
Understanding Fileless Attacks on Linux-based IoT Devices with
HoneyCloud

Fan Dang1, Zhenhua Li1∗, Yunhao Liu1,2, Ennan Zhai3
Qi Alfred Chen4, Tianyin Xu5, Yan Chen6, Jingyu Yang7

1Tsinghua University 2Michigan State University 3Alibaba Group 4University of California, Irvine
5University of Illinois Urbana-Champaign 6Northwestern University 7Tencent Anti-Virus Lab

ABSTRACT
With the wide adoption, Linux-based IoT devices have emerged as
one primary target of today’s cyber attacks. Traditional malware-
based attacks can quickly spread across these devices, but they
are well-understood threats with effective defense techniques such
as malware fingerprinting and community-based fingerprint shar-
ing. Recently, fileless attacks—attacks that do not rely on malware
files—have been increasing on Linux-based IoT devices, and posing
significant threats to the security and privacy of IoT systems. Little
has been known in terms of their characteristics and attack vectors,
which hinders research and development efforts to defend against
them. In this paper, we present our endeavor in understanding file-
less attacks on Linux-based IoT devices in the wild. Over a span of
twelve months, we deploy 4 hardware IoT honeypots and 108 spe-
cially designed software IoT honeypots, and successfully attract a
wide variety of real-world IoT attacks. We present our measurement
study on these attacks, with a focus on fileless attacks, including the
prevalence, exploits, environments, and impacts. Our study further
leads to multi-fold insights towards actionable defense strategies
that can be adopted by IoT vendors and end users.

CCS CONCEPTS
• Security and privacy→Hardware attacks and countermea-
sures; Mobile and wireless security.
ACM Reference Format:
Fan Dang, Zhenhua Li, Yunhao Liu, Ennan Zhai, Qi Alfred Chen, Tianyin
Xu, Yan Chen, and Jingyu Yang. 2019. Understanding Fileless Attacks on
Linux-based IoT Devices with HoneyCloud. In The 17th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’19), June
17–21, 2019, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3307334.3326083

1 INTRODUCTION
Internet of Things (IoT) has quickly gained popularity across a wide
range of areas like industrial sensing and control [36], home au-
tomation [18], etc.. In particular, the majority of today’s IoT devices
∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6661-8/19/06. . . $15.00
https://doi.org/10.1145/3307334.3326083

have employed Linux (e.g., OpenWrt and Raspbian) for its preva-
lence and programmability, and such a trend has been growing
continuously [1]; meanwhile, the number of cyber attacks against
Linux-based IoT devices is also increasing rapidly [5]. In this paper,
we, therefore, focus on Linux-based IoT devices and the attacks
targeting them. The Linux-based IoT attacks generally fall into two
categories: malware-based attacks and fileless attacks.

Threats from malware-based attacks (e.g., Mirai, PNScan, and
Mayday) have been widely known in IoT networks. For example,
global websites like GitHub and Twitter became inaccessible for
hours in Oct. 2016, since their DNS provider, Dyn, was under DDoS
attack by Mirai, which infected over 1.2 million IoT devices [11].
These incidents raised high awareness of malware-based attacks
on IoT systems; throughout the past few years, their characteristics
have been extensively studied and effective defense solutions have
been developed. For instance, the hash (e.g., MD5 or SHA-n) of a
malware’s binary file can be computed to fingerprint these IoT mal-
ware, and such fingerprints are then shared with the community
such as through VirusTotal1. For a malware that has not been fin-
gerprinted, static and dynamic analysis can be applied to determine
their malice [16].

Fileless attacks (also known as non-malware attacks or zero-
footprint attacks) on IoT devices differ from malware-based at-
tacks in that they do not need to download and execute malware
files to infect the victim IoT devices; instead, they take advantage
of existing vulnerabilities on the victim devices. In the past few
years, increasingly more fileless attacks have been reported [4, 37],
e.g.,McAfee Labs reports that fileless attacks surged by 432% over
2017 [3]. Traditional servers and PCs defend against fileless attacks
using sophisticated firewalls and antivirus tools [6]; however, these
solutions are not suitable for the vast majority of IoT devices due
to the limited computing and storage resources. As a result, fileless
attacks pose significant threats to the IoT ecosystem, given that IoT
devices are often deployed in private and sensitive environments,
such as private residences and healthcare centers. At the moment,
there is limited visibility into their characteristics and attack vec-
tors, which hinders research and development efforts to innovate
new defense to combat fileless attacks.

1.1 Study Methodology (§2)
To understand Linux-based IoT attacks in the wild, we use honey-
pots [31], which are known to be an effective method for captur-
ing unknown network attacks. We, therefore, first set up several
common Linux-based IoT devices in different places as hardware
honeypots. Each honeypot is coupled with a Remote Control Power

1https://www.virustotal.com

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

482

https://doi.org/10.1145/3307334.3326083
https://doi.org/10.1145/3307334.3326083

Adapter which can reset the honeypot when it is compromised.
These offer us valuable insights into the specialties of IoT attacks.
However, we notice that this first endeavor incurs unaffordable
infrastructure and maintenance costs when deployed at scale. We,
therefore, attempt to explore a cheap and scalable approach to ef-
fectively capture and analyze real-world IoT attacks.

Intuitively, such an attempt can be empowered by public clouds
widely spread across the world. This seems to be a possible host for
our quickly deploying numerous software (virtual) honeypots. Nev-
ertheless, this approach is subject to several practical issues. First,
the virtual honeypots should behave similarly to actual IoT devices,
so as not to miss the relatively rare fileless attacks. Second, they
should expose in-depth information of the interaction processes,
to facilitate our characterizing the usually hard-to-track fileless
attacks. Finally, they have to conform with diverse policies imposed
by different cloud providers, so that one cloud’s limitations would
not essentially influence the coverage of our study results. To this
end, we heavily customize the design of software honeypots by
leveraging the insights collected from hardware honeypots, such as
kernel information masking, encrypted command disclosure, and
data-flow symmetry monitoring. We carefully select eight public
clouds to disperse 108 abovementioned software honeypots, and the
system is called HoneyCloud. These software honeypots employ
OpenWrt, which is one of the most popular Linux distributions for
IoT devices [1] and also suitable for customization.

Compared to a hardware honeypot as we show in §2.2, a soft-
ware honeypot attracts 37% fewer suspicious connections and 39%
fewer attacks on average. On the other hand, the average monthly
maintenance fee of a software honeypot (∼6 US dollars) is 12.5×
less than that of a hardware honeypot (∼75 US dollars). More impor-
tantly, all the types of attacks captured by our hardware honeypots
have also been captured by HoneyCloud (but not vice versa). This
shows the effectiveness of our design in practice.

1.2 Findings and Implications (§3)
During one year’s measurement (06/15/2017–06/14/2018), we ob-
served 264 million suspicious connections to our honeypots, of
which 28million successfully logged in and enabled attacks.2 Among
these successful attacks, 1.5 million are identified as fileless attacks,3
by investigating which we acquire the following key insights:
• We introduce the first taxonomy for fileless IoT attacks by
correlating multi-source information. For lack of malware
files and fingerprints, it is not an easy task to identify and classify
fileless attacks: by comprehensively correlating the disclosed
shell commands, monitored filesystem change, recorded data-
flow traffic, and third parties’ online reports, we identify the
numerous fileless attacks and empirically classify them into eight
different types in terms of behaviors and intents (§3.3). To our
knowledge, this is the first taxonomy for fileless attacks in the
IoT area.

2The rest of connections (i.e., 89.4% of the observed suspicious connections) cannot
intrude into our honeypots, since they failed to crack the passwords of our honeypots.
3Different from previous studies on IoT attacks where fileless attacks were scarcely
reported, our honeypots captured substantially more fileless attacks with diverse
features. Also, we find that a root cause lies in the weak authentication issue of today’s
IoT devices, which makes it unprecedentedly easy for attackers to obtain remote
control and then perform malicious actions without using malware.

• Fileless attacks aggravate the threats to IoT devices by in-
troducing stealthy reconnaissance methods and unique
types of IoT attacks. On one side, we notice that 39.4% of the
captured fileless attacks are collecting system information or
performing de-immunization operations (e.g., shut down the fire-
wall and kill the watchdog) in order to allow more targeted and
efficient follow-up attacks. We suspect this is because fileless
attacks are harder to fingerprint, and thus are highly suitable
for stealthy attack reconnaissance or preparations. On the other
side, we find that fileless attacks can also be powerful attack
vectors on their own while maintaining high stealthiness. Specif-
ically, we capture a fileless attack in the wild that launched a
targeted DDoS attack. The attack neither modifies the filesystem
nor executes any shell commands, but can manipulate a swarm
of IoT devices and make the attacker(s) invisible to victims. Since
the only indication of such an attack is anomalous patterns of
outbound network traffic, it is highly challenging for existing
host-based defense mechanisms to detect it effectively.
• IoT attacks in the wild are using various types of infor-
mation to determine device authenticity. According to our
measurements on hardware honeypots, 9132 attacks executed
commands like lscpu to acquire sensitive system information.
In addition, with HoneyCloud we find an average of 6.7% fewer
attacks captured by a honeypot hosted on AWS than one hosted
on other public clouds, probably because AWS has disclosed all
its VM instances’ IP ranges and some malware like Mirai does
not infect (in fact intentionally bypasses) specific IP ranges [11].
These insights are then leveraged to improve the design and
deployment of HoneyCloud in fidelity and effectiveness.
• We discover new security challenges posed by fileless at-
tacks and propose new defense directions. While leaving
zero footprint on the filesystem, almost all the captured fileless
attacks are using shell commands and thus are detectable by au-
diting the shell command history of IoT devices. Unfortunately,
we notice that many IoT devices use a read-only filesystem to
mitigate malware-based attacks, but unexpectedly increases the
difficulty (in persisting the shell command history) of detect-
ing fileless attacks. This is a fundamental trade-off between the
auditability of fileless attacks and the security against malware-
based attacks, which presents a new IoT security challenge posed
by fileless attacks. Moreover, we observe that themajority (65.7%)
of fileless attacks are launched through a small set of commands:
rm, kill, ps, and passwd, which are enabled by default in our
honeypots (and almost all real-world Linux-based IoT devices).
For these commands, in fact not all of them are necessary for a
special-purpose IoT device, which thus creates opportunities to
effectively reduce the attack surface by disabling them.
The insights above provide us with actionable defense strate-

gies against fileless attacks, and we integrate and embody them
into a practical workflow we call IoTCheck. For a Linux-based
IoT device, the IoTCheck workflow can guide the manufacturers
and administrators how to check its security and what to check,
along with giving the corresponding defense suggestions that are
easy to follow. We also release our data collected in the study at
https://honeycloud.github.io, as well as the customization code for
building the honeypots.

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

483

https://honeycloud.github.io

Software
Honeypot

Back-end
Controller

Hardware
Honeypot

ISP: Comcast ISP: Telecom

Figure 1: Deployment overview of our system.

2 HONEYPOT DEPLOYMENT
As an effective tool for understanding known and unknown at-
tacks, honeypots have been widely used and deployed on the In-
ternet [31]. Conceptually, a honeypot is a system connected to a
network and monitored, when we expect it to be broken into and
even compromised [28]. Given the fact that a honeypot is not a
production system that aims to provide services, nobody has really
decent reasons to access it. Thus, we believe that communication
packets going to and coming from a honeypot should be typically
suspicious4.

2.1 Overview
Figure 1 gives an overview of our IoT honeypot deployments,
termed HoneyCloud. It consists of both hardware IoT honeypots
(§2.2) and cloud-based software IoT honeypots (§2.3). The hardware
IoT honeypots are deployed at four different geographical locations
as shown in Table 1. The software IoT honeypots are deployed on
108 VM instances (whose geo-distribution is depicted in Figure 2)
from eight public clouds across the globe, including AWS, Microsoft
Azure, Google Cloud, DigitalOcean, Linode, Vultr, Alibaba Cloud,
and Tencent Cloud.

Hardware IoT honeypots. Our first endeavor is to build and
deploy hardware IoT honeypots. Section 2.2 describes our design,
implementation, and operation experiences. We deployed four hard-
ware honeypots on Raspberry Pi, Netgear R6100, BeagleBone, and
Linksys WRT54GS placed in residences of the team members from
different cities. Table 1 lists the location, hardware configurations,
and the monetary cost of the deployment.

From Jun. 2017 to Jun. 2018, the hardware IoT honeypots at-
tracted 14.5 million suspicious connections. 1.6 million among the
suspicious connections successfully logged in and were taken as
effective attacks. Among these attacks, 0.75 million are malware-
based attacks, and 0.08 million are fileless attacks. Note that the
4For honeypots deployed in public clouds, the situation can be slightly different since
VM instances can report diagnostic data (which are of course legitimate) to cloud
providers. Fortunately, such traffic can be easily recognized and we do not consider it
in our analysis.

Figure 2: Geo-distribution of our deployed software honey-
pots.

remaining 0.79 million cannot be classified into malware-based or
fileless attacks because they did nothing after logging in.

