-trip earnings are found to vary with zones in the
same period. In particular, the pick-up probability and per-trip
earnings widely fluctuate between 0 and 39%, $1.55 and $5.41,
respectively. In summary, the pick-up profits of MOD drivers
have huge spatial-temporal differences in different zones and
time periods.

MOD drivers’ behavior analysis. MOD drivers have behav-
ior patterns with a common goal (making money) but diverse
individual preferences (such as how to make more money)
based on driving experience. To fully grasp their behavior
patterns, we conduct a comprehensive analysis of the large-
scale dataset by slicing it — in the aspects of both short-term
and long-term profits — on a daily basis and an individual
basis, respectively.

First, we slice the dataset on a daily basis to study drivers’
short-term preference in each day. Then, we arbitrarily select
ten low-yield zones. Targeting each zone, we calculate the
corresponding percentage of drivers, who move directly (from
this low-yield zone) into a high-yield zone for picking up
passengers. As shown in Fig. 2a, the average percentage of one
month in all selected zones is 88.2%. It indicates most drivers
in low-yield zones have a tendency of moving out (towards
higher-yield zones), which is compelling evidence of drivers’
explicit preference for immediate gains.

Second, to understand drivers’ long-term pursuit, we slice
the dataset on an individual basis, each slice with the entire
one-month driving records of a driver. Then, we randomly
select 300 drivers. Focusing on each driver’s behavior pattern,
we calculate the occurrence of her/his moving, in the entire
month, from a high-yield zone into a low-yield zone for
passenger pick-ups. After ranking drivers, as shown in Fig. 2b,
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we find that 30% of them (90 drivers) have more than 21.1%
occurrence, which appears to be weird at first glance. By
comparing the hourly pick-up profits of these 90 drivers
against the average level of all 12,493 drivers, surprisingly,
we find that these drivers make 17.5% more pick-up profits
per work hour than the average level (about $126.6 monthly
raise considering the 8-hour work day), as shown in Fig. 2c.
After a thorough analysis of these findings, the mystery finally
uncovers its veil: regular drivers possess the ability of dynamic
profit prediction to some degree, and rationally choose where
to go based on this knowledge in pursuit of long-term, stable
profits, rather than blindly seek the immediate gains.

III. LSTRec DESIGN FOR MOVE-CS

Motivated by the findings in Sec. II, we design a new Long-
Short-Term Profit-combined Task Recommendation model
(LSTRec) for resurrecting the MOVE-CS market, and advance
the crucial research problem.

A. Model Design

Logic behind the design. LSTRec leverages the active task
recommendation of the platform to simultaneously satisfy
drivers’ explicit and implicit needs for short-term and long-
term profits. The logic behind this model design is as follows:

(1) The dataset analysis in Sec. II-B shows that MOD
drivers have an explicit preference for short-term, immediate
gains as well as implicit rationality in pursuit of long-term,
stable profits. Therefore, the model design should respond to
drivers’ demands to encourage their participation.

(2) However, the short-term and long-term profits can be
only predicted with global knowledge of the pick-up profits
at any time and place, which is barely possible even for
regular drivers, let alone those new registrants. Therefore, it is
unrealistic to let drivers actively select from all the tasks in a
short response time, while gaining acceptable profits.

(3) Hence, instead of task selection by drivers like the
MOMAN-CS model, we deploy the task recommendation
scheme, i.e., the professional platform with enough spatial-
temporal knowledge, predicts the pick-up profits on drivers’
behalf, and actively recommends tasks comprehensively con-
sidering their short-term and long-term profits.

To sum up, the LSTRec model saves drivers from the ex-
tremely complicated computation of profit prediction, reducing
the response time of each driver, while they are still left enough
wiggle room for options. Simultaneously, the platform can also
pursue its own interest in this process.
LSTRec model design. To begin with, our LSTRec model
consists of three major steps as follows:

(1) Task publishing: The new MOVE-CS platform dis-
cretizes the required road data collection into S exclusive
sensing tasks, according to the topology and length of the
roads as well as the specified applications. We denote the set
of these published tasks by S, i.e., S = {1, . . . , S}. The zone
of each task j (j ∈ S) and the platform profit from it are
represented by zj and uj , respectively.

(2) Task requesting and recommendation: There are large
numbers of MOD drivers delivering passengers in the city,
willing to opt in MOVE-CS. Let M denote the set of
these MOD drivers, i.e., M = {1, . . . ,M}. Each driver
k (k ∈M) reports her/his current zone zk. Then, the platform
recommends one task for each driver, along with its location
and reward, and the driver’s expected profit. Let xkj denote
whether task j is recommended to driver k, i.e., xkj = 1 if
yes, and xkj = 0 otherwise. The recommendation set is then
denoted by x = {xkj}.

(3) Task acceptance and execution: Once a driver k is rec-
ommended task j, s/he has a probability ρkj of accepting and
performing it. Each driver’s acceptance probability depends on
her/his preference and reliability, as well as the recommended
task, which can be learned from large amounts of MOD
vehicle data [16]. To assure a high task execution probability,
a task may be recommended to multiple drivers. Hence, the
execution probability of each task j can be calculated by
1−
∏M
k=1(1−ρkjxkj). Similar to [17], [18], the total platform

profit, i.e., the expected profits of all the performed sensing
tasks for the platform, is denoted as

U(x) =

S∑
j=1

uj
(
1−

M∏
k=1

(1− ρkjxkj)
)
. (1)

Finally, after the road data of task j is uploaded to the MOVE-
CS platform, driver k gets a reward ckj ; the rewards of all
drivers then form a set c = {ckj}. Hence, the driver’s total
earnings equal to the sum of the reward by performing a
sensing task and the pick-up profit by transporting passengers.

B. Research Problem and Challenge Analysis

The crucial problem in the LSTRec model design is how
to recommend tasks to drivers alongside proper rewards, by
study and prediction of the spatial-temporal differences, which
is presented in the following.
Long-short-term profit-aware optimal task recommenda-
tion problem (LSTO ): Given the historical MOD vehicle
dataset, how to recommend each task j to an MOD driver k
with the sensing reward {ckj}, so as to maximize the total
platform profit U(x) under the constraint of budget B, while
satisfying both drivers’ explicit preference for short-term gains
and their implicit needs of long-term profits.

In addressing the above-mentioned problem, there exist
three main challenges as follows:

(1) It is difficult to predict the global distribution of the pick-
up profits, due to their spatial-temporal dynamics. The pick-
up profits exhibit spatial-temporal dynamics, as demonstrated
in Figs. 1a, 3a, and 3b. Furthermore, the highly complicated
movement of both passengers and MOD vehicles between
different zones and time complicates such dynamics, hence
rendering the accurate prediction on the global distribution of
pick-up profits particularly difficult.

(2) It is challenging to satisfy the demands of both drivers
and the platform, which are aligned in some cases but con-
flicted in others. In some circumstances, a task may require
sensing in a high-yield zone where drivers are eager to move
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Fig. 4: Overview of our algorithm.

towards, so that they will probably accept it with a relatively
low reward, in alignment with the platform’s interest. In other
conditions, a task valuable to the platform is perhaps related
to an unpopular zone, where drivers are reluctant to go. The
two sides do not share mutual benefits so that drivers will only
undertake the task if the reward is high enough to reach their
expectations, thereby increasing the platform’s cost.

(3) The optimal task recommendation subproblem of LSTO
is NP-hard. This problem can be reduced from the classical
0-1 knapsack problem [19]: Given a capacity B and a group
of items {(k, j)|∀k ∈ M,∀j ∈ S}, each of which has a
value ckj and a weight ρkj , select a collection of items to
maximize the total value U(x) under the capacity constraint
of weights (the detailed proofs are omitted owing to the page
limit). As a result, it is extremely challenging to achieve
the optimal recommendation with computational efficiency,
especially for the large-scale MOVE-CS market with massive
drivers (such as 12,493 drivers in our dataset).

IV. KEY ALGORITHM DESIGN FOR LSTRec

To address the above three challenges, we propose a spatial-
temporal differentiation-aware task recommendation scheme
empowered by submodular optimization. As illustrated in
Fig. 4, it mainly consists of three components:

(1) Pick-up profit heatmap construction (Sec. IV-A): Utiliz-
ing the historical MOD vehicle dataset, we first construct the
two-dimensional pick-up profit heatmaps, which are then used
to predict the future heatmaps by exploiting dual-attention-
based RNN.

(2) Differentiation-aware sensing reward design (Sec.
IV-B): Based on the global knowledge of the pick-up profit
heatmaps, we learn the spatial-temporal dynamics of pick-up
profits, which is fed back to devise the sensing rewards for
satisfying the driver’s explicit and implicit needs of the short-
term and long-term profits, respectively.

(3) Submodularity-based task recommendation (Sec. IV-C):
Given the sensing reward design, we first analyze the prop-
erties of the optimal task recommendation problem by re-
formulation. Guided by the analysis results, we present an
approximation algorithm to address this NP-hard problem,
following the methodology of submodular optimization.

Fig. 5: Illustration of pick-up profit heatmap construction based on
the MOD vehicle dataset using dual-attention-based RNN.

A. Pick-up Profit Heatmap Construction

Two-dimensional pick-up profit heatmap model. The pick-
up profit is highly dependent on the pick-up probability and
the per-trip earnings in each zone. Furthermore, the dataset
analysis in Sec. II-B indicates that both the pick-up probability
and the per-trip earnings have the spatial-temporal dynamics
in different zones and time periods. As a result, we use the
two-dimensional heatmaps, called pick-up profit heatmaps, to
represent the dynamic spatial-temporal pick-up profits.

In particular, we divide the map of an entire city into Z non-
overlapping zones, according to the shape of the area and the
specified spatial granularity. Let zi and Z denote each zone i
and the set of zones, respectively, such that zi ∈ Z . Similarly,
the time is evenly divided into T time slots, and the set of time
slots is denoted as T . Each time slot t is also named period
t. Let pti and rti denote the pick-up probability and the per-
trip earnings in zone i at period t. Hence, the pick-up profit
heatmaps HT during the periods [1, T ] are represented as

HT =
{
ht|1 ≤ t ≤ T

}
, (2)

ht =
{

(pti, r
t
i)|∀i ∈ Z

}
, (3)

where ht denotes the t-th frame of the heatmaps, representing
the pick-up profits of all the zones at period t. Moreover, each
pixel of the heatmap frame (i.e., (pti, r

t
i) ∈ ht) represents the

pick-up probability and the per-trip earnings in zone i at period
t. Intuitively, in the heatmaps, the warmer the color, the more
the pick-up profits that drivers are expected to get (with higher
pick-up probability and more per-trip earnings), as illustrated
in Figs. 3a and 3b.
Heatmap construction based on MOD vehicle dataset. We
construct the pick-up profit heatmap by using the histori-
cal MOD vehicle dataset, including their trajectories, occu-
pied/vacant statuses, and pick-up earnings of each trip, as
illustrated in Fig. 5a. Specifically, as illustrated in Fig. 5b,
based on the trajectories of MOD vehicles and their occu-
pied/vacant status information, we compute the ratio of the
vehicles picking up passengers to all the vacant vehicles in
zone i within period t as the pick-up probability pti. Moreover,
we compute the per-trip earnings rti by using the average
income of all the vehicles that pick up passengers from zone i
at period t. Thus, we use the historical MOD vehicle dataset
during the periods [1, T ] to construct the corresponding pick-
up profit heatmaps, i.e., HT =

{
(pti, r

t
i)|∀i ∈ Z, 1 ≤ t ≤ T

}
.

Heatmap prediction based on RNN. As shown in Fig. 5c, we
utilize the pick-up profit heatmaps HT of periods [1, T ] to ac-
curately predict the future L periods. Note that, the prediction
length L is dependent on the time interval of each task recom-
mendation in Sec. IV-B. In particular, the dual-attention based
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RNN [20], [21] is exploited to accurately predict the next
few profit heatmaps based on the historical ones. Its key idea
is to leverage an LSTM-based encoder-decoder architecture
with dual-attention mechanisms, including spatial attention
and temporal attention. The spatial attention is exploited to
capture the complex spatial correlations across different zones,
while the temporal attention is used to learn the time-varying
correlations between different time periods. In summary, we
use the MOD vehicle dataset to construct and predict the
global pick-up profit heatmaps of the periods [1, T + L], i.e.,
HT+L =

{
(pti, r

t
i)|∀i ∈ Z, 1 ≤ t ≤ T + L

}
.

B. Differentiation-aware Sensing Reward Design

Based on the global pick-up profit heatmaps, we first
compute the spatial-temporal differences of pick-up profits,
which are used to design the sensing rewards of drivers.

The pick-up profit difference represents the expected pick-
up profit increase for an unoccupied vehicle to drive from one
zone to another for performing the sensing task. Formally, we
let Ikj(t0) represent the pick-up profit difference for driver k,
when moving from her/his original zone zk to the task’s zone
zj at t0. Thus, Ikj(t0) is given by

Ikj(t0) = Et0 [ptj · rtj ]− Et0 [ptk · rtk], (4)
where Et0 [·] denotes the mathematical expectation with respect
to t0. Et0 [ptk ·rtk] denotes the expected pick-up profit of driver
k at her/his original zone zk; Et0 [ptj · rtj ] represents that of
driver k at the new zone zj . Both of them are dependent
on the probability ptk (ptj) that drivers pick up passengers in
zk (zj) at period t, and the probability p̄tk (p̄tj) that drivers
cannot do it in zk (zj) before t. Hence, both Et0 [ptk · rtk] and
Et0 [ptj ·rtj ] can be computed based on the global pick-up profit
heatmaps HT+L =

{
(pti, r

t
i)|∀i ∈ Z, 1 ≤ t ≤ T + L

}
, using

the expectation model [22].
Learning each driver’s pick-up profit difference, we design a

sensing reward model, by subtracting it from her/his expected
income. In specific, let bkj(t0) denote driver k’s expected
income from passenger missions, when driving from zk to
zj . Thus, according to Eq. (4), the sensing reward ckj(t0) for
executing task j by driver k at t0 is represented as

ckj(t0) = bkj(t0)− (Et0 [ptj · rtj ]− Et0 [ptk · rtk]). (5)
Note that bkj(t0) can be computed based on the driving time
and distance [23], [24], according to the pricing policies of
MOD vehicles [15].

Referring to the actual hourly wage of drivers, the platform
offers each of them a reward, called the expected profit, so
that drivers are willing to spend time on the sensing tasks.
A driver’s expected profit is a combination of her/his explicit
reward ckj(t0) directly given by the platform, and implicit
reward Et0 [ptj · rtj ]−Et0 [ptk · rtk] subtly obtained by relocation
to a higher-yield zone for task j. Thus, as shown in Eq. (5),
if the implicit reward is adequate, the platform can lower the
explicit reward; if it is insufficient, the platform should offer a
higher explicit reward for compensation. As a result, all drivers
are granted more profits than the rewards from only passenger
missions, named positive profits. In sum, the sensing reward
design based on the pick-up profit differentiation learning can

ensure positive profits of all the drivers by balancing the
explicit and implicit rewards.

C. Submodularity-based Task Recommendation Algorithm

Problem analysis based on equivalent transformation.
Firstly, given the sensing reward design {ckj}, we can equiv-
alently transform the LSTO problem into a set function
optimization problem for facilitating the problem analysis. In
particular, we define the ground set V := {v = (k, j)|∀k ∈
M,∀j ∈ S}. Let A denote the set of the recommended driver-
task pairs, i.e., A := {v = (k, j)|xkj = 1,∀k ∈ M,∀j ∈ S},
and A ⊆ V . Moreover, ∀A ⊆ V , U(A) := {U(x)|∀(k, j) ∈
A, xkj = 1;∀(k, j) /∈ A, xkj = 0}. It is noted that U(A)
and U(x) are different functions, but we adopt the same
symbol U(·) for simplification. Based on the above definitions,
the optimal task recommendation subproblem of LSTO can be
equivalently transformed as

Max
A⊆V

U(A) =
∑
j∈S

uj
(
1−

∏
k∈M

(1− ρkjxkj)
)
, (6)

s.t.
∑

j:(k,j)∈A

1(k,j)∈A ≤ 1, (7)

∑
(k,j)∈A

ckjρkj ≤ B, (8)

where 1 denotes the indicator function. Eq. (7) restricts each
driver is recommended at most one task in each recommen-
dation period, similar to [25], [26]. Eq. (8) indicates that the
expected sensing rewards of all the drivers are less than the
platform’s budget.

Furthermore, based on the set function optimization prob-
lem, we theoretically analyze the properties of the problem.
At first, we find out the objective function of this prob-
lem is submodular. In particular, let A1 ⊆ A2; A0

1 :=
{(k, j0)|∀k, (k, j0) ∈ A1}; A0

2 := {(k, j0)|∀k, (k, j0) ∈ A2}.
Hence, U(A1 ∪ {v0}) − U(A1) = uj0ρk0j0

∏
k:(k,j)∈A0

1
(1 −

ρkj), and U(A2∪{v0})−U(A2) = uj0ρk0j0
∏
k:(k,j)∈A0

2
(1−

ρkj). Since
∏
k:(k,j)∈A0

1
(1 − ρkj) ≥

∏
k:(k,j)∈A0

2
(1 − ρkj),

according to the definition of submodularity [27], the objective
function is submodular. Moreover, it is easy to prove that the
objective function is also non-negative and monotone [27]. In
addition, according to the definitions of the matroid constraint
and the knapsack constraint [28], we find constraints (7)(8) to
be a matroid constraint and a knapsack constraint, respectively.
The detailed proofs are omitted due to the page limit.

In summary, we have the following results: The optimal task
recommendation subproblem of LSTO is maximizing a non-
negative, monotone, and submodular objective function with
a matroid constraint and a knapsack constraint.
Algorithm design. Following the methodology of submodular
optimization [29], we propose a greedy local search-based
near-optimal task recommendation algorithm, leveraging two
key ideas: (1) Since this problem is maximizing a monotone
and submodular objective function, we use the greedy strategy
to iteratively search the local optimal solution, which has the
largest marginal profit-cost ratio. (2) In each iteration, we use
local search to swap a non-recommended driver-task pair with
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Algorithm 1: Greedy Local Search-based Near-
optimal Task Recommendation Algorithm.

Input: Task set S; MOD driver set M;
Sensing rewards set {ckj};
Set of drivers’ acceptance probability {ρkj};
Set of tasks’ profits to the platform {uj}; Budget B;
Output: Recommended task set {xkj}; Platform profit U .

1 Initialize A0 = {v0, v1}, where v0 = argmax
v∈V

U({v}),

v1 = argmax
v∈V\{v0}

U({v, v0})− U({v0});

2 Initialize n = 0, and swap = true;
3 while swap do
4 swap← false;
5 Vs := {(v+, v−)|∀v+ ∈ V\An, ∀v− ∈ An ∪ {∅}};
6 while (swap 6= true) && (Vs 6= ∅) do
7 (v∗+, v

∗
−) = arg max

(v+,v−)∈Vs
π(v+, v−);

8 if An\{v∗−} ∪ {v∗+} satisfies constraints (7)(8) and
π(v∗+, v

∗
−) ≥ ε

M2S2 then
9 An+1 ← An\{v∗−} ∪ {v∗+};

10 n← n+ 1;
11 swap← true;

12 Vs ← Vs\{(v+, v−)};

13 Set x← {xkj = 1|∀k, ∀j, (k, j) ∈ An};
14 Compute U(x) based on x, {uj}, and {ρkj}, according to

Eq. (6);
15 return x and U(x) .

a recommended one, for profit maximization under the matroid
constraint (7); a swap is applied if the marginal profit-cost ratio
of this swap is more than the lower bound ε

M2S2 .
In specific, the detailed algorithm design is presented in

Alg. 1. Let An denote the set of recommended driver-task
pairs in the n-th iteration. Let (v+, v−) and Vs denotes a
swap and the swap set, respectively, where v+ represents a
non-recommended pair, i.e., v+ = (k+, j+) ∈ V\An; v−
denotes a recommended one, i.e., v− = (k−, j−) ∈ An ∪{∅};
Vs = {(v+, v−)}. Note that ∅ represents a dummy element;
swapping v+ with ∅ is equivalent to directly adding v+
into An. As a result, the marginal profit-cost ratio of this
swap (v+, v−), i.e., the ratio of the platform profit increase
via swap to the sensing reward of v+, is represented by

π(v+, v−) =
U(A\{v−} ∪ {v+})− U(A)

ck+j+
. (9)

Based on Alg. 1, we analyze the theoretical performance
of this algorithm design. In specific, the number of its it-
erations is no more than M2S2

ε log(MS), since the profit
increase by swap in each iteration should be at least ε

M2S2 .
Moreover, the time complexity of each iteration in lines 3-
12 is O(M2S2). Since ε is a constant, the time complexity
of Alg. 1 is O(M4S4 log(MS)). Furthermore, according to
the aforementioned analysis, this problem is a monotone,
submodular maximization problem with a matroid constraint
and a knapsack constraint. As a result, referring to [29], Alg. 1
can achieve a (1− e−2)/2-approximation ratio.

In conclusion, Alg. 1 can achieve a near-optimal solution of
(1−e−2)/2-approximation with the polynomial time complex-
ity O(M4S4 log(MS)), where M and S denote the numbers
of drivers and tasks, respectively.
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Fig. 6: Drivers’ profits in the two models (a), and the profit increase
ratio of LSTRec compared with the original MOVE-CS model (b).

V. EVALUATION

We use the large-scale MOD vehicle dataset to emulate
the operation process of the original MOVE-CS model and
the LSTRec model, respectively. Furthermore, we compre-
hensively compare the performance of the proposed algorithm
with five baseline algorithms.

A. Emulation Methodology and Settings

The emulation of the proposed LSTRec model and the
original MOVE-CS model is based on the large-scale MOD
vehicle dataset (specified in Sec. II-B) as follows. First, the
MOVE-CS platform requires road data of 878 road segments
with a total length of 191.1 miles in a 32 km2 area. Then, for
higher accuracy, each road is required to be sensed k times
with decreasing profit u to the platform (k = 3, u = $2.5, 1.5,
and 0.5 per mile for the three times respectively). There are M
MOD drivers (M = 1000), randomly selected as participants
willing to collect the road data for the MOVE-CS market.
Next, we run the emulation for five days, which may end in
advance if the budget is exhausted.

For the MOVE-CS model, drivers collect road data on the
move at any time s/he wants during her/his work hours. Drivers
on average spend $0.06 per mile on fuels [30]; their data col-
lection costs are only induced in the unoccupied state during
extra trips for tasks. After the data are uploaded, each driver
gets a reward. The original settings Payver adopted ($0.01-0.05
per mile) are so unreasonable that most participants can only
get few or even negative profits. To make a fair comparison, in
the emulation, in contrast, we let a portion (1/a) of the platform
profit u be the reward, e.g., k=3, 1/a=0.2, and the rewards are
$0.5, 0.3, 0.1 per mile respectively, according to the economic
theory [31]. For the LSTRec model, there are N rounds of task
recommendations. In each round, as explicated in Sec. III-A,
the platform publishes sensing tasks; each corresponds to
one collection of a road segment. The platform then predicts
drivers’ pick-up profits and recommends them sensing tasks.
Each driver accepts and accomplishes the task at a probability
following the stochastic uniform distribution U(0, 1). Once
the task is accomplished, s/he receives the reward given by
the proposed algorithm. We implement the emulation on a
commodity server with 3.00GHz dual-core Intel Core Xeon
Gold 6561 CPU and 192GB RAM.
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Fig. 7: Road coverage heatmaps in the two models; black, orange, red, and crimson represent collected times of 0, 1, 2, and 3, respectively.

B. Results of Model Evaluation

Drivers’ profits. We first evaluate the two models on drivers’
profits. As illustrated in Fig. 6a, for the MOVE-CS model,
14.5% of drivers have negative profits from sensing tasks,
because they might spend a lot on collecting repeated road
data, resulting in rewards far less than the driving cost. In
contrast, all the drivers in the LSTRec model make positive
profits, thanks to the sensing reward design based on the
spatial-temporal differentiation of pick-up profits. Moreover,
we analyze all the task recommendation results in LSTRec .
Results show that, 87.3% of the recommended tasks enable
drivers from low-yield zones to high-yield zones, consistent
with their desires for immediate gains.

Furthermore, we compare the drivers’ profits in the two
models by calculating the drivers’ profit increase ratios in
LSTRec to those in MOVE-CS. As demonstrated in Fig. 6b.
we find in our model, 50% of drivers increase profits by
320%, and 30% have an increase ratio of 880%, compared
with MOVE-CS. Further analysis indicates its effectiveness
is anchored in the active task recommendation scheme, i.e.,
incentivizing drivers to complete the tasks suitable for them.
Besides, Fig. 6b shows that 20% of drivers suffer decreased
profits (than in the MOVE-CS model), due to no tasks recom-
mended to them, which can be solved by prior recommenda-
tion to these drivers in the next round.
Platform’s profit. We evaluate the platform profit in the
two models. We first visualize the coverage heatmap of
collected road segments throughout the five days. As shown
in Fig. 7, our coverage ratio of collected roads in each day
is consistently higher than that in MOVE-CS. Our coverage
ratio increases day by day, and ends up 94.7% in the last
day, 22.0% higher than that in MOVE-CS. Meanwhile, our
platform profit increases by 34.3%, also attributed to the
active task recommendation scheme, i.e., encouraging drivers
to unpopular roads, increasing the road coverage ratio as well
as the platform profit.
Impacts of parameters. We evaluate the impacts of the
number of drivers on the model performance, in the aspects of
drivers’ profits and the platform profit. As shown in Fig. 8a, we
illustrate the box-plot of the drivers’ profits in the two models.

The results show that LSTRec can guarantee all the drivers’
positive profits, while 14.6% of drivers have negative profits
in MOVE-CS model. Moreover, the drivers’ profits of the two
models decrease with the number of drivers, since more opt-in
drivers lead to more fierce competition for earnings. However,
the decrease ratio in MOVE-CS is averagely 32.2% higher
than that in LSTRec . Moreover, Fig. 8b demonstrates that the
platform profits of the two models improve with the number
of drivers. The platform profit of LSTRec outperforms that
of MOVE-CS by 45.8% on average. Other parameters (e.g.,
budget) show similar effects on results, so we do not show
them due to the page limit.

C. Results of Algorithm Evaluation

Baseline algorithms. To comprehensively evaluate the per-
formance of the key algorithm of LSTRec , we exploit five
baselines as follows: (1) Hector [24] greedily recommends
sensing tasks with maximal marginal profit-cost efficiency to
the drivers, while using their basic driving costs as the rewards.
(2) GA [32] exploits the Genetic algorithm to maximize the
platform profit with the assumption that the sensing rewards
are already given. (3) iLOCuS [23] recommends the sensing
tasks greedily to minimize the task distribution divergence,
while utilizing the high pick-up probability of the task’s zone
as the hidden incentives. (4) RAD randomly recommends tasks
with a uniform distribution of pick-up profits. (5) OPT uses the
brutal-force search method to achieve the optimal solution with
exponential time cost. In the remaining, we call the proposed
algorithm LSTRec as well for simplification.
Comparison of algorithms. We first evaluate the platform
profit of the LSTRec algorithm in different numbers of drivers
and tasks, compared to five baselines. As demonstrated in
Figs. 9a and 9b, the platform profit of LSTRec exceed those of
RAD, GA, Hector, and iLOCus by 466.8%, 103.2%, 61.7%,
and 257.1% in different numbers of drivers, respectively, and
by 516.5%, 132.7%, 44.4%, and 237.8% in different numbers
of tasks, respectively. Also, we evaluate the near-optimality of
LSTRec by comparing it with OPT in a small-scale scenario
(i.e., M = 10, S = 6). As illustrated in Fig. 10a, LSTRec
can averagely achieve 97.2% of the optimal platform profit
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Fig. 8: Impacts of different numbers of drivers on the performance
of two models, in terms of drivers’ profits and platform profit.
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Fig. 9: Comparison of the LSTRec algorithm and four baselines in
terms of the platform profit in different numbers of drivers and tasks.
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Fig. 10: Comparison of the LSTRec algorithm and four baselines
in terms of the near-optimality and the drivers’ profits.

with only 0.004% of OPT’s time cost in different numbers
of drivers. As for drivers’ profits, there exists a large gap be-
tween LSTRec and baselines. As shown in Fig. 10b, LSTRec
guarantees a 100% positive profit ratio (i.e., the percentage
of MOD drivers with positive profits after opting in MOVE-
CS), outperforming Hector, iLOCus, and RAD by 24.2%,
9.2%, and 58.1%. Hence, differing from the three baselines,
LSTRec ensures a positive profit for every driver, thanks to
consideration of long-term and short-term profits of drivers.

VI. RELATED WORK

Recently, there have been considerable studies of incen-
tivized mobile crowdsensing [33]–[37], most of which focus
on human mobility [34]–[36] without considering the special
impacts of vehicle mobility. Since this paper belongs to the
category of incentivizing vehicular crowdsensing [16], [38],
we focus on reviewing its related studies; other orthogonal
studies can be referred to [38]–[40].

Specifically, as one of the earliest works, He et al. [32]
design a participant recruitment strategy, jointly leveraging
both the current location and the predictable mobility pattern
of vehicles. Then, Wang et al. [41] study both the deterministic
and probabilistic trajectory models and propose two efficient
vehicle recruitment algorithms. Zhu et al. [42] use RNN to pre-
dict the future vehicle mobility, which is used to select vehicles
to maximize their coverage with limited budget. Moreover, Fan
et al. [24] propose Hector, a novel joint scheduling and incen-
tive mechanism of vehicular crowdsensing. The above works
focus on common vehicles without concerning the special
MOD vehicles. In contrast, a recent work called iLOCuS [23],
highly related to this paper, takes MOD vehicles into account
and proposes a hybrid incentive, which combines the monetary
rewards and the non-monetary hidden incentives (i.e., the
passenger’s requests at the task’s zone). Nevertheless, iLOCuS

neglects the in-depth demands of MOD drivers for short-
term and long-term profits, inefficient to encourage them.
Xiang et al. [22] propose a sensing task allocation scheme
based on the deep reinforcement learning, achieving a near
optimal solution with a factor which depends on the maximal
and minimal costs of all the sensing tasks. Contrarily, this
work uses the greedy local search to achieve a (1 − e−2)/2-
approximation ratio, thereby having more robustness in the
real applications with different settings. Distinguished from
existing works, we conduct user studies and dataset-based in-
depth analysis, uncovering both the explicit and implicit needs
of MOD drivers. The results are then fed back to design a
novel LSTRec model to benefit both drivers and the platform.

In addition, many efficient recommendation systems [43],
[44] are proposed, such as web service recommendation [45]
and social network recommendation [46], [47]. Also, there
are numbers of good works about allocation/recommendation
of passenger missions for MOD drivers. For example, Xu et
al. [48] design an effective order dispatching algorithm, which
considers both the immediate passenger satisfaction and the
expected future income of drivers. Nevertheless, all of the
works are merely focused on either passenger missions or item
recommendation, which are orthogonal to our work.

VII. CONCLUSION

In this paper, motivated by findings in user studies and the
large-scale vehicle dataset analysis, we propose LSTRec , a
new Long-Short-Term Profit-combined Task Recommendation
model, in an attempt to resurrect the MOVE-CS market.
Behind it lies a spatial-temporal differentiation-aware task
recommendation scheme empowered by submodular opti-
mization. It involves pick-up heatmap prediction based on
RNN, the differentiation-aware sensing reward design, and
the submodularity-based task recommendation algorithm. The
emulation reveals that LSTRec guarantees not only positive
profits for drivers, but also a near-optimal profit for the
platform, hence having the potential to resurrect MOVE-CS.
In the future, we will explore the possible deployment of our
LSTRec model by collaborating with MOD companies.
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