
ParliRobo: Participant Lightweight AI Robots for Massively
Multiplayer Online Games (MMOGs)

Jianwei Zheng
Tsinghua University

Changnan Xiao
ByteDance Inc.

Mingliang Li
Tsinghua University

Zhenhua Li∗
Tsinghua University

Feng Qian
University of Southern

California

Wei Liu
Tsinghua University

Xudong Wu
Tsinghua University

ABSTRACT
Recent years have witnessed the profound influence of AI technolo-
gies on computer gaming. While grandmaster-level AI robots have
largely come true for complex games based on heavy back-end
support, in practice many game developers crave for participant
AI robots (PARs) that behave like average-level humans with inex-
pensive infrastructures. Unfortunately, to date there has not been
a satisfactory solution that registers large-scale use. In this work,
we attempt to develop practical PARs (dubbed ParliRobo) showing
acceptably humanoid behaviors with well affordable infrastruc-
tures under a challenging scenario—a 3D-FPS (first-person shooter)
mobile MMOG with real-time interaction requirements. Based on
comprehensive real-world explorations, we eventually enable our
attempt through a novel “transform and polish” methodology. It
achieves ultralight implementations of the core system components
by non-intuitive yet principled approaches, and meanwhile care-
fully fixes the probable side effect incurred on user perceptions.
Evaluation results from large-scale deployment indicate the close
resemblance (96% on average) in biofidelity metrics between Par-
liRobo and human players; moreover, in 73% mini Turing tests
ParliRobo cannot be distinguished from human players.

CCS CONCEPTS
• Information systems → Multimedia information systems;
Massively multiplayer online games.

KEYWORDS
Participant AI robots; deep reinforcement learning; (approximate)
vision reconstruction; model pruning

ACM Reference Format:
Jianwei Zheng, Changnan Xiao, Mingliang Li, Zhenhua Li, Feng Qian, Wei
Liu, and Xudong Wu. 2023. ParliRobo: Participant Lightweight AI Robots
for Massively Multiplayer Online Games (MMOGs). In Proceedings of the

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3613764

31st ACM International Conference on Multimedia (MM ’23), October 29–
November 3, 2023, Ottawa, ON, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3581783.3613764

1 INTRODUCTION
AI technologies are increasingly used in computer gaming, mostly
for two goals: winning or participation. The former has recently
been achieved by applying modern AI techniques, esp., deep rein-
forcement learning (DRL), to various simple and complex games,
typically based on heavyweight back-end support. The resulting
AI robots, e.g., AlphaGo [12], AlphaStar [56], and OpenAI Five [2],
manifest AI’s power of defeating its human rivals in chess, real-time
strategy (RTS), first-person shooter (FPS), and other game genres.

For the latter, there exist satisfactory participant AI robots (ab-
breviated as PARs) in simple games like Gomoku [63] and Super
Mario [52]. However, we have not seen such robots in complex
games (e.g., Legends [40] and PUBG [26]) that involve various
kinds of delicate interactions. In fact, in complex games existing
PARs are generally considered “stiff, stupid, and ridiculous” by hu-
man players [17], even when built on expensive infrastructures.
This could severely harm the user experience, and sometimes even
discourage the participation of human players [36].

According to our interviews with a number of developers for
complex games, the vast majority of them crave for PARs that
behave like average-level humans rather than grandmaster-level
AI robots, since the former can better act as non-player characters
(NPCs) for promoting human players’ immersive engagement and
attracting new players. Meanwhile, the developers wish to limit
the infrastructure cost to an affordable level for supporting the
large-scale use, i.e., they also want the PARs to be lightweight.

To understand real-world challenges, we attempt to develop
lightweight PARswith acceptably humanoid behaviors for a popular
3D-FPS mobile MMOG (dubbed 8-Game) with 230K users as of
03/2022 and real-time interaction requirements. We choose this
highly challenging scenario so that our solution (if feasible) can be
reused in many other demanding games. In general, we leverage
mainstream DRL techniques to enable this attempt, since the core
problem of developing PARs for complex games is how to let them
properly react (i.e., take actions like human players) based on high-
dimensional inputs under complex environments, which conforms
to the basic philosophy of DRL.

As illustrated in Figure 1, the desired system is implemented
in three major steps. First, we take sampled images of the envi-
ronments and players visible to PARs as the state input (5 frames
per second). Then, we employ pre-trained deep neural networks

9093

https://doi.org/10.1145/3581783.3613764
https://doi.org/10.1145/3581783.3613764
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581783.3613764&domain=pdf&date_stamp=2023-10-27

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Jianwei Zheng, et al.

Human

AI Robot

Game

Biofidelity

Evaluation

Knowledge &
Strategy

Knowledge &
Strategy

ActionAction BehaviorBehaviorKnowledge &
Strategy

Action Behavior

BehaviorBehaviorInstructionInstructionDRL ModelDRL Model BehaviorInstructionDRL Model
Environment

Player

Environment

Player

Figure 1: Basic workflow for the development and evaluation
of participant DRL robots.

(DNNs) to extract the features of images, and utilize mainstream
DRL models [39, 46] (which are trained with real human players’
gaming traces) to generate action instructions for PARs. Finally,
we compare the exhibited behaviors of PARs and closed-beta-test
(CBT) human players to evaluate the biofidelity. During the process,
however, we encounter three-fold significant difficulties.
• Server Bottleneck. Since the PARs are supposed to run smoothly

on numerous heterogeneous mobile devices without interfering
the already very “heavy” app of 8-Game, we strive to minimize
the client-side overhead. This requires the server to play a cen-
tralized, “almighty” role—it collects image data from each robot,
infers the next action for each robot, and then sends the action
instruction(s) to each robot. Processing the visual features of
image data at scale will incur considerable overheads.

• Hearing Loss. Modern 3D engines require audio production to
be accompanied by visual rendering [14]. If the server wants to
generate and leverage auditory information, it has to accomplish
visual rendering in advance with tremendous overhead. In con-
sequence, state-of-the-art solutions (e.g., AlphaStar) choose to
avoid both acoustic and visual rendering at the server. This is
reasonable for most games (e.g., RTS games) but unsuitable for
8-Game, as players need hearing to perceive the enemies behind.

• Late Instructions. The DRL inference delay for an action averages
at 104 ms, which can cause an action instruction to reach a client
behind time (and thus the PAR can be slow in response). In wired
networks where the average delay is only 20 ms, the total inter-
action delay stays around 124 ms so very few instructions come
late. But in mobile networks where the delay is considerably
longer (avg. 70 ms) [31], up to 14.3% instructions arrive late.
In essence, we note that these difficulties are all attributed to

intuitive (and thus heavyweight) implementations of the core sys-
tem components. First, to emulate human vision, we take images
as the state input, incurring tremendous overhead of visual data
processing on the server. Second, the tight coupling of audio and
visual data rendering in modern 3D engines hinders our straight-
forward integration of PARs’ hearing abilities. Third, to generate
human-like actions, we employ complex DRL models with many
layers and parameters, substantially increasing the inference delay.

Addressing these issues is not easy, as conventional optimiza-
tions with common wisdom prove to be ineffective. To alleviate
server bottlenecks, a natural method is to downscale input image
resolutions, but this hinders PARs’ ability to identify game elements
due to the loss of critical visual features. Moreover, directly extract-
ing audio features from 3D engines involves heavy convolution
operations, and brings noises like background sounds. We also try

to reduce inference delay via model quantization [64] (which down-
casts model parameters from floats to integers), but this impairs
PARs’ decision-making abilities and makes them look “stiff”.

Given that the difficulties cannot be resolved by intuitive imple-
mentations or optimizations, we decide to explore non-intuitive yet
more principled approaches. Eventually, we successfully build the
desirable system, ParliRobo, through a novel “transform and polish”
methodology, which substantially lightens our original implemen-
tations in an indirect, nearly equivalent manner and meanwhile
carefully fixes the probable side effect incurred on user perceptions.

Specifically, from the perspective of visual feature representation,
instead of directly using images, we utilize ultralight structured in-
formation that only contains the properties (e.g., locations and quan-
tities) of crucial game elements (e.g., players and props) to eliminate
server bottlenecks. Inevitably, this causes certain visual detail losses,
so we conduct fast approximate vision reconstruction by conformal
mapping [43] and bilinear extrapolations/interpolations [57].

From the perspective of auditory perception, instead of accurately
rendering or roughly extracting the audio data (both of which are
computation-intensive), we synthesize directional vision to com-
pensate a PAR’s hearing upon specific game events like footsteps
and gunshots. However, the artificial (vision-based) hearing cannot
rationally reflect the sound attenuation; hence, we make it realistic
through linear attenuation-based acoustic energy transformation.

From the perspective of online inference, we cut excessive “trivial”
neurons off the DRL model using the lottery ticket hypothesis [10]
to reduce inference delay. Unfortunately, the prunedmodel becomes
weak in generalizability, i.e., hard to accommodate new game func-
tions; thus, we devise flexible model migration to retrieve neurons
crucial to PARs’ decision making with regard to new functions.

According to our experiment results with large-scale deploy-
ment and small-scale mini Turing tests, ParliRobo shows accept-
ably humanoid behaviors in 8-Game. With a well-established IRB
and informed user consent, we record real-time gaming behavioral
data (i.e., shoots, hits, jumps, crouches, moving distances, and props
gathered) of 96,812 opt-in users for two months (Oct.–Nov. 2021). In
terms of most biofidelity metrics, ParliRobo exhibits a close resem-
blance (96% on average) to human players. Meanwhile, the average
DRL inference delay for an action is reduced from 104 ms to 30.4 ms,
so the portion of late instructions decreases from 14.3% to trivial
(0.78%). Additionally, 34 users participate in the mini Turing tests, in
the majority (73%) of which ParliRobo cannot be distinguished from
human players by these users. In all experiments, the maximum
number of concurrent PARs is 13,200, which can be well supported
by four commodity servers; each server is equipped with an Intel
Xeon 64-core CPU@2.40GHz and 128-GB DDR memory.

Finally, the code and data involved in this study have been re-
leased in part at https://ParliRobo.github.io/.

2 APPLYING MAINSTREAM DRL
TECHNIQUES TO 8-GAME

2.1 Brief Introduction to 8-Game
In today’s online gaming landscape, MMOGs have formed a $54
billion market in 2022 [51]. To provide a generic framework for
realizing PARs in MMOGs, we target the most challenging MMOGs
genre that features action-packed real-time 3D interactions, by

9094

https://ParliRobo.github.io/

ParliRobo: Participant Lightweight AI Robots for Massively Multiplayer Online Games (MMOGs) MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

Mobile Clients

...

Servers

Inference

Servers

Game

Servers Instruction

Observation

Message StateMessage State

Figure 2: Architecture of our intuitive implementation.

collaborating with 8-Game, a popular 3D-FPS mobile MMOG with
∼230,000 users as of 03/2022. Each round of 8-Game is a 30-player
“death match” lasting 15 minutes, where players strive to gain as
many scores as possible by eliminating others or picking up money.
More details of 8-Game are described in Appendix A.1

2.2 Intuitive Implementation
Deep reinforcement learning (DRL) has overwhelmed other AI tech-
niques in both simple and complex games based on heavy back-end
support [2, 12, 38, 56]. MainstreamDRL techniques used inAI robots
can be basically classified into two categories: value-based [39] and
policy-based [46], according to their different status update mecha-
nisms. The value-based DRL defines the reward function of actions
as returns, and tends to choose actions that can maximize the re-
ward sum. In contrast, the policy-based DRL defines the update
policy and assigns a probability distribution to all possible actions.

To understand real-world challenges of developing PARs for
MMOGs, we make a preliminary attempt by applying these two
DRL techniques to 8-Game (Figure 2). Game servers manage gen-
eral game events, such as maintaining player states and syncing
them with clients. We sample rendered images from a PAR’s view
every 0.2 seconds, aligning with the typical human visual reaction
time [24] and the common practice for AI robots in MMOGs [2].
Then, the sampled images are sent to inference servers as state
inputs, which then generate action instructions for PARs.

We adopt VGG16 [49] to extract visual features from sampled
images. VGG16 uses small convolution kernels to replace large ones,
and thus incurs less overhead than alternatives like AlexNet [27].
We further employ both Deep Q-learning Network (DQN) [39] and
Proximal Policy Optimization (PPO) [46], the representative value-
based and policy-based DRL models, to infer action instructions for
PARs, respectively. They are trained with human players’ gaming
traces in eight Nvidia V100GPUs, and deployed on inference servers.
The two solutions are denoted as PAR-DQN and PAR-PPO.

However, our evaluation of PAR-DQN and PAR-PPO during the
close beta test (CBT) reveals their three shortcomings. The first
stems from the server-side bottleneck, which results in unsatisfac-
tory service throughput. As shown in Figure 3, a typical commodity
server (with an Intel Xeon 64-core CPU@2.40GHz and 128-GB DDR
memory) can only support no more than 1,000 concurrent PARs,
with high CPU utilization being the primary cause.

Second, PARs lack hearing ability, preventing them from reacting
to in-game sounds. To measure players’ responsive ability to sound,
we adopt the action saliency distance [28], defined as the cosine
distance (ranging from [0, 2]) of two consecutive action vectors that

represent player actions. A higher value of the distance indicates
a more significant action change. We observe that when human
players hear the sound events (i.e., gunshots and explosions), the
corresponding action saliency distance increases significantly. In
contrast, PARs cannot perceive surrounding sound events with less
significant action changes. This is due to the tight coupling of audio
and visual rendering in modern 3D engines, causing most MMOGs
to avoid using audio to prevent heavyweight visual rendering [14].

The third is the slow reaction of PARs, which makes them look
inactive and stiff. To demystify this, we meticulously analyze the
interaction delay between the server and client (i.e., from the start
of model inference to the time when instructions reach user de-
vices). Figure 2 indicates that interaction delay includes inference
delay and network delay. As shown in Figure 4, the network delay
ranges from 49 ms to 100 ms, while the inference delay is longer
(avg. 103 ms). Thus, the interaction delay often exceeds the 200-ms
instruction cycle, making PARs perform actions less than 5 times/s.

2.3 Conventional Optimization
These shortcomings motivate us to optimize intuitive implementa-
tions from three perspectives, i.e., input scale, hearing compensa-
tion, and model complexity. We denote PAR-PPO and PAR-DQN
with all subsequent optimizations as PAR-PPO+ and PAR-DQN+.

ImageDownscaling. We reduce the resolution of high-dimensional
input images to alleviate the server-side overhead. Figure 5 shows
that after downscaling the resolution from 1024×512 to 64×64,
we achieve a significant improvement in service throughput; the
concurrency of PAR-DQN and PAR-PPO with image downscaling
(denoted as PAR-DQN1 and PAR-PPO1) improves from 831 (PARs
per server) to 1,573, and 872 to 1,681, respectively. However, they
experience a substantial biofidelity degradation, particularly in the
ability to identify game elements. Figure 6 shows the distribution
of players’ shootings when enemies are visible (<50 m). PAR-DQN
and PAR-PPO with image downscaling perform nearly half shoot
actions (avg. 9.8 and 12.6) than PAR-DQN, PAR-PPO, and human
players (avg. 16.9, 21.2, and 59.9), indicating that image downscaling
causes visual feature losses.

Audio Rendering. To utilize audio information without incur-
ring additional visual rendering overhead, we decouple audio ren-
dering from visual rendering in 3D engines. We then extract the
mel-frequency spectra [41] of audio, and feed them into a 1D con-
volutional neural network to derive features. The extracted audio
and visual features are concatenated as input for DRL models (see
Figure 8). Unfortunately, the additional convolution operations in-
volved in audio feature extraction incur extra 22%–37% inference
delay, resulting in 26% more late instructions.

ModelQuantization. To reduce inference delay, we employmodel
quantization [64], a widely-used technique to accelerate neural net-
work inference by downcasting model parameters from floats to
integers. As shown in Figure 9, we add two functional layers to orig-
inal models — a quantizer before it and a de-quantizer after it. The
former converts inputs and weights of original models from 32-bit
floats to 8-bit integers. After the DRL processing, the de-quantizer
converts the integer outputs back to floats. The PARs with model
quantization are denoted as PAR-DQN3 and PAR-PPO3. In this way,

9095

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Jianwei Zheng, et al.

0 200 400 600 800 1000
Number of Concurrent PARs

0

20

40

60

80

100

U
til

iz
at

io
n

R
at

e
(%

)

CPU (PAR-DQN)
Memory (PAR-DQN)
CPU (PAR-PPO)
Memory (PAR-PPO)

CPU Usage = 96.1%
PARs = 847

CPU Usage = 96.8%
PARs = 916

Figure 3: CPU and memory utilization of
PAR-DQN and PAR-PPO.

(a) PAR-DQN (b) PAR-PPO
Figure 4: Interaction delay of PAR-DQN and PAR-PPO. Red ones correspond to
late instructions whose delay exceeds the 200-ms instruction cycle.

PAR-DQN
PAR-PPO

PAR-DQN 1
PAR-PPO1

0

500

1000

1500

2000

N
um

be
r

of
 C

on
cu

rr
en

t P
A

R
s

Figure 5: Number of concurrent PARs
supported by a single server.

0 40 80 120 160 200
Number of Shoots

0

0.2

0.4

0.6

0.8

1

C
D

F

Human Players
PAR-PPO
PAR-DQN
PAR-PPO

1

PAR-DQN
1

Mean=7.6
Median=2.0

Mean=9.8
Median=4.0

Mean=16.9
Median=10.0

Mean=21.6
Median=14.0

Mean=39.6
Median=28.0

Figure 6: Distribution of shoot numbers
for PARs and humans.

100 200 300 400
Interaction Delay (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

PAR-DQN
PAR-PPO
PAR-DQN

3

PAR-PPO
3

Mean = 134.4
Max = 270.1

Mean = 139.4
Max = 274.6

Mean = 164.7
Max = 337.4

Mean = 169.6
Max = 296.1

(IC)

Figure 7: Distribution of interaction de-
lay for PARs.

the average inference delays of PAR-DQN3 and PAR-PPO3 are re-
duced by ∼20% compared with the original model (see Figure 7).
However, their reactions are still inaccurate from a common user’s
perspective (e.g., inaccurate shooting). Delving deeper, we find that
such quantization causes a loss of precision in parameters [42],
incurring significant drops in models’ reward sum (∼32 %).

3 DESIGN OF PARLIROBO
In this section, we present ParliRobo, a practical PAR solution con-
sisting of three key designs (see Figure 10). Since PPO outperform
DQN in §2.2 and §2.3, we adopt PPO as the final inference model.

3.1 Crucial Visual Representation (CVR)
In §2.3, while image downscaling significantly improves service
throughput, it negatively impacts the biofidelity of PARs due to
the loss of crucial visual features. Thus, CVR directly capture the
meta-information of essential game elements from the 3D engine.

Specifically, we extract and maintain important properties (e.g.,
coordinates and quantities) of all crucial game elements (e.g., build-
ings, props, and players). We then serialize them into lightweight
and structured messages (i.e., type/value pairs) using Google Proto-
col Buffers (GPB) [13]. To ensure these messages act as the visual
state inputs that can be fed into the DRL model for training or infer-
ence, we further adopt the below conformal mapping method [43].

Visual-Aware Feature Extraction with Conformal Mapping.
When playing 3D-FPS MMOGs, human players can only see objects
within their field of vision. As shown in Figure 12, this field of

vision can be considered a 2D circular sector area from the game
map’s top view. Thus, we only need to extract the visual features
of crucial game elements locating within the PARs’ vision field.

To provide PARs with human-like visual features in MMOGs,
we consider these key aspects of human vision simultaneously:
distance, angles, and orientation. To this end, we leverage conformal
mapping [43] which performs coordinate system transformation to
ensure that distant elements appear sparser than closer ones while
preserving angles and orientations among them. As illustrated
in Figure 12, suppose a player is located at (𝑥0, 𝑦0) on the global
map with a constant positive viewing angle 𝜃 , heading towards
the direction 𝜃0, and 𝐸1 (𝑟,−𝜃) is an element in the circular sector
area, where 𝜃 > 0. We us the following 2D complex function [37]
to complete the conformal mapping: 𝑀 (𝑧) = − ln(𝑧)

𝑖 ·𝜃 , where 𝑧 =

𝑟 · 𝑒𝑖 · (−𝜃) is the point (𝑟,−𝜃) under the complex coordinate system.
Then we have:𝑀 (𝑧) = 𝑢 + 𝑣 · 𝑖 = 𝜃

𝜃
+ ln (𝑟)

𝜃
· 𝑖 .

Thus, we have the mapped point (𝑢, 𝑣) =
(
𝜃

𝜃
,

ln (𝑟)
𝜃

)
in the pro-

jected vision field for any (𝑟,−𝜃) in the original circular sector
area. Conversely, for any (𝑢, 𝑣) in the projected vision field, it cor-
responds to the (𝑟,−𝜃) =

(
𝑒𝑣 ·𝜃 , 𝑢 · 𝜃

)
in the original circular sector

area. Since 𝑒𝑣 ·𝜃 is strictly convex, as long as we equally divide the
projected vision field into a 64 × 64 (an empirical size based on our
long-term practice) feature matrix, we can map the crucial game
elements near the human player to the matrix points intensively,
and map those far from the human player sparsely. Also, the angles

9096

ParliRobo: Participant Lightweight AI Robots for Massively Multiplayer Online Games (MMOGs) MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

2D Convolution Net

Feature Maps
3

×
3

 c
o

n
v
 6

4
 f

ilt
e
rs

3
×

3
 c

o
n

v
 6

4
 f

ilt
e
rs

3
×

3
 c

o
n

v
 6

4
 f

ilt
e
rs

3
×

3
 c

o
n

v
 6

4
 f

ilt
e
rs

p
o
o

l
/

2
p

o
o

l
/

2

conv b1
3

×
3

 c
o

n
v
 6

4
 f

ilt
e
rs

3
×

3
 c

o
n

v
 6

4
 f

ilt
e
rs

p
o
o

l
/

2

conv b1

3
×

3
 c

o
n

v
 1

2
8
 f

ilt
e

rs
3

×
3

 c
o

n
v
 1

2
8
 f

ilt
e

rs

3
×

3
 c

o
n

v
 1

2
8
 f

ilt
e

rs
3

×
3

 c
o

n
v
 1

2
8
 f

ilt
e

rs

p
o
o

l
/

2
p

o
o

l
/

2

conv b2

3
×

3
 c

o
n

v
 1

2
8
 f

ilt
e

rs

3
×

3
 c

o
n

v
 1

2
8
 f

ilt
e

rs

p
o
o

l
/

2

conv b2

3
×

3
 c

o
n

v
 2

5
6
 f

ilt
e

rs
3

×
3

 c
o

n
v
 2

5
6
 f

ilt
e

rs

3
×

3
 c

o
n

v
 2

5
6
 f

ilt
e

rs
3

×
3

 c
o

n
v
 2

5
6
 f

ilt
e

rs

p
o
o

l
/

2
p

o
o

l
/

2

conv b3

3
×

3
 c

o
n

v
 2

5
6
 f

ilt
e

rs
3

×
3

 c
o

n
v
 2

5
6
 f

ilt
e

rs

3
×

3
 c

o
n

v
 5

1
2
 f

ilt
e

rs
3

×
3

 c
o

n
v
 5

1
2
 f

ilt
e

rs

3
×

3
 c

o
n

v
 5

1
2
 f

ilt
e

rs
3

×
3

 c
o

n
v
 5

1
2
 f

ilt
e

rs

p
o
o

l
/

2
p

o
o

l
/

2

conv b4

3
×

3
 c

o
n

v
 5

1
2
 f

ilt
e

rs
3

×
3

 c
o

n
v
 5

1
2
 f

ilt
e

rs

3
×

3
 c

o
n

v
 5

1
2
 f

ilt
e

rs
3

×
3

 c
o

n
v
 5

1
2
 f

ilt
e

rs

3
×

3
 c

o
n

v
 5

1
2
 f

ilt
e

rs

p
o
o

l
/

2

conv b5

3
×

3
 c

o
n

v
 5

1
2
 f

ilt
e

rs

3
×

3
 c

o
n

v
 5

1
2
 f

ilt
e

rs

p
o
o

l
/

2

conv b5

3
×

3
 c

o
n

v
 5

1
2
 f

ilt
e

rs
3

×
3

 c
o

n
v
 5

1
2
 f

ilt
e

rs

fl
a

tt
e
n

1D Convolution Net

...

mel-frequency spectra

25ms 25ms 25ms

c
o

n
v
 3

2
 f
ilt

e
rs

c
o

n
v
 3

2
 f
ilt

e
rs

m
a

x
 p

o
o

lin
g
 w

id
th

=
4

m
a

x
 p

o
o

lin
g
 w

id
th

=
4

conv b1

c
o

n
v
 3

2
 f
ilt

e
rs

m
a

x
 p

o
o

lin
g
 w

id
th

=
4

conv b1

c
o

n
v
 6

4
 f
ilt

e
rs

c
o

n
v
 6

4
 f
ilt

e
rs

m
a

x
 p

o
o

lin
g
 w

id
th

=
5

m
a

x
 p

o
o

lin
g
 w

id
th

=
5

conv b2

c
o

n
v
 6

4
 f
ilt

e
rs

m
a

x
 p

o
o

lin
g
 w

id
th

=
5

conv b2

c
o

n
v
 1

2
8
 f

ilt
e

rs
c
o

n
v
 1

2
8
 f

ilt
e

rs

m
a

x
 p

o
o

lin
g
 w

id
th

=
5

m
a

x
 p

o
o

lin
g
 w

id
th

=
5

conv b3

c
o

n
v
 1

2
8
 f

ilt
e

rs

m
a

x
 p

o
o

lin
g
 w

id
th

=
5

conv b3 Feature Maps

fl
a

tt
e
n

Concatenated

Features

3D Engine

Decoupling

Game AudioGame AudioGame ImageGame Image NoiseNoiseGame AudioGame Image Noise

Figure 8: The workflow and detailed neural network structure where visual and
audio data are decoupled in 3D engines, and their features are extracted by CNN.

NN (FP32)

Inputs (FP32) Weighs (FP32)

Outputs (FP32)

NN (FP32)

Inputs (FP32) Weighs (FP32)

Outputs (FP32)

Inputs (INT8) Weights (INT8)

Quantizer

NN (INT8)

De-Quantizer

Inputs (FP32) Weights (FP32)

Outputs (FP32)Original Model

Quantized Model

Figure 9: Compressing DRL models
through model quantization.

and orientations among game elements after the matrix projec-
tion are naturally preserved by the conformal mapping. Therefore,
we finally reconstruct the human vision and preserve its both key
properties in terms of the distance and angles/orientations.

Visual Compensation with Bilinear Extra-/Interpolation. Al-
though the conformal mapping can reconstruct human vision, it
may cause feature losses. Since the projected feature matrix is a
64 × 64 grid where the coordinates of each two neighboring grid
points are not continuous, not all elements in the vision field can
be precisely mapped to the points in the feature matrix, which may
cause PARs to perform actions (e.g., shooting) inaccurately.

We thus use the bilinear extrapolation/interpolation [57] to com-
pensate for the lost visual features caused by the discrete sampling.
Compared to other alternatives (e.g., linear-based [4] and bicubic-
based [6]), the bilinear-based can better balance the complexity and
effectiveness [15]. As Figure 13 shows, assuming that 𝐹 (𝑥,𝑦) is the
original visual feature at (𝑥,𝑦) ∈ R2 of the global map, we divide
the original global map into a 2D mesh grid, and extrapolate 𝐹 to
its four neighboring integral grid points, which is formalized as:

𝐹 (𝑖, 𝑗) = (𝑖 + 1 − 𝑥) · (𝑗 + 1 − 𝑦) · 𝐹 (𝑥,𝑦),
𝐹 (𝑖 + 1, 𝑗) = (𝑥 − 𝑖) · (𝑗 + 1 − 𝑦) · 𝐹 (𝑥,𝑦),
𝐹 (𝑖, 𝑗 + 1) = (𝑖 + 1 − 𝑥) · (𝑦 − 𝑖) · 𝐹 (𝑥,𝑦),
𝐹 (𝑖 + 1, 𝑗 + 1) = (𝑥 − 𝑖) · (𝑦 − 𝑖) · 𝐹 (𝑥,𝑦),

(1)

where 𝑖 = ⌊𝑥⌋, 𝑗 = ⌊𝑦⌋, and 𝐹 (𝑖, 𝑗) is the extrapolated visual features
at the integral point (𝑖, 𝑗).

Then, for (𝑢, 𝑣) in the projected matrix, we identify its original
point (𝑟,−𝜃) in the vision field based on 𝑀 (𝑧) = − ln(𝑧)

𝑖 ·𝜃 where
𝑧 = 𝑟 · 𝑒𝑖 · (−𝜃) , and its corresponding point (𝑥𝑢𝑣, 𝑦𝑢𝑣) in the global
map is: (𝑥𝑢𝑣, 𝑦𝑢𝑣) = (𝑟 cos (𝜃0 − 𝜃) + 𝑥0, 𝑟 sin (𝜃0 − 𝜃) + 𝑦0). We
perform bilinear interpolation to obtain the compensated feature
𝐹𝑐 at (𝑥𝑢𝑣, 𝑦𝑢𝑣), which is also the feature at (𝑢, 𝑣) in the projected
feature matrix:

𝐹𝑐 (𝑥𝑢𝑣, 𝑦𝑢𝑣) = (𝑖 + 1 − 𝑥𝑢𝑣) · (𝑗 + 1 − 𝑦𝑢𝑣) · 𝐹 (𝑖, 𝑗)
+ (𝑥𝑢𝑣 − 𝑖) · (𝑗 + 1 − 𝑦𝑢𝑣) · 𝐹 (𝑖 + 1, 𝑗)
+ (𝑖 + 1 − 𝑥𝑢𝑣) · (𝑦𝑢𝑣 − 𝑗) · 𝐹 (𝑖, 𝑗 + 1)
+ (𝑥𝑢𝑣 − 𝑖) · (𝑦𝑢𝑣 − 𝑖) · 𝐹 (𝑖 + 1, 𝑗 + 1),

(2)

where 𝑖 = ⌊𝑥𝑢𝑣⌋, 𝑗 = ⌊𝑦𝑢𝑣⌋. In this way, we fill the feature points of
projected matrix with interpolated visual features.

3.2 Realistic Hearing Compensation (RHC)
RHC is designed to address the dilemma: hearing is crucial to PARs
in 3D-FPS MMOGs, but accurately rendering and roughly extrac-
tion of audio are computation-intensive and incur heavy overhead.
To overcome this, we leverage synthesized directional vision to
compensate for PARs’ hearing. We first number all types of sound
events (e.g., gunshots and explosions), and then mark the region
(i.e., the corresponding 2D integer mesh grid in §3.1) where they can
propagate. However, this does not reflect the attenuation character-
istics of sounds. Consequently, PARs can perceive sound events but
struggle to locate them, leading them to search aimlessly instead of
purposefully turning towards the sound source like human players.

To address this, we further propose a linear attenuation-based
acoustic energy transformation scheme that enables PARs to lo-
cate the sound source. This is based on the facts that humans use
the sound intensity difference to perceive the sound orientation
and the sound travels with linear attenuation in 8-Game (cf. §2.1).
Let 𝐴 denote the attenuation function of the sound, and 𝐴 (𝑟, 𝑡)
represent the sound intensity. 𝐴 (𝑟, 𝑡) is related to the sound type
𝑡 and inversely proportional to the distance 𝑟 . That is: 𝐴 (𝑟, 𝑡) ={

−𝑘𝑡 · 𝑟 + 𝑏𝑡 if 𝑟 ≤ 𝑅

0 if 𝑟 > 𝑅 , where 𝑘𝑡 denotes the sound attenua-

tion coefficient of sound type 𝑡 , and 𝑏𝑡 denotes the original sound
intensity, and 𝑅 is the maximum sound propagation range. Then
we integrate 𝐴 to calculate the cumulative sound intensity 𝑆 of
the sound from (𝑥𝑡 , 𝑦𝑡) on each grid cell 𝐷 that PARs can perceive:
𝑆 =

∬
𝐷

𝐴

(√︁
(𝑥 − 𝑥𝑡)2 + (𝑦 − 𝑦𝑡)2, 𝑡

)
𝑑𝑥𝑑𝑦, (𝑥,𝑦) ∈ 𝐷.

An area with a higher accumulated sound intensity value means
that it is closer to sound sources, and vice versa. Finally, we append
𝑆 to the corresponding feature point of the projected matrix.

3.3 Flexible Model Pruning (FMP)
To avoid the impairment in PARs’ decision-making abilities caused
by model quantization (cf. §2.3), we resort to an advanced model
compression technique, the lottery ticket hypothesis (LTH) [10],
which trims excessive “trivial” neurons from the DRL model to
reduce inference delay. LTH reveals that dense neural networks
contain less complex subnetworks (the so-called “winning tickets”)
that can achieve comparable performance to the original network.

As shown in Figure 11, we first randomly initialize the DRL
model’s parameters and run a training session to update the weights

9097

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Jianwei Zheng, et al.

Model Pool

Actor

×
Images

GPB

Agent Env

3D Engine

CVR

Conformal

Mapping

Bilinear

Extrapolation/

Interpolation

RHC

Compensation

With Vision

Acoustic

Energy

Transformation

 Lottery Ticket

Hypothesis

Model

Migration

Vision and Audio Representation

FMP

Interaction

Figure 10: Architectural overview of ParliRobo.

Original Network

Train Prune
Re-Train

Iterate r times

Figure 11: Leveraging lottery ticket hy-
pothesis to prune DRL models. Lines with
the same color indicate that the same pa-
rameters are used in neural networks.

E1 E2G1 R C3 C4C2C1

Conformal

MappingVision

Field

GPB

Projected Vision Field CVR: Lightweight & Features Preserved

Game

Global Map

R’

E2
’

C2
’C3

’C1
’ C4

’

G1
’

E1
’

R’

E2
’

C2
’C3

’C1
’ C4

’

G1
’

E1
’

Bilinear

Extrapolation/

Interpolation

Structured Game

Messages

Reducing Image Resolutions

Image Downscaling: Features Loss

E1 E1
’

Figure 12: Comparison of image downscaling and crucial
visual representation (CVR).

Game Global Map Projected Feature Matrix

Unable to be mapped to the

feature matrix point

Find the corresponding point

in the game global map

Extrapolation Interpolation

Figure 13: Compensating for the visual features using bilinear
extrapolation/interpolation.

of these parameters. Afterwards, we cut off the last 𝑟
√
𝑝% of the pa-

rameters (i.e., setting values to zero) with the lowest-magnitude
weights, and re-initialize the rest parameters with the original
weights of the unpruned model. Further, we re-train the pruned
model. After 𝑟 iterations, we cut off 𝑝% parameters of the original
model, and obtain the final “winning ticket”.

However, when 8-Game updates, the DRL model needs to be
re-pruned and re-trained. Unfortunately, the pruning process is
computationally expensive and has to be run thoroughly for differ-
ent models, since LTH is iterative and magnitude-based, resulting in
weak generalizability for the pruned model. To address this, instead
of redesigning and re-pruning DRL models, FMP strategically repli-
cates (or drops) and reorders atomic units of the original network,
whose corresponding source winning ticket can be stretched (or
squeezed) into a target winning ticket for a new model [8]. This
scheme is derived from our long-term practical experience: since
these updates are usually minor and the input/output dimensions
do not change, original and new models share similar architectures.

Meanwhile, the convolutional layers and the associated pooling
layer in Figure 8 are the natural choice for atomic units. Since the
output is connected to each neural layer directly or indirectly, and
the relationships between them are determined [50, 62], we conduct
a correlation analysis between atomic units and corresponding
game function outputs to decide which atomic units need to be
replicated (or dropped) when adding (or removing) game functions.

4 EVALUATION
We deploy the trained DRL models on four inference servers to gen-
erate actions for PARs, and employ eight game servers to conduct
general game events (e.g.,maintaining player states and synchroniz-
ing them with clients); each is equipped with an Intel Xeon 64-core
CPU @2.40GHz, and 128-GB DDR4 memory (see Figure 2).

4.1 Evaluation on Components
This part evaluates ParliRobo in three aspects by incrementally
enabling one component at a time: service throughput, acoustic
response rate, and interaction delay. More details of these evaluation
metrics are described in Appendix A.2

Crucial Visual Representation (CVR). When CVR is enabled, as
Figure 14a shows, the service throughput of PAR-PPO with CVR (⑤,
2,918) is ∼3.4 times of that of PAR-PPO (①, 872), and is 73.6% more
than that of PAR-PPO with image downscaling (②, 1,681). This
indicates that CVR significantly reduces the overhead on the server
by transforming input states from heavyweight images (adopted
by ① and ②) to ultralight structured representation.

In addition, by comparing ①, ②, and ⑤ in Figure 14b, we no-
tice that CVR and image downscaling have little effect on PARs’
acoustic response rates, since neither of them involves any audi-
tory information. Meanwhile, the results of ①, ②, and ⑤ (164.7 ms
vs. 145.5 ms vs. 123.9 ms) in Figure 14c indicate that image down-
scaling and CVR also effectively decrease the average interaction
delay of PAR-PPO, and thus reduce late instructions (interaction
delay>200 ms) from 14.3% to 6.4% and 3.7%, respectively.

Realistic Hearing Compensation (RHC). While keeping CVR
active, we incrementally enable RHC. As depicted in Figure 14b,
by strategically compensating PARs’ auditory perception through
synthesized directional vision and realistic acoustic energy transfor-
mation, PAR-PPO with CVR and RHC (⑥) achieves a great increase
in the acoustic response rate from 15.7% to 82.1% compared to
PAR-PPO with CVR (⑤). Further, PARs boosted by RHC enjoy a
higher acoustic response rate (⑥, 82.1%) than those with audio ren-
dering (③, 74%), and is closest to that of human players (⑧, 92%),
which indicates that RHC is more effective than audio rendering
for compensating PARs’ hearing since it introduces no noise.

9098

ParliRobo: Participant Lightweight AI Robots for Massively Multiplayer Online Games (MMOGs) MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

0 1000 2000 3000 4000 5000
Number of Concurrent PARs

(a)

0 20 40 60 80 100
Acoustic Response Rate

 (%)

(b)

80 200 300 400
Interaction Delay (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

(c)
Figure 14: Evaluation results of individual components in terms of (a) service throughput, (b) acoustic response rate, and (c)
interaction delay. ID, AR, and MQ denote the image downscaling, audio rendering, and model quantization of PAR-PPO+. CVR,
RHC, and FMP represent individual components of ParliRobo. Interaction delay ≥ 200 ms leads to late instructions.

Meanwhile, as plotted in Figure 14a, the service throughput of ⑥

slightly decreases from 2,918 to 2,607 compared to that of ⑤. Even
so, ⑥ still enjoys a higher service throughput (2,607) than that of
① (872) and ③ (1,217), since RHC is more lightweight than audio
rendering. Moreover, Figure 14c shows that the interaction delay of
⑥ (avg. 130.5 ms) is higher than that of ⑤ (avg. 123.9 ms) with an
increase in late instructions from 3.7% to 4.5%. Such performance
degradations is due to the extra computation overhead introduced
by RHC for compensating PARs’ auditory perception.

Flexible Model Pruning (FMP). Figure 14c demonstrates that
when FMP is further enabled, ParliRobo (⑦) owns the lowest in-
teraction delay (80.3 ms on average), and thus greatly reduces the
proportion of high interaction delays (> 200 ms), resulting in a
reduction of late instructions from 14.3% (①, PAR-PPO) to 0.78%.
Compared with PAR-PPO with CVR and RHC (⑥), ⑦ significantly
reduce the inference delay by cutting excessive “trivial” neurons
off the complex DRL model. Moreover, as illustrated in Figure 14a,
the service throughput of ⑦ greatly increases from 2,607 to 3,307,
compared with that of ⑥. This improvement indicates that FMP
can also alleviate the computational overhead on the server.

Nevertheless, Figure 14b shows that FMP incurs a performance
degradation on acoustic response rate by comparing ⑥ and ⑦ (from
82.2% to 80.4%), and a similar trend also exists in model quantiza-
tion by comparing ③ and ④ (from 74% to 68.3%). This is because
FMP and model quantization either cut “trivial” neurons off the
complex DRL model or downcast their precision, which weakens
the inference ability of DRL models. Fortunately, such degradation
(1.8%) caused by FMP is moderate and acceptable given its benefits
in service throughputs and interaction delays.

4.2 Individual Biofidelity
Individual biofidelity metrics (𝐼𝐵𝑀) measure the resemblance be-
tween PARs and human players in these key micro-level behav-
iors: shooting (𝐼𝐵𝑀𝑠), hitting (𝐼𝐵𝑀ℎ), jumping (𝐼𝐵𝑀𝑗), crouching
(𝐼𝐵𝑀𝑐), moving distances (𝐼𝐵𝑀𝑚), and props gathered (𝐼𝐵𝑀𝑝), cov-
ering most gaming behaviors in 3D-FPS MMOGs. More details of
individual biofidelity metrics are depicted in Appendix A.2.

Figure 15 shows that ParliRobo exhibits more resemblances with
human players compared to PAR-PPO and PAR-PPO+ across all
micro-level behaviors. The distribution of ParliRobo’s each behavior
is closest to that of human players compared to PAR-PPO and

Table 1: Mini Turing test results of human players and PAR
systems. The percentages in bold indicate the TPRs.

Solution Labeled as Humans Labeled as Robots

Human 2958 (87%) 442 (13%)
PAR-PPO 1326 (39%) 2074 (61%)
PAR-PPO+ 1904 (56%) 1496 (44%)
ParliRobo 2482 (73%) 918 (27%)

PAR-PPO+, with the lowest value of the corresponding 𝐼𝐵𝑀 . For
instance, Figure 15b shows that the distribution of ParliRobo’s
hitting frequency basically fits that of human players (𝐼𝐵𝑀ℎ=0.023),
which reveals that ParliRobo owns the ability (comparable to that
of human players) to accurately locate and hit enemies.

4.3 Mini Turing Test
However, the micro-level metrics are unable to well reflect the
overall biofidelity of PARs [19]. Thus, we additionally employ the
mini Turing test [18, 53] to evaluate the macro biofidelity of PARs
perceived by real users and define themini Turing test pass rate (TPR)
as # 𝑜 𝑓 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑃𝐴𝑅𝑠 𝑎𝑟𝑒 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 ℎ𝑢𝑚𝑎𝑛𝑠

𝑜 𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑠
. To obtain TPR, we

conduct another IRB-approved user trial by employing 34 users
under their consent. More details of the crowdsourcing study are
stated in Appendix A.2. Table 1 reveals that the 𝑇𝑃𝑅 of ParliRobo
(73%) is comparable to that of human players (87%), and significantly
higher than that of PAR-PPO (39%) and PAR-PPO+ (56%). Note
that 13% of human players are labeled as PARs, which is probably
because they are unskilled and thus look like a robot.

5 RELATEDWORK

AI Techniques for Game Bots. In the past decade, the research
community has conducted a plethora of studies on AI robots, mainly
for three typical genres of games (i.e., board, card, and MMOGs),
through DRL [21, 33, 47] and/or searching tree-based methods [9,
22, 23], while the majority of them aim to develop winning AI
robots and provide small-scale services [61]. In board games, for
example, DeepMind leverages Monte Carlo Tree Search [7] together
with DRL [1] and self-play [16] to develop the AlphaGo series [12,
20, 48] that defeat professional players in Go. In card games, related
studies [5, 65] introduce Counterfactual Regret Minimization (CFR)
and leverage DNN to develop AI robots in Poker games.

9099

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Jianwei Zheng, et al.

0 40 80 120 160 200
Number of Shoots

0

0.2

0.4

0.6

0.8

1
C

D
F

Mean=17.4
IBM

s
=0.208

Mean=32.9
IBM

s
=0.075

Mean=44.4
IBM

s
=0.036

Mean=59.9
IBM

s
=0

(a)

0 10 20 30
Number of Hits

0

0.2

0.4

0.6

0.8

1

C
D

F

Mean=2.3
IBM

h
=0.082

Mean=3.5
IBM

h
=0.049

Mean=4.5
IBM

h
=0.023

Mean=4.9
IBM

h
=0

(b)

0 40 80 120 160 200
Number of Jumps

0

0.2

0.4

0.6

0.8

1

C
D

F

Mean=33.9
IBMj=0.289

Mean=48.2
IBMj=0.091

Mean=53.2
IBM

j
=0.048

Mean=65.5
IBMj=0

(c)

0 30 60 90 120 150
Number of Crouches

0

0.2

0.4

0.6

0.8

1

C
D

F

Mean=14.1
IBMc=0.265

Mean=24.7
IBMc=0.073

Mean=28.8
IBM

c
=0.046

Mean=33.7
IBMc=0

(d)

0 2000 4000 6000 8000 10000
Length of Moving Distances (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Mean=1565.0
IBMd=0.181

Mean=2031.2
IBMd=0.093

Mean=2324.4
IBM

d
=0.042

Mean=3175.6
IBMd=0

(e)

0 20 40 60 80
Number of Props Gathered

0

0.2

0.4

0.6

0.8

1

C
D

F

Mean=18.1
IBM

p
=0.232

Mean=23.2
IBM

p
=0.122

Mean=27.9
IBM

p
=0.071

Mean=31.0
IBM

p
=0

(f)

ParliRobo HumanPAR-PPO PAR-PPO+

Figure 15: Performance of PAR-PPO, PAR-PPO+, ParliRobo, and human players on micro-level behaviors. 𝐼𝐵𝑀 (ranging from 0
to 1) denotes the corresponding divergence of each behavior; a smaller value indicates a better human-robot resemblance.

Other studies [3, 26, 54] focus on developingAI robots forMMOGs
which involves more complex environments and real-time inter-
actions than board and card games. AlphaStar [56] adopts super-
vised learning to initialize robot parameters and multi-agent RL
to improve performance, and outperforms 99.8% human players in
StarCraft [3]. Open AI Five [2], the AI robot of Dota2 [54], leverages
distributed self-play DRL to boost the training process, making it
the first AI system that defeat the world champions of the game.

Our study distinguishes itself from the above studies in three
aspects. First, instead of focusing on defeating human players, we
make efforts to provide generic framework to realize participant
AI robots for MMOGs. Second, ParliRobo is lightweight yet effec-
tive owing to our novel “transform and polish” methodology that
substantially lighten the key components of the PAR system. Last,
we demonstrate the practicality of our AI robots by real-world de-
ployment at scale, which serves a great number of human players.

Evaluation Metrics. Players’ ever-growing expectations of gam-
ing experience, together with the increasing complexity of games,
have been driving both academia and industry to define suitable
metrics that better evaluate AI robot performance as well as player
experience [45, 55]. For winning AI robots [2, 12, 30, 48, 56, 59, 60],
the winning rate is an adequate metric to evaluate their perfor-
mance. Nevertheless, it is not suitable for evaluating PARs whose
purpose is to provide average-level participation service for human
players at scale, rather than defeat human players [25, 35].

In the literature, there is a limited number of studies on PARs’
evaluation metrics, yet all of them perform evaluations at small
scale and/or concerning specific aspects. Lample et al. [29] leverage
the behavioral data (i.e., the number of objects, kills, deaths, and
suicides) as metrics to evaluate PARs’ resemblances with humans.
Lin et al. [32] propose the playstyle metric from observations and

actions, aiming to measure how close two players’ behaviors are.
Osborn et al. [44] define the Gamalyzer metric based on refinements
to edit distance [34] of play traces in a game-independent way. In
comparison, we not only evaluate the biofidelity of PARs from both
micro and macro perspective, but also consider the infrastructure
costs under large-scale deployment. We hope that these metrics
can benefit future researches on PARs.

6 CONCLUSION
This paper presents the design, implementation, real-world deploy-
ment, and comprehensive evaluation of ParliRobo, a lightweight
yet effective participant AI robot (PAR) system for MMOGs. We
reveal the obstacles of developing satisfactory PARs at scale in the
context of a popular 3D-FPS mobile MMOG, and demonstrate that
they cannot be well addressed through intuitive implementations
and optimizations. Instead, ParliRobo overcomes them via a non-
conventional “transform and polish” methodology that substan-
tially lightens the key components of a PAR system by approximate
transformation, and meanwhile carefully repairs the incurred side
effects on user perceptions. ParliRobo is now being used to serve
millions of human players with acceptable biofidelity and back-end
cost. We believe that many lessons and experiences we have learned
from building ParliRobo could also benefit the research on PARs
for other MMOGs as well as related AI robot applications.

ACKNOWLEDGMENTS
This work is supported in part by National Key Research and De-
velopment Program of China under grant 2022YFB4500703, Na-
tional Natural Science Foundation of China under grants 61902211
and 62202266, China Postdoctoral Science Foundation under grant
2022M721831, and Microsoft Research Asia under grant 100336949.

9100

ParliRobo: Participant Lightweight AI Robots for Massively Multiplayer Online Games (MMOGs) MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

REFERENCES
[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. 2017. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Processing Magazine 34, 6 (2017), 26–38.

[2] Christopher Berner, Greg Brockman, Brooke Chan, et al. 2019. Dota 2 with Large
Scale Deep Reinforcement Learning. arXiv:1912.06680

[3] Blizzard Entertainment, Inc. 2022. StarCraft II Official Game Site. https:
//starcraft2.com/.

[4] Thierry Blu, Philippe Thévenaz, and Michael Unser. 2004. Linear Interpolation
Revitalized. IEEE Transactions on Image Processing 13, 5 (2004), 710–719.

[5] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. 2019. Deep
Counterfactual Regret Minimization. In Proc. of PMLR ICML. 793–802.

[6] Ralph E Carlson and Frederick N Fritsch. 1985. Monotone Piecewise Bicubic
Interpolation. SIAM J. Numer. Anal. 22, 2 (1985), 386–400.

[7] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. 2008. Monte-
Carlo Tree Search: A New Framework for Game AI. In Proc. of AAAI, Vol. 4.
216–217.

[8] Xiaohan Chen, Yu Cheng, ShuohangWang, Zhe Gan, Jingjing Liu, and Zhangyang
Wang. 2021. The Elastic Lottery Ticket Hypothesis. In Proc. of NeurIPS, Vol. 34.
26609–26621.

[9] Michele Colledanchise, Ramviyas Parasuraman, and Petter Ögren. 2018. Learning
of Behavior Trees for Autonomous Agents. IEEE Transactions on Games 11, 2
(2018), 183–189.

[10] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. In Proc. of ICLR.

[11] Bent Fuglede and Flemming Topsoe. 2004. Jensen-Shannon Divergence and
Hilbert Space Embedding. In Proc. of IEEE ISIT. 31.

[12] Gibney, Elizabeth. 2016. Google AI Algorithm Masters Ancient Game of Go.
Nature News 529, 7587 (2016), 445.

[13] Google. 2021. Official Website of Google Protocol Buffers. https://developers.g
oogle.com/protocol-buffers.

[14] David Grelaud, Nicolas Bonneel, Michael Wimmer, et al. 2009. Efficient and
Practical Audio-Visual Rendering for Games Using Crossmodal Perception. In
Proc. of ACM I3D. 177–182.

[15] Dianyuan Han. 2013. Comparison of Commonly Used Image Interpolation
Methods. In Proc. of ICCSEE. 1556–1559.

[16] Johannes Heinrich and David Silver. 2016. Deep Reinforcement Learning from
Self-Play in Imperfect-Information Games. arXiv preprint arXiv:1603.01121 (2016).

[17] Henry Ewins. 2020. Like Animals, Video Game AI Is Stupidly Intelligent.
https://www.eurogamer.net/articles/2020-01-09-like-animals-video-game-ai-
is-stupidly-intelligent.

[18] Philip Hingston. 2009. A Turing Test for Computer Game Bots. IEEE Transactions
on Computational Intelligence and AI in Games 1, 3 (2009), 169–186.

[19] Philip Hingston. 2010. A New Design for a Turing Test for Bots. In Proc. of IEEE
CIG. 345–350.

[20] Sean D Holcomb, William K Porter, Shaun V Ault, et al. 2018. Overview on
Deepmind and Its Alphago Zero AI. In Proc. of ACM ICBDE. 67–71.

[21] Shiyu Huang, Hang Su, Jun Zhu, and Ting Chen. 2019. Combo-Action: Training
Agent for FPS Game with Auxiliary Tasks. In Proc. of AAAI, Vol. 33. 954–961.

[22] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren, and Christian
Smith. 2020. A Survey of Behavior Trees in Robotics and AI. arXiv preprint
arXiv:2005.05842 (2020).

[23] Matteo Iovino, Jonathan Styrud, Pietro Falco, and Christian Smith. 2021. Learning
Behavior Trees with Genetic Programming in Unpredictable Environments. In
Proc. of IEEE ICRA. 4591–4597.

[24] Aditya Jain, Ramta Bansal, Avnish Kumar, and KD Singh. 2015. A Comparative
Study of Visual and Auditory Reaction Times on the Basis of Gender and Physical
Activity Levels of Medical First Year Students. International Journal of Applied
and Basic Medical Research 5, 2 (2015), 124.

[25] Aaron Khoo and Robert Zubek. 2002. Applying Inexpensive AI Techniques to
Computer Games. IEEE Intelligent Systems 17, 4 (2002), 48–53.

[26] KRAFTON, Inc. 2022. PUBG Mobile. https://www.pubgmobile.com/.
[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Classifi-

cation with Deep Convolutional Neural Networks. In Proc. of NeurIPS, Vol. 25.
[28] Shaofan Lai, Wei-Shi Zheng, Jian-Fang Hu, and Jianguo Zhang. 2017. Global-

Local Temporal Saliency Action Prediction. IEEE Transactions on Image Processing
27, 5 (2017), 2272–2285.

[29] Guillaume Lample and Devendra Singh Chaplot. 2017. Playing FPS Games with
Deep Reinforcement Learning. In Proc.of AAAI.

[30] Junjie Li, Sotetsu Koyamada, Qiwei Ye, et al. 2020. Suphx: Mastering Mahjong
with Deep Reinforcement Learning. arXiv preprint arXiv:2003.13590 (2020).

[31] Zhenhua Li, Yafei Dai, Guihai Chen, and Yunhao Liu. 2023. Content Distribution
for Mobile Internet: A Cloud-Based Approach, Second Edition. Springer Nature
Press.

[32] Chiu-Chou Lin, Wei-Chen Chiu, and I-Chen Wu. 2021. An Unsupervised Video
Game Playstyle Metric via State Discretization. In Proc. of PMLR UAI. 215–224.

[33] Tianyu Liu, Zijie Zheng, Hongchang Li, et al. 2019. Playing Card-Based RTS
Games with Deep Reinforcement Learning. In Proc. of IJCAI. 4540–4546.

[34] AndresMarzal and Enrique Vidal. 1993. Computation of Normalized Edit Distance
and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence
15, 9 (1993), 926–932.

[35] Maja J Matarić. 2019. Human-Machine and Human-Robot Interaction for Long-
Term User Engagement and Behavior Change. In Proc. of ACM MobiCom. 1–2.

[36] Michael Matuschek. 2022. Using Adaptive AI to Improve the Gaming Experience.
https://www.mouser.com/blog/using-adaptive-ai-improve-gaming-experience.

[37] MIPAV. 2020. Transform: Conformal Mapping Algorithms. https://mipav.cit.ni
h.gov/pubwiki/index.php/Transform:_Conformal_Mapping_Algorithms.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. 2013. Playing Atari
with Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602 (2013).

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. 2015. Human-Level
Control through Deep Reinforcement Learning. Nature 518, 7540 (2015), 529–533.

[40] Moonton. 2022. Mobile Legends: Bang Bang. https://m.mobilelegends.com/.
[41] Ghulam Muhammad, Yousef A Alotaibi, Mansour Alsulaiman, and Moham-

mad Nurul Huda. 2010. Environment Recognition Using Selected MPEG-7 Audio
Features and Mel-Frequency Cepstral Coefficients. In Proc. of IEEE ICDT. 11–16.

[42] Yury Nahshan, Brian Chmiel, Chaim Baskin, et al. 2021. Loss Aware Post-training
Quantization. Machine Learning 110, 11 (2021), 3245–3262.

[43] Zeev Nehari. 2012. Conformal Mapping. Courier Corporation.
[44] Joseph C Osborn and Michael Mateas. 2014. A Game-Independent Play Trace

Dissimilarity Metric. In Proc. of FDG.
[45] Mark Owen Riedl and Alexander Zook. 2013. AI for Game Production. In Proc. of

IEEE CIG. 1–8.
[46] John Schulman, Filip Wolski, Prafulla Dhariwal, et al. 2017. Proximal Policy

Optimization Algorithms. arXiv preprint arXiv:1707.06347 (2017).
[47] Kun Shao, Zhentao Tang, Yuanheng Zhu, et al. 2019. A Survey of Deep Rein-

forcement Learning in Video Games. arXiv preprint arXiv:1912.10944 (2019).
[48] David Silver, Thomas Hubert, Julian Schrittwieser, et al. 2018. A General Re-

inforcement Learning Algorithm That Masters Chess, Shogi, and Go through
Self-Play. Science 362, 6419 (2018), 1140–1144.

[49] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).

[50] Jost Tobias Springenberg, Alexey Dosovitskiy, et al. 2015. Striving for Simplicity:
The All Convolutional Net. In Proc. of ICLR.

[51] TheExpressWire. 2023. 2023-2029 Massive Multiplayer Online (MMO) Games
Market Size Detailed Report with Sales and Revenue Analysis | Research by
Absolute Reports. https://www.digitaljournal.com/pr/news/2023-2029-massive-
multiplayer-online-mmo-games-market-size-detailed-report-with-sales-and-
revenue-analysis-research-by-absolute-reports.

[52] Julian Togelius, Sergey Karakovskiy, Jan Koutník, and Jurgen Schmidhuber. 2009.
Super Mario Evolution. In Proc. of IEEE CIG. 156–161.

[53] AlanM Turing. 2012. ComputingMachinery and Intelligence (1950). The Essential
Turing: the Ideas That Gave Birth to the Computer Age (2012), 433–464.

[54] Valve Corporation. 2022. Dota2 Official Game Site. https://www.dota2.com/ho
me.

[55] Michael Van Lent, John Laird, Josh Buckman, et al. 1999. Intelligent Agents in
Computer Games. In Proc. of AAAI. 929–930.

[56] Vinyals, Oriol and Babuschkin, Igor and Chung, Junyoung and others. 2019.
Alphastar: Mastering the Real-Time Strategy Game Starcraft II. DeepMind Blog
(2019), 2.

[57] Muhammad Abdul Wahab. 2017. Interpolation and Extrapolation. In Proc. Topics
Syst. Eng. Winter Term, Vol. 17. 1–6.

[58] Wikipedia. 2022. Kullback Leibler divergence. https://en.wikipedia.org/wiki/Ku
llback-Leibler_divergence.

[59] Deheng Ye, Guibin Chen, Wen Zhang, et al. 2020. Towards Playing Full MOBA
Games with Deep Reinforcement Learning. In Proc. of NeurIPS, Vol. 33. 621–632.

[60] Deheng Ye, Zhao Liu, Mingfei Sun, et al. 2020. Mastering Complex Control in
MOBA Games with Deep Reinforcement Learning. In Proc. of AAAI, Vol. 34.
6672–6679.

[61] Sule Yildirim and Sindre Berg Stene. 2010. A Survey on the Need and Use of AI in
Game Agents. InTech.

[62] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and Understanding Convo-
lutional Networks. In Proc. of Springer ECCV. 818–833.

[63] Dongbin Zhao, Zhen Zhang, and Yujie Dai. 2012. Self-Teaching Adaptive Dynamic
Programming for Gomoku. Neurocomputing 78, 1 (2012), 23–29.

[64] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal
Frossard. 2018. Adaptive Quantization for Deep Neural Network. In Proc. of
AAAI.

[65] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.
2007. Regret Minimization in Games with Incomplete Information. In Proc. of
NeurIPS, Vol. 20.

9101

https://arxiv.org/abs/1912.06680
https://starcraft2.com/
https://starcraft2.com/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.eurogamer.net/articles/2020-01-09-like-animals-video-game-ai-is-stupidly-intelligent
https://www.eurogamer.net/articles/2020-01-09-like-animals-video-game-ai-is-stupidly-intelligent
https://www.pubgmobile.com/
https://www.mouser.com/blog/using-adaptive-ai-improve-gaming-experience
https://mipav.cit.nih.gov/pubwiki/index.php/Transform:_Conformal_Mapping_Algorithms
https://mipav.cit.nih.gov/pubwiki/index.php/Transform:_Conformal_Mapping_Algorithms
https://m.mobilelegends.com/
https://www.digitaljournal.com/pr/news/2023-2029-massive-multiplayer-online-mmo-games-market-size-detailed-report-with-sales-and-revenue-analysis-research-by-absolute-reports
https://www.digitaljournal.com/pr/news/2023-2029-massive-multiplayer-online-mmo-games-market-size-detailed-report-with-sales-and-revenue-analysis-research-by-absolute-reports
https://www.digitaljournal.com/pr/news/2023-2029-massive-multiplayer-online-mmo-games-market-size-detailed-report-with-sales-and-revenue-analysis-research-by-absolute-reports
https://www.dota2.com/home
https://www.dota2.com/home
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Jianwei Zheng, et al.

A APPENDIX
A.1 Introduction to 8-Game
In today’s online gaming landscape, MMOGs have formed a $54
billion market in 2022 [51]. In this work, to provide a generic frame-
work for realizing PARs in MMOGs, we target the most challeng-
ing MMOGs genre that involves action-packed real-time 3D inter-
actions, by collaborating with 8-Game, a popular 3D-FPS mobile
MMOG with ∼230,000 users as of 03/2022. Each round of 8-Game
is a 30-player “death match” that lasts for 15 minutes, where each
player’s target is to gain as many scores as possible by killing others
or picking up money. When the time of a game round runs out,
players are ranked in descending order by their scores, and the
top three players win the game. Although gathering as many as
30 players per round makes 8-Game exciting, the operators find
that during off-peak hours, the players often need to wait for a
considerable time to start a round. This promotes our collaboration
with 8-Game to develop PARs.

In detail, the battlefield of 8-Game is a 4 𝑘𝑚 × 4 𝑘𝑚 square
island where players can walk, jump, crawl, gather props (e.g.,
money, weapons, and medicine bags), and fight with others. Players
experience the game through the protagonist’s eyes with a 110-
degree wide view angle and a 250 𝑚 visual scope. Additionally,
players can hear sound events (e.g., footsteps and gunshots) within
a range of 50 𝑚. Note that in 8-Game, sound travels with linear
attenuation (cf. §3.2) and is not affected by obstructions. During a
round, players have three chances to revive; each time players are
revived, they are initiated with the same hit point (HP), which will
drop by a certain amount when players get attacked at a specific
body part. Once a player “dies” (i.e., the HP reaches zero), half of
their money will be transferred to the one killing them.

A.2 Evaluation Metrics
We adopt the following metrics to comprehensively evaluate PARs
in terms of their biofidelity and infrastructure costs.

Service Throughput. Considering the need for large-scale use,
we leverage the service throughput to measure the scalability of
each solution on a single commodity physical server (with an Intel
Xeon 64-core CPU@2.40GHz and 128-GB DDR memory). In §2.2,
we demonstrate that the main burden imposed on the server comes
from high CPU utilization. Thus, we record the number of concur-
rent PARs when the CPU utilization of an inference server reaches
100%, and measure the service throughput by the average number
of the concurrent PARs supported by the four servers.

Acoustic Response Rate. Our observations (see from §2.2) show
that when human players hear sound events (i.e., gunshots and
explosions), they tend to exhibit a high action saliency which is
defined as the cosine distance of two consecutive action vectors
ranging from [0,2]. Thus, we devise the acoustic response rate to
quantifies PARs’ ability to perceive and respond to sound events.
In detail, we manually create sound events (e.g., shooting and/or
moving) behind PARs within a radius of 50 meters every second
in 200 seconds, and count the number of responses (e.g., turning

and/or shooting) when the corresponding action saliency distance
exceeds an empirical threshold of 0.6. The ratio of the responses to
the sound events is regarded as the acoustic response rate.
Interaction Delay. As stated in §2.2, the interaction delay shows
how quick PARs react to the environment. According to the system
architecture in Figure 2, we take interaction delay as the sum of
the client-server network delay (𝑡1), inter-server network delay
(𝑡2), and inference delay for an action (𝑡3). Specifically, we sample
interactions every second over a 100-second period, and record the
corresponding 𝑡1, 𝑡2, and 𝑡3.

Individual Biofidelity metrics (𝐼𝐵𝑀). The individual biofidelity
metrics (𝐼𝐵𝑀) measure the resemblance of PARs to human play-
ers in these key micro-level behaviors: shooting, hitting, jumping,
crouching, moving distances, and props gathered, which cover most
gaming behaviors in 3D-FPS MMOGs. To eliminate probable mea-
surement bias caused by individual sampling, we collect the above
behavioral data of 96,812 opt-in users and 19,362 already-deployed
PARs for two months (Oct.–Nov. 20211) with a well-established IRB
and informed user consent.

Specifically, we denote the 𝐼𝐵𝑀 for the above micro behaviors
as 𝐼𝐵𝑀𝑠 , 𝐼𝐵𝑀ℎ , 𝐼𝐵𝑀𝑗 , 𝐼𝐵𝑀𝑐 , 𝐼𝐵𝑀𝑚 , and 𝐼𝐵𝑀𝑝 . They are calculated
from the Jensen-Shannon Divergence (JSD, one of the mainstream
statistical methods for measuring the divergence of two distribu-
tions [11]) based on behavior frequency distributions of PARs (𝑃)
and human players (𝐻). Formally, 𝐼𝐵𝑀𝑏 on each micro behavior 𝑏
is defined as:

𝐼𝐵𝑀𝑏 = 𝐽𝑆𝐷 (𝑃𝑏 ∥𝐻𝑏) =
1
2
𝐾𝐿(𝑃𝑏 ∥𝑀𝑏) +

1
2
𝐾𝐿(𝐻𝑏 ∥𝑀𝑏), (3)

where𝑀𝑏 =
𝑃𝑏+𝐻𝑏

2 and KL divergence [58] is the relative entropy
of two distributions. A lower IBM indicates a closer behavioral
resemblance between PARs and human players.

Mini Turing Test. However, the micro-level metrics are unable
to well reflect the overall biofidelity of PARs [19]. Thus, we addi-
tionally employ the mini Turing test [18, 53] to evaluate the macro
biofidelity of PARs perceived by real users and define the mini
Turing test pass rate (TPR):

𝑇𝑃𝑅 =
𝑜 𝑓 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑃𝐴𝑅𝑠 𝑎𝑟𝑒 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 ℎ𝑢𝑚𝑎𝑛𝑠

𝑜 𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑠
(4)

To obtain the TPR, we conduct another IRB-approved user trial
under their consent. We employ 34 test users who have no common
interest with 8-Game from a large university. These participants
are diverse in terms of their gender (17 females), age (from 20 to
49), and education levels (from freshman to Ph.D.). We record game
video clips (∼35 seconds on average) of 100 PARs for each system,
and 100 human players whose privacy information is well protected.
Then, these participants watch all video clips, and label the relevant
players in videos as PARs or human players according to their
perceptions.
1After Nov. 2021 (until Apr. 2023) we constantly update the DRL model with new data
and game features (if any), as well as monitor the performance of ParliRobo with the
help from opt-in users. The results indicate that based on monthly maintenance of the
model, the performance of ParliRobo can remain pretty stable – the fluctuations lie
between -0.9% and 2.1% as compared to the performance during Oct.–Nov. 2021.

9102

	Abstract
	1 Introduction
	2 Applying Mainstream DRL Techniques to 8-Game
	2.1 Brief Introduction to 8-Game
	2.2 Intuitive Implementation
	2.3 Conventional Optimization

	3 Design of ParliRobo
	3.1 Crucial Visual Representation (CVR)
	3.2 Realistic Hearing Compensation (RHC)
	3.3 Flexible Model Pruning (FMP)

	4 Evaluation
	4.1 Evaluation on Components
	4.2 Individual Biofidelity
	4.3 Mini Turing Test

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A appendix
	A.1 Introduction to 8-Game
	A.2 Evaluation Metrics

