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Abstract—Cyber search engines, such as Shodan and Censys,
have gained popularity due to their strong capability of indexing
the Internet of Things (IoT). They actively scan and fingerprint
IoT devices for unearthing IP-device mapping. Because of the
large address space of the Internet and the mapping’s mutative
nature, efficiently tracking the evolution of IP-device mapping
with a limited budget of scans is essential for building timely
cyber search engines. An intuitive solution is to use reinforcement
learning to schedule more scans to networks with high churn
rates of IP-device mapping. However, such an intuitive solution
has never been systematically studied. In this paper, we take
the first step toward demystifying this problem based on our
experiences in maintaining a global IoT scanning platform.
Inspired by the measurement study of large-scale real-world
IoT scan records, we land reinforcement learning onto a system
capable of smartly scanning IoT devices in a principled way. We
disclose key parameters affecting the effectiveness of different
scanning strategies, and find that our system would achieve
growing advantages with the proliferation of IoT devices.

I. INTRODUCTION

In recent years, cyber search engines, such as Shodan [1],
Censys [2], [3], and ZoomEye [4], have gained popularity
among the security community due to their strong capability
of indexing the Internet of Things (IoT) like webcams and
routers. They actively scan IoT devices with fingerprints of
various devices for unearthing IP-device mapping, offering
publicly available search engine services. One can simply
access these services using a browser, and obtain IP-device
mapping results by host names, IP addresses, certificates, or
device-specific keywords. These search engines can also be
used to effectively find IoT devices with certain (possible)
vulnerabilities on the Internet [5]–[7]. In the short term, they
render large-scale attacks against IoT devices easier, while
simultaneously offering a public channel for devices’ owners
(especially those with higher security requirements) to be
informed of the exposure. More importantly, in the long run,
they would force IoT device manufacturers into making the
best efforts to improve the security of their devices [8], [9].
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Because of the large address space of the Internet and the
mutative nature of IP-device mappings, efficiently tracking the
evolution of IP-device mapping with a limited budget of scans
is essential for building timely cyber search engines. High-rate
scanning, in spite of the timeliness, usually induces excessive
noises and thus may be blocked by firewalls. On the contrary,
low-rate scanning is not noisy, but not timely. As a result, the
data obtained from cyber search engines would be generated
a long time ago, rather than the up-to-date IoT devices on the
Internet that are far more valuable.

Scanning IoT devices in a principled way so to meet the
timeliness requirement with a limited budget of scans depends
on two major aspects. One is the resource investment, and the
other is the scanning strategy. The former includes the number
of servers, the servers’ processing power, the bandwidth,
etc. The latter concerns how to schedule scans encapsulating
fingerprints of IoT devices across all IP addresses from the
temporal perspective. Since the resource investment for cyber
search engines is relatively stable, we only focus on the latter
aspect. Existing cyber search engines, such as Censys, divide
the protocol into different categories, and for each category
the scanning frequency is manually defined [3]. For example,
Censys scans HTTP daily and SSH biweekly. Apparently,
manually scheduling scans cannot maximize the timeliness of
cyber search engines because it does not consider IP-device
mapping dynamics in different networks.

Despite its conceptual simplicity, how to design a system
capable of smartly scheduling scans for IoT devices has never
been systematically investigated. An intuitive solution is to
use reinforcement learning to flexibly schedule more scans to
networks with high churn rates of IP-device mapping, as can
be learned from historical scanning records. However, there
are two major challenges to apply reinforcement learning into
designing the system. First, an immediate challenge is that
designing such a system necessitates large-scale real-world IoT
scanning records so to have insights of IP-device mapping
dynamics all over the Internet. However, there is no publicly
available data for gaining insights and facilitating the design.



Second, the IP-device mapping dynamics are driven by hidden
factors that are hard to infer (e.g., which networks have the
same IP assignment policy and can be characterized by similar
mapping dynamics). This hurdle is further compounded by
the Internet’s tremendous and time-evolving nature, making it
challenging to design the system.

To address these challenges, we carry out both measurement
study and system design for smartly scheduling scans for IoT
devices. First, we perform large-scale measurements of IP-
device mapping dynamics using our global IoT scanning plat-
form. The measurement enables us to collect real-world IoT
scanning records, quantify the IP-device mapping dynamics,
and analyze factors affecting the dynamics. Second, inspired
by the measurement study, we design a novel system that
lands reinforcement learning onto guiding the smart scanning
by exploiting the observation that the IP-device mapping
dynamics in different networks may vary significantly.

Our system makes automatically learning IP-device map-
ping dynamics across different networks as a built-in feature
for continuous scanning decision making, enabling the encour-
agement of scans to networks with high churn rates of IP-
device mapping dynamic mapping and the discouragement of
scans to those with low churn rates. To our best knowledge,
we are the first to explore principled ways to scan IoT
devices based on real-world measurement study. Our major
contributions are summarized as follows.

• We perform measurements based on large-scale real-
world IoT scanning records (consisting of 5,241,566 IP
cameras) by scanning the entire IPv4 space for about
40 days, and quantify the IP-device mapping dynamics.
The results reveal that both the IoT device types and IP
address pools affect the dynamics.

• We land reinforcement learning onto a system capable of
smartly scanning IoT devices. The system can encourage
scans to networks with more dynamic IP-device map-
ping while impeding scans to those with less dynamic
mapping. It consists of two novel strategies for schedul-
ing scans based on online learning and batch learning.
It could temporally schedule scans through continuous
scanning decision making in consideration of historic IP-
device mapping dynamics, as well as the hierarchically
learned (spatial) IP address pools.

• Through extensive experiments, we demonstrate that our
system could generally capture more IP-device mapping
mutations than random and sequential scanning. We dis-
close the two key parameters affecting the effectiveness
of different scanning strategies, i.e., the scan rate and
the proportion of IoT devices to IP addresses. We also
find that, as the number of IoT devices on the Internet
grows, our system would grow far more advantageous
than random and sequential scanning.

Roadmap. Sec. II performs measurement study using real-
world data. Sec. III introduces system overview, Sec. IV details
system design, and Sec. V conducts the evaluation. Finally, we
survey the literature in Sec. VI, and conclude in Sec. VII.

II. UNDERSTANDING IP-DEVICE MAPPING DYNAMICS

A. Background

There are usually three ways to configure the IP address
for a device, namely, Dynamic Host Configuration Protocol
(DHCP), Point-to-Point Protocol (PPP), and static IP config-
uration [10]–[12]. Both DHCP and PPP will cause IP address
changes frequently.

The DHCP server controls a pool of IP addresses. A client,
when connecting to the network, can be automatically assigned
an IP address from the pool by the DHCP server. The client
can keep the IP address within the lease duration (configured
by the network manager). Upon the lease duration expires, the
client can send a message to the DHCP server to extend its
lease for the same IP address [10]; if the client does nothing,
the address will be revoked.

PPP can be encapsulated in data link layer protocols like
PPP over Ethernet (PPPoE) and PPP over Asynchronous
Transfer Mode (PPPoA). PPP first establishes a session be-
tween the client and the server. Then, the Internet Protocol
Control Protocol (IPCP) is used to configure the client device’s
IP address. IPCP does not have a lease duration. The IP
address is released when the PPP session ends [11]–[13].

In both DHCP and PPP, if the session of the device
continues, the IP address will not change. IP address mutations
can be triggered by both the client and the server. On the client
side, once the device re-establishes the PPP session, a new IP
address will be assigned to the device; if a DHCP client is
offline for a period of time that exceeds the lease duration and
then reconnects the DHCP server, its IP address will change.
On the server side, Padmanabhan et al. found some ISPs may
limit the session duration (typically a multiple of 24 hours),
and the IP address will change periodically [14].

B. Measuring IP-device Mapping Dynamics

To understand IP-device mapping dynamics, one needs to
perform large-scale scans encapsulating fingerprints of IoT
devices globally, and collect detailed scanning records. Despite
the prevalence of IoT fingerprinting techniques [15]–[17], no
public scanning record is available to facilitate the study.

To this end, we take the first step to measure real-world IP-
device mapping dynamics by performing large-scale scanning
campaigns using our globally deployed (commercial) IoT
scanning platform. Specifically, we scanned the entire IPv4
space for identifying IP cameras, the most popular type of IoT
devices on the Internet. The scanning campaign was repeated
four times, starting on June 5, June 15, June 26, and July 6,
2021, respectively. At each time, the scanning campaign lasted
about 10 days, resulting in 2,896,824, 3,089,436, 3,093,510,
and 3,076,343 successful scanning records, respectively.

Note that the traffic fingerprints of these IP cameras are
extracted from their banner text that commonly describe device
types explicitly. We have been manually maintaining and
labeling a database of IoT fingerprints with the aid of machine
learning. For more details, the reader can refer to [18].

The four time scanning campaigns allow us to measure IP-
device mapping mutations by comparing scanning records.
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Fig. 1. The number of cameras from different manufacturers and Jaccard
similarity between the two scans.

Suppose we perform a scanning campaign at time t1 and
the result is St1 , the set of (successfully scanned) mapping
between IP addresses and device types. For example, St1 [α] =
“D-Link Camera”, where α is an IP address. St2 is the result
of scanning campaign at time t2. We employ Jaccard similarity
to measure the mapping mutations between t1 and t2:

J(t1, t2) =
|St1 ∩ St2 |
|St1 ∪ St2 |

. (1)

If there are no IP-device mapping mutations, J(t1, t2) will
equal 1. As the mutations become significant, J(t1, t2) will
approach 0. Note that, when J(t1, t2) equals 1, we cannot be
100% sure that there are no mapping mutations, due to the
possibility of an IP address being re-assigned to a device of
the same type as the device that originally owns the IP address.
However, in such a case, the probability of mapping mutations
would be extremely small and ignorable.

1) Device Types: In our scanning campaigns, we success-
fully find a cumulative number of 5,241,566 IP cameras. Fig.
1 shows the average number of devices of the top 10 popular
IP camera types across all campaigns. For a certain device
type, we calculate the mapping mutations between every two
successive campaigns using (1). Consequently, three values of
Jaccard similarity measuring mapping mutations are derived,
and we plot the average value in Fig. 1. It can be seen that the
Jaccard similarity between two successive scanning campaigns
differs significantly across IP camera types. For example, the
Jaccard similarity of the Samsung camera is about 0.83, but
that of the Hipcam camera is less than 0.45. This indicates that
the IP-device mapping dynamics are device-type-specific.

2) IP Pools: We consider an IP address pool as a set
of IP addresses (possibly) under the same IP management
policy. Different IP address pools may have different IP-device
mapping mutation intensities because each IP address pool
has its configuration, capacity, and occupancy. Padmanabhan
et al. found that the frequency of IP address changes was
related to geographic location [14]. In other words, the IP-
device mapping mutations are related to the IP address pools.

To gain (coarse-grained) insights into IP-device mapping
mutations of large-sized IP pools, we define an IP address
pool as a class B IP space, and the IPv4 space is divided
into 65,536 IP address pools. For each pool, we derive (1)
between every two adjacent scanning campaigns and calculate
the average Jaccard similarity. In our calculation, we neglect
the IP address pools with less than 50 identified IP cameras for
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Fig. 2. The probability distribution of the Jaccard similarity between two
scans across all IP address pools.

statistical validity. Fig. 2 presents the probability distribution
of the average Jaccard similarity across all IP address pools.
Although there are two peaks when the Jaccard similarity
approaches 0.85 or slightly exceeds 0, the overall distribution
is dispersed. This implies that the IP-device mapping dynamics
are also dependent on IP address pools.

III. SYSTEM OVERVIEW

Since the IP-device mapping dynamics are related to device
types and IP address pools, we exploit this observation to
design a system capable of smartly scheduling scans for IoT
devices. Fig. 3 shows the architecture of our proposed system.

First of all, a priority matrix describing the IP-device
scanning tasks is fed into the system. Each element of this
matrix is a priority value (i.e., 1, 2, 3, . . .) specifying the order
to execute the corresponding scanning task defined by (device
type, IP address). Initially, the priority matrix is randomly
or sequentially defined. As the scanning proceeds, we will
collect more historical records consisting of (IP, device, last
scan time). Then, we derive a probability matrix quantifying
the probability of IP-device mutation. Each element of this
matrix denotes the probability that the corresponding IP-
device mapping mutations in the next scheduled scan. We
keep updating the probability matrix as new scanning records
arrive, while simultaneously returning probability ranking as
feedback to refresh the priority matrix. Finally, the tasks with
larger values of mutation probability would be assigned higher
priorities in the task queue.

When we derive the probability matrix, not only do we
use scanning records but also an intensity matrix. The ra-
tionale is that the IP-device mutation probability in the next
scheduled scan depends on both temporal and spatial factors.
The temporal factor is the time interval between the current
time and the last scan time (in scanning records). As the
time interval increases, the mutation probability grows because
of occurrences of events such as device replacement, and IP
reconfiguration. The spatial factor is the intensity matrix that
characterizes the overall likelihood of IP-device mutation in
individual IP address pools. Each individual pool is expected
to be under the management of the same IP assignment policy,
and hence devices in that range are statistically coherent in
terms of IP-device mutation. IP-device mappings belonging to
IP address pools with stronger mutation intensity tend to have
higher mutation probability.

The intensity matrix is estimated using scanning records.
Originally, each IP address pool is defined as the IP address
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Fig. 3. The architecture of the proposed IoT scanning system.

range of a small network, say a class C network, to ensure
its high probability under the management of the same IP as-
signment policy. As scanning records accumulate, our system
will hierarchically cluster small IP address ranges into large
IP address pools, resulting in a compact representation of the
intensity matrix. The compact representation leads to a more
computational effective estimation of the intensity matrix.
More importantly, as the size of an IP address pool increases,
the estimation accuracy for the intensity matrix increases due
to the growing number of scanning records in that pool.

The above architecture of our system constitutes a con-
tinuous scanning decision making process. Under such an
architecture, we propose two reinforcement learning-based
scanning strategies, namely, online learning and batch learn-
ing, according to the way to build the intensity matrix. The
online learning strategy incrementally updates the intensity
matrix while performing scanning, and directly enters the
continuous scanning decision making process. The batch learn-
ing strategy, however, proactively scans abundant information
to build the intensity matrix before entering the continuous
scanning decision making process.

IV. SYSTEM DESIGN

Following the proposed architecture, we detail our system
design. First, we present the designing goal and system model.
Then, we design online learning and batch learning scanning
strategies, and the IP address pool estimation technique. Table
I summarizes major notations in our system.

A. Designing Goal

We model the IoT scanning process as a continuous
decision-making process. For a certain type of IoT device, the
basic task of the decision-making is to select one IP address,

TABLE I
SUMMARY OF MAJOR NOTATIONS.

Notation Definition
d a device type
r an IP address range
A the set of scanning tasks
<(t1,d1),(t2,d2)> a 2-gram scanning record
R(d) all 2-gram scanning records with d1 = d
St the set of the latest scanning records at time t
π(St) the next scheduled scanning tasks given St
λ the IP pool-device mapping mutation intensity

scan it, and get the result. That is, the task can be regarded
as a cycle of selection and scan. The cycle will be repeated
continuously, hence constituting the entire scanning process.

From the perspective of IoT devices, our goal is to optimize
the scanning strategy to capture as many IP address changes
as possible. Such a goal is equivalent to capture as many
IoT device changes as possible from the perspective of IP
addresses. To sum up, we aim to capture as many IP-device
mapping mutations as possible. Note that we treat an IP
address without hosting any device as a special IP-device
mapping. During the scanning process, we score the reward as
1 upon capturing a mutation. Given a fixed number of scans
and a period of time, we aim to maximize the total reward.

B. System Model

1) Scanning Process Modeling: The scanning can be mod-
eled as a process of continuously making decisions on the
priorities of IP-device scanning tasks. All the scanning tasks
are organized in the priority matrix. At a high level, the
scanning process keeps refreshing the priority matrix regularly
after executing a bunch of scanning tasks. The refreshing is
actually to fine-tune the priority values based on the set of the
latest scanning records of all IP addresses.

Let St(t = t0, t1, t2, . . .) be the set of the latest scanning
records of all IP addresses at time t, and A denote the set
of scanning tasks. Then, the problem becomes fine-tuning
the priority value for each scanning task in A based on St.
Intuitively, scanning tasks with larger IP-device mutation prob-
abilities (during the next scheduled scan) should be assigned
higher priorities. More precisely, given St, top-k scanning
tasks in terms of mutation probability ranking, denoted by
π(St), joins the queue of the next scheduled scan. π(St) is
formally expressed as

π(St) = {a|if P (a|St) ∈ top-k(P (a|St)), a ∈ A}, (2)

where P (a|St) is the IP-device mapping mutation probability
when we choose a to scan at state St. Apparently, modeling
IP-device mapping mutation and estimate the value of P (a|St)
is crucial in the scanning process.

We would like to point out that, in real-world scanning,
scanning tasks associated with one IP address but multiple
device types could be performed at the same time to improve
the scanning efficiency, especially when the device types share
the same port. For example, many types of commercial IP
cameras open TCP port 554 by default. In this case, a scan



using a single TCP connection destined to TCP port 554 of
the target IP address will identify the camera type.

2) IP-device Mapping Mutation Modeling: Consider an
event as one IP-device mapping mutation. Naturally, for a
certain device, the event arrivals can be modeled as a non-
homogeneous Poisson process [19]. The reasons are twofold.
First, the events of a device’s IP address changes are gener-
ally independent of each other. For example, in the DHCP
configuration mentioned in Sec. II-A, the IP address changes
are independent since they are attributed to many random
factors, such as device online-offline dynamics and human
intervention; in the static IP configuration, the two typical
events, namely, initial IP assignment and final IP release, are
also independent. Second, in different periods of time, the rate
of IP address changes is likely to be different. In other words,
the rate of IP address changes is time-dependent. Formally,
the event arrivals have the following properties.{

P [N(t+ ∆t)−N(t) = 1] = λ(t)∆t+ o(∆t),
P [N(t+ ∆t)−N(t) ≥ 2] = o(∆t),

(3)

where λ(t), a non-negative function of time t and device type
d, denotes the mapping mutation intensity (i.e., the rate of IP
address changes at t), and N(t) represents the number of IP
address changes during (t, t+ ∆t], of a certain device.

Suppose t1 is the last time to scan the IP address a, and the
current time is t2. At t1, we find that a hosts a device d, which
is recorded in the state s. Assume that the mapping mutation
intensity of device d is λ(t). Then, the probability of capturing
the IP-device mapping mutation at t2 is approximated as

P (a|St) = 1− e
∫ t2
t1
λ(t)dt. (4)

The reason why it is approximate rather than strictly equal is
as follows. After the device’s IP address changes, other devices
of the same type may be assigned the IP address again with
a very low (almost ignorable) probability.

Recall that both the IoT device types and IP address pools
affect the IP-device mapping dynamics, as is revealed in Sec.
II. We maintain and estimate λ(t) separately for each pair
of device type and IP address pools in the intensity matrix
demonstrated in Fig. 3.

3) Mapping Mutation Intensity Estimation: If mapping
mutation intensity, i.e., λ(t), can be estimated, the mutation
probability P (a|St) would be calculated. We can estimate
λ(t) using historic scanning records. Maximum likelihood es-
timation and least-squares methods can be used for parameter
estimation. However, they are very difficult to solve.

Let us take maximum likelihood estimation as an example.
In the simplest case, λ(t) is a constant, which means λ is
independent of time and only related to the device type. We
define a 2-gram scanning record as a (successive) subsequence
of the scanning record sequence of an IP address. A 2-gram
scanning record can be expressed as < (t1, d1), (t2, d2) >,
where t1 is a scanning time, t2 is the scanning time following
t1, d1 is the device type at t1, and d2 is the device type at t2.
The probability that a 2-gram scanning record occurs is

P (<(t1, d1), (t2, d2)> |λ)=

{
e−λ(t2−t1) if d1=d2,
1−e−λ(t2−t1) if d16=d2.

(5)

Algorithm 1: Scanning using Online Learning Strategy
Input: scanning task set A = {IP addresses} × {device types}
Output: scanning records
initialization:
λ(d, r, t) = y(d, r, t) = n(d, r, t) = 0;
St(a) = (t0, d0) for each a;
while True do

λ(d, r, t) =
y(d,r,t)+1

y(d,r,t)+n(d,r,t)+1
;

scan π(St) and get a set of 2-gram scanning records E;
for each [a,< (t1, d1), (t2, d2) >] in [π(St), E] do

if d1 6= d2 then
y(d1, ra, t) += |T (λ(d,ra,t))∩(t1,t2]|

t2−t1
;

else
n(d1, ra, t) += |T (λ(d,ra,t))∩(t1,t2]|

|T (λ(d,ra,t))|
;

end
update St(a) = (t2, d2);

end
end

λ is the IP-device mapping mutation intensity of device type
d1. Let R(d1) denote the set of every 2-gram scanning record
with the first device type equal to d1 across all IP addresses.
The likelihood function of d1 changing to other device types
across all IP addresses is

L(λ|R(d1)) =
∏

r∈R(d1)

P (r|λ). (6)

Then, we maximize the likelihood function to estimate λ.
However, the maximal value of this function is difficult to
solve by calculating the zero point of the derivative, even if the
log-likelihood function is used. To make things exacerbated,
λ may not be a constant, and parameter estimation would be
challenging. We need a solution to estimate λ.

Padmanabhan et al. revealed that the address changing
intensity is dependent on the time during a 24-hour day [14].
Therefore, we model λ(t) as a periodic function with a period
of 24 hours for each device type. To estimate this continuous
function, we can discretize it into small intervals. Specifically,
we divide λ(t) into 24 intervals, and the problem becomes
estimating 24 discrete variables. We use T (λ(t)) to represent
any one of the intervals, i.e., [0, 1), [1, 2),..., and [23, 24). We
notice that the probability P(d1 6= d2|T (λ) ⊆ (t1, t2]) grows
as λ(t) increases. We use this probability to approximate λ(t).

Next, we design two strategies for estimating λ(t), namely,
the online learning strategy and the batch learning strategy.

C. Online Learning Strategy

The online learning strategy incrementally updates the esti-
mation of λ(t) as the scanning records arrive. The strategy is
detailed in Algorithm 1.

In Algorithm 1, λ(d, r, t) is represented by a three-
dimensional array. The first dimension is the device type, the
second dimension means the IP address range, and the third
dimension refers to the 24 discrete time intervals. ra represents
the IP address range index of address a. λ(d, r, t) equals
(y(d, r, t) + 1)/(y(d, r, t) + n(d, r, t) + 1) in the algorithm,
where y(d, r, t) and n(d, r, t) represent the number of times



the scanning records change and does not change within the
time period of T (λ(d, r, t)), respectively.

Specifically, for a record < (t1, d1), (t2, d2) >, if d1 6= d2,
|T (λ(d, ra, t)) ∩ [t1, t2)|/(t2 − t1) is added to y(d, ra, t),
where |T | refers to the time duration of T . This means
that we split the contribution of one scanning record into
multiple time intervals, since the mutation could happen at any
time interval between t1 and t2. Similarly, |T (λ(d, ra, t)) ∩
(t1, t2]|/|T (λ(d, ra, t))| is added to n(d, ra, t) if d1 = d2,
because no mutation between t1 and t2 in the scanning record
indicates no mutation in all time intervals between t1 and t2.

The reason why we make λ(d, r, t) equal to (y(d, r, t) +
1)/(y(d, r, t)+n(d, r, t)+1) instead of y(d, r, t)/(y(d, r, t)+
n(d, r, t)) is to balance exploration and exploitation in online
reinforcement learning [20]. Our solution is a combination
of upper confidence bound and Laplace smoothing. In our
solution, all the values of λ(d, r, t) are equal to one at the
beginning of the scan, thereby allowing us to randomly explore
different IP addresses at the initial period. When the time tends
to infinity, λ(d, r, t) gradually stabilizes.

D. Batch Learning Strategy

In the online learning strategy, when the average scanning
interval of each IP address exceeds 24 hours, the value of
λ(d, r, t) will be very similar, making segmentation of time
meaningless. For example, suppose we have a 2-gram record
< (t1, d1), (t2, d2) >, Algorithm 1 works well when t2− t1 is
small. However, if t2− t1 surpasses 24 hours, the contribution
of this 2-gram record to estimating λ(t) will be limited.

To address the limitation of the online learning strategy,
we propose the batch learning strategy in Algorithm 2. The
basic idea is to conduct a special scan to collect information
(i.e., batch learning), and then use the collected information
to perform scanning (i.e., delayed scanning). That is, we
efficiently and proactively collect needed information before
entering a continuous decision-making scanning process.

In Algorithm 2, the entire scanning process is divided into
two stages. Stage 1 performs batching learning. Specifically,
we set a fixed interval for sequential scans to estimate λ(t)
efficiently. The estimation algorithm is the same as that in
Algorithm 1, except that we calculate λ(t) after Stage 1 (rather
than at the time of every scan). Stage 2 conducts delayed
scanning. We calculate P (a|s) for each IP address and scan
the IP address with the highest value of P (a|s). Note that λ(t)
does not change any longer once Stage 2 starts.

The advantage of the batch learning scanning is the ca-
pability of accurately estimating λ(t). Therefore, the final
scanning performance could be improved, yet at the cost of
extra scanning investment at the batching learning stage.

E. IP Pool Estimation Based on IP Address Range Clustering

After several rounds of scanning, the IP address range
clustering algorithm can be used to estimate the IP address
pools, resulting in a compact representation of the intensity
matrix. During the scanning process, we gradually obtain
statistics about IP-device mapping dynamics. Besides helping
us perform scans more efficiently, such statistics allow us to

Algorithm 2: Scanning using Batch Learning Strategy
Input: scanning task set A = {IP addresses} × {device types}
Output: scanning records
initialization:
λ(d, r, t) = y(d, r, t) = n(d, r, t) = 0;
St(a) = (t0, d0) for each a;
—Stage 1: batch learning
while True do

perform sequential scanning and get < (t1, d1), (t2, d2) >;
if d1 6= d2 then

y(d1, ra, t) += |T (λ(d,ra,t))∩(t1,t2]|
t2−t1

;
else

n(d1, ra, t) += |T (λ(d,ra,t))∩(t1,t2]|
|T (λ(d,ra,t))|

;
end
update St(a) = (t2, d2);

end
λ(d, r, t) =

y(d,r,t)+1
y(d,r,t)+n(d,r,t)+1

;

—Stage 2: delayed scanning
while True do

calculate P (a|s) for each address a using (4);
scan address a′ that maximize P (a′|s);

end

estimate IP address pools. If some addresses have the same
characteristics, they are likely to belong to the same IP address
pool. The key to this problem is to find some features so that
the features of the IP address ranges in the same pool are as
similar as possible, and the features of the IP address ranges
in different IP address pools differ from each other.

An effective feature can be the device distribution. Given a
certain IP address pool, although the IP addresses of different
devices may change internally, the population distribution of
different types of devices will keep stable. Moreover, for
different IP address pools, the device distribution will be
different. Therefore, the device distribution can be exploited
to identify IP address pools. Since it is easy to know which
IP addresses are statically configured through keeping track of
the evolution of IP-device mapping, we filter out all static IP
addresses while estimating IP address pools.

To exploit device distribution for estimating IP address
pools, we employ a clustering-based method. Specifically, we
use 256 IP addresses as the smallest unit of IP address ranges
to perform clustering, since many network administrators also
consider the IP address range comprising 256 addresses as
the smallest unit. For each block of IP addresses, we calculate
the population distribution of different types of devices using
the scanning records, and cluster different IP address ranges
based on the distances of the population distribution. We use
hierarchical clustering to perform the clustering. The reason
for is that the hierarchical clustering does not require to pre-
define the number of clusters.

V. EVALUATION

A. Experiment Settings

To evaluate the performance of different scanning strategies,
the ground truth regarding the IP-device mapping mutation
records (e.g., DHCP records) is required in large-scale net-
works. However, such ground truth can be hardly available



from ISPs due to privacy concerns. Therefore, we set up a
simulation environment to simulate the scenario where many
devices change their IP addresses in large-scale networks. The
simulation enables us to set various parameters and discover
potential factors influencing the performance. It also allows us
to use random seeds to ensure that different scanning strategies
work in exactly the same environment for fair comparison.

The simulation environment is built based on two com-
ponents. One is the simulation of individual devices. The
other is the simulation of large-scale autonomous networks. In
the simulation of individual devices, we make the IP-device
mapping mutations as a nonhomogeneous Poisson process, and
λ(t) is a periodic function with a period of 24 hours for each
device. For each device, we assume that the IP-device mapping
mutations occur instantaneously, and the target IP address that
a device transfers to is randomly selected in the remaining IP
addresses of the IP address pool where the device resides.

Note that an autonomous network may have multiple IP
address pools, and each pool has its own configuration. For
simplicity, we assume that all devices’ IP addresses are dynam-
ically assigned. This assumption does not hinder the practical
use of our strategy, as it is easy to know which IP addresses are
statically configured. To be more realistic, for each IP address
pool, the IP address assignment is set continuously and the
number of IP addresses is a multiple of 256.

We set the number of devices and the device distribution to
be different across IP address pools. We randomly generate the
number of each type of device for each IP address pool, and
randomly assign an initial IP address for each device. Under
these settings, we mainly test two typical scenarios below:
Scenario A. All the IP-device mapping mutations are subject
to the homogeneous Poisson process. For each combination of
device type and IP address range, we assign a random λ.
Scenario B. All the IP-device mapping mutations follow
a non-homogeneous Poisson process. Each type of device
changes its address at a certain time of each day.

Scenario A can be considered as the worst case scenario
for our scanning strategies due to the maximized randomness
of IP-device mapping dynamics (hence little information to
exploit), while scenario B is a more general and best case sce-
nario. Accordingly, the experiments under these two scenarios
can represent the lower bound and upper bound performance
of the proposed strategies, respectively.

Table II details our parameter settings, including the total
number of IP addresses, the total number of IP pools, the scan
rate, etc. We define a round of scan as scanning all addresses
once, and the scanning will end after a certain number of
rounds. Note that both λ and t in Table II depend on device
types and IP address ranges.

B. Scanning Performance using Different Strategies

To evaluate the performance of our online learning scanning
and batch learning scanning, we compare them with naive
strategies including random scanning and sequential scanning.
In addition, we use a “God’s view scanning” strategy, which
can know the specific time when a device changes its IP
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Fig. 4. A scanning example using different strategies in Scenario B. The
default parameters in Table II are used.

TABLE II
DEFAULT PARAMETER SETTINGS.

Parameters Name Value
Total number of IP addresses 8,192 (32 class C networks)
Total number of IP pools 10
Scan rate 0.5 IP addresses per second
The proportion of devices to addresses 0.8
Number of device types 20
Number of scanning rounds 100
λ in Scenario A 1/λ ∼ U(0h,24h)
Address change time in Scenario B t ∼ U(0h,24h)

address in Scenario B. Therefore, the God’s view strategy can
be used as the upper bound of all the scanning strategies.

To eliminate the influence of the absolute number of IP-
device mapping mutations and make a fair comparison, we
define the relative performance (RP) score to measure the
performance of each strategy. The RP score is defined as

RP score =
Ni(t)

Nr(t)
, (7)

where Ni(t) and Nr(t) represent the number of IP-device
mapping mutations at time t using scanning strategies i and
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Fig. 5. Average RP score under different scan rates. Each data point is the
average of 100 experiments under the same parameters.
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Fig. 6. Average RP score over varying proportion of devices to addresses.
Each data point is the average of 100 experiments under the same parameters.

“random scanning”, respectively. Particularly, when i is the
random scanning, RP score (relative performance of a strategy
over random scanning) is always equal to 1.

Fig. 4 shows an experiment using different strategies in
Scenario B. In this experiment, for a fair comparison, we set
the number of IP-device mapping mutations of each device to
be the same across different strategies. The x-axis represents
the round number of scanning, and one round of scanning
means that the strategy finishes scanning all IP addresses. The
y-axis represents the RP score of each strategy.

In Fig. 4, we see that the curve is not stable at the beginning,
especially within the first 10 rounds, because of the large
variance caused by insufficient samples. As the round number
increases, the curve becomes more stable. At the 100th round
when the scan ends, the RP scores of the strategies “God’s
view scanning”, “batch learning scanning”, “online learning
scanning”, “sequential scanning” and “random scanning” are
1.42, 1.32, 1.23, 1.04, and 1.00, respectively.

Among all scanning strategies other than the God’s view,
the batch learning scanning performs the best. However, such
performance comes at the cost of conducting 100 rounds of
scanning to collect information (i.e, the batch learning stage)
before entering the continuous decision-making-based scan-
ning. The RP score of the online learning scanning increases
as the scanning proceeds. In summary, the experiment shows
that our strategies significantly outperform random scanning
and sequential scanning under the parameters in Table II.

C. Performance Sensitivity
Previous experiments are conducted using the parameter

settings in Table II. To gain insight into the performance under
different parameters settings, we next examine the impact of
different parameter settings on scanning strategies.
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Fig. 7. IP pool estimation using hierarchical clustering. When a threshold of
0.1 is selected, the IP address ranges (i.e., class C networks) are accurately
clustered into 10 IP pools in both settings (following Table II unless specified).

Through varying a certain parameter and keeping the re-
maining parameters constant, we find that there are mainly
two parameters that have a significant impact on the RP score
of different strategies, namely, the scan rate and the proportion
of devices to IP addresses. To understand the influence of
these parameters on the scanning performance, we conduct
experiments, and the results are shown in Fig. 5 and Fig. 6.

Consider that, even if each experiment is conducted with the
same parameters, the varying λ of different device types may
result in fluctuations in the experiment results. Therefore, we
use the average results of multiple experiments. Each point in
Fig. 5 and Fig. 6 represents the average RP score across 100
experiments with the same parameters. In each experiment, the
scan is conducted 100 rounds. In Scenario A, we compare four
scanning strategies, and five strategies in Scenario B. Note that
the God’s view strategy only works in Scenario B.

1) Scan Rate: Fig. 5(a) and Fig. 5(b) represent the per-
formance of scanning strategies with different scan rates in
Scenario A and Scenario B. We find that, as the scan rate
increases, the average RP score gradually decreases. This
indicates that as the scan rate tends to be positive infinity, all
IP-device mapping mutations will be captured by any strategy.

The temporal fluctuation of the average RP score in Scenario
B is smaller than that in Scenario A. Meanwhile, the average
RP score improvement that our proposed scanning strategies
make over random scanning in Scenario B is higher than
that in Scenario A. We believe the reason is that the IP-
device mapping mutations in Scenario A are more uncertain
than that in Scenario B, thereby restricting the capability
of our strategies. Particularly, when the scan rate is small,
the performance improvement over sequential scanning is not
significant. However, when the scan rate grows large, the
performance improvement becomes significant.

2) The Proportion of Devices to IP Addresses: Fig. 6(a) and
Fig. 6(b) depict the performance using different proportions of
devices to IP addresses in Scenario A and Scenario B. In these
two figures, the temporal fluctuation of the average RP score
in Scenario A is still larger than that in Scenario B.



As the proportion of devices to IP addresses increases,
the absolute number of IP address mutations captured by
all strategies grows larger, but the growth rates of different
strategies differ from each other. Specifically, the growth rates
of our strategies are larger than those of random and sequential
scanning. This implies that, as the number of IoT devices
on the Internet grows, our strategies would become far more
advantageous than random and sequential scanning.

3) IP Pool Estimation: We use hierarchical clustering to
demonstrate the effect of IP address pool estimation. The
advantage of hierarchical clustering is that we can observe the
whole clustering process and choose a more realistic number
of clusters. We use our proposed scanning strategies to collect
scanning records in the clustering experiments. We find that
the clustering results are not sensitive to the distance function,
and hence we use the single-linkage clustering [21].

Fig. 7(a) shows the clustering result using the parameter
settings in Table II. We initialize 8,192 IP addresses from
10 IP pools with 20 different types of devices. The smallest
unit of clustering is an IP address range consisting of 256
IP addresses, i.e., a class C network, and the number of
IP address ranges to cluster is 32. If correctly clustered, 10
different clusters will be obtained. Fig. 7(a) is plotted after 100
rounds of scanning. The distance threshold interval for correct
clustering is [0.041,0.129] in Fig. 7(a), and [0.079,0.129] in
Fig. 7(b). If a threshold of 0.1 is selected, the IP address
ranges would be clustered into 10 pools, corresponding to the
10 different IP pools that we initialized. After clustering, we
derive a compact representation of the IP pool-device mutation
intensity matrix. The size of the compact matrix is 69.7%
smaller than that of the original matrix. Consequently, each
element of the compact matrix has on average 3.2 times the
number of IP addresses of the original matrix, resulting in
more samples for accurate intensity estimation.

VI. RELATED WORK

In the past few years, there has been a lot of research
on Internet scanning. Salient scanning tools include Nmap,
Zmap, Masscan, etc [3], [15]–[17], [22]–[29]. Nmap is rich in
functions, such as port scanning and device fingerprinting, but
it is heavyweight and thus not suitable for large-scale scanning
[15]. Zmap and Masscan use stateless scanning (e.g., no TCP
three-way handshakes), thereby achieving fast scanning [27].

Several studies focused on device identification. Nmap OS
fingerprinting works by sending up to 16 specially designed
packets to find the ambiguities in the standard protocol [15].
Kohno et al. fingerprint devices using clock skew in device
hardware [16]. Feng et al. use automatically generated rules
to inspect the application layer and identify devices [17].

In the last decade, there have been cyber search engines
using scanning technologies, such as Shodan and Censys [3],
[25], [26]. Generally, a cyber search engine scans the IPv4
space periodically for collecting device information. Users can
search device information using keywords like hostnames, IP
addresses, certificates. Shodan, published in 2009, provides in-
formation of about 500 million devices every month, including
operating system, hostname, version, and so forth [26].

Censys is another cyber search engine similar to Shodan.
It first uses ZMap to scan the entire IPv4 address space,
and then uses an application scanner ZGrab to collect the
handshake information of various protocols. Censys artificially
defines protocol-dependent scanning frequencies and posts a
timetable of the scheduling strategy on its website [3], [27].
Some studies show that Censys has a faster scanning speed and
a website update speed than Shodan [5], [30]. Both Shodan
and Censys use distributed servers for scanning [26].

Using cyber search engines, several studies have analyzed a
wide range of device vulnerabilities on the Internet. Durumeric
et al. revealed that there are a large number of vulnerable RSA
and DSA keys due to the widely used insecure random number
generators [23]. Genge et al. developed a vulnerability assess-
ment function based on Shodan and revealed high accuracy of
the result with 3,922 known vulnerabilities on 1,501 services.
O’Hare et al. found 12,967 potential known vulnerabilities on
2,571 services [31]. Wan et al. revealed the impact of location
origins in Internet-wide scans [32]. Unlike existing studies, we
focus on scanning scheduling strategies based on modeling IP-
device mapping dynamics so to smartly scanning IoT devices
in a principled way. Our work complements existing studies
and could be incorporated into a wide range of scanning tools.

VII. CONCLUSION

Scanning IoT devices in a principled way is an important
problem. We made the first step toward investigating this
problem based on a real-world global IoT scanning platform.
Our large-scale measurement study revealed that both the
device type and IP address pools are related to the IP-device
mapping dynamics. Inspired by this observation, we designed
a system capable of smartly scheduling scans for IoT devices.
The proposed system can achieve a reinforcement learning-
based continuous scanning decision making process using both
online learning and batch learning strategies.

Through extensive experiments, we demonstrated that our
system could generally capture significantly more IP-device
mapping mutations than random and sequential scanning, and
approach the God’s view strategy. We revealed the two key
parameters affecting the performance of different strategies,
i.e., the scan rate and the proportion of devices to IP addresses.
We found that, as the number of IoT devices grows, our
system would become far more advantageous than random and
sequential scanning. Therefore, it is expected that our system
would be promising as the proliferation of IoT devices.
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[25] B. Genge and C. Enăchescu, “ShoVAT: Shodan-based vulnerability as-
sessment tool for Internet-facing services,” Security and Communication
Networks, vol. 9, no. 15, pp. 2696–2714, 2016.

[26] S. Lee, S.-H. Shin, and B.-h. Roh, “Abnormal behavior-based detection
of Shodan and Censys-like scanning,” in Proc. IEEE ICUFN, 2017.

[27] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide scanning and its security applications,” in Proc. USENIX Security,
2013.

[28] Z. Shamsi, D. B. Cline, and D. Loguinov, “Faulds: A non-parametric
iterative classifier for Internet-wide OS fingerprinting,” in Proc. ACM
CCS, 2017.

[29] S. Gordeychik, D. Kolegov, and A. Nikolaev, “SD-WAN Internet Cen-
sus,” arXiv preprint arXiv:1808.09027, 2018.

[30] O. Soyer, K.-Y. Park, N. H. Kim, and T.-s. Kim, “An Approach to
Fast Protocol Information Retrieval from IoT Systems,” in Advanced
Multimedia and Ubiquitous Engineering. Springer, 2017, pp. 226–232.

[31] J. O’Hare, R. Macfarlane, and O. Lo, “Identifying Vulnerabilities Using
Internet-Wide Scanning Data,” in Proc. IEEE ICGS3, 2019.

[32] G. Wan, L. Izhikevich, D. Adrian, K. Yoshioka, R. Holz, C. Rossow,
and Z. Durumeric, “On the origin of scanning: The impact of location
on Internet-wide scans,” in Proc. ACM IMC, 2020.