Despite their effectiveness, hardware IoT honeypots are expen-
sive and require high maintenance overhead. The deployment of
four hardware honeypots costs 280 US dollars for devices and 280
US dollars per month for Internet connections. Given that the lifes-
pan of an IoT device is typically a couple of years, the monthly
infrastructure fee is around 300 US dollars. Moreover, although the
deployment and maintenance schemes of the other three honeypots
are almost identical to that of the first honeypot, the (manual) la-
bor of maintenance to check low-level infrastructure dependencies
cannot be avoided for the other three honeypots.

Software IoT honeypots. The insights and experiences collected
by running hardware IoT honeypots drive us to build software-
based IoT honeypots that can be deployed in the cloud at scale. Since
Jun. 2017, we have deployed 108 software IoT honeypots at eight
public clouds across the globe. As of Jun. 2018, we had observed
249 million suspicious connections to our software honeypots, of
which 10.6% successfully logged in and became effective attacks.
Among these attacks, 14.6 million are malware-based attacks, and
1.4 million are fileless attacks. The remaining 10.4 million cannot
be classified into malware-based or fileless attacks because nothing
happened after successfully logging in.

Since an IoT device typically possesses quite low-end hardware,
we only need to rent entry-level VM instances to accommodate soft-
ware honeypots (i.e., one VM instance hosts one software honeypot).
The typical configuration of a VM instance comprises a single-core
CPU @ ∼2.2GHz, 512MiB of memory, 10–40GB of storage, and
100Mbps of network bandwidth.

2.2 Hardware IoT Honeypots
Design and implementation. Figure 3 shows our hardware
honeypot implementation, which consists of three parts: a) ba-
sic hardware including Network Interface Card (NIC), RAM, and
CPU/GPU; b) the OpenWrt operating system; and c) the honeypot
services for attracting attackers.

Our hardware honeypot records all actions of the attackers (in-
cluding the commands typed or programs executed by the attack-
ers), and reports these actions to the Data Collector (see Figure 3).
We expose ash—a shell provided by BusyBox5—to attackers, so as
to record their operations when they execute shell commands. The
password of the root user is set to root by modifying the shadow
5https://busybox.net

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

484

Table 1: Specifications of our hardware IoT honeypot deployment.

City Device and the Price CPU Architecture Memory Internet Access (per month)
1 New York, US Raspberry Pi, US$20 ARM @700 MHz 256 MiB US$80, ISP: Comcast
2 San Jose, US Netgear R6100, US$55 MIPS Big-Endian @560 MHz 128 MiB US$80, ISP: Comcast
3 Beijing, CN BeagleBone, US$45 ARM @720 MHz 256 MiB US$20, ISP: Unicom
4 Shenzhen, CN Linksys WRT54GS, US$40 MIPS Little-Endian @200 MHz 32 MiB US$20, ISP: Telecom

* All above Remote Control Power
Adapter (RCPA), US$30 N/A N/A US$30 (US), ISP: Comcast

US$10 (CN), ISP: Unicom/Telecom

Raspberry Pi

CPU/GPURAMNIC

OpenWrt

Services to be compromised

Internet

Remote Control Power Adapter

ArduinoPower
Relay

Data
Collector

Power
Controller

Power
Source

Ethernet
Module

Figure 3: System architecture of our developed hardware IoT
honeypot based on Raspberry Pi.

file. The SSH service is provided by Dropbear6 on port 22 and the
Telnet service is provided by BusyBox on port 23.

When we identify an attack that intrudes a hardware honeypot,
we capture threat information of this attack and then reset the
honeypot. Our implementation utilizes initramfs7 to achieve an
in-memory filesystem, where the filesystem is first loaded from the
flash memory or the SD card and then unpacked into a RAM disk,
and all modifications to the system state will be lost after the reset.

If our hardware honeypot is unavailable (i.e., it does not report
data to the Data Collector, or we cannot log in to it), we reboot the
honeypot. While Linux has a built-in watchdog for automatically
rebooting, we observed that attackers typically use malware (e.g.,
Mirai) to disable the watchdog. Therefore, we build a Remote Con-
trol Power Adapter (RCPA), as shown in Figure 3, to physically
reboot the honeypot.

The RCPA is made up of an Arduino, a power relay, and an
Ethernet module. The RCPA uses the Message Queuing Telemetry
Transport (MQTT) protocol [21] to subscribe the reboot topic from
the Power Controller. Once the RCPA receives a reboot command,
it triggers the power relay to power off and on the honeypot.

Experiences. Deploying and maintaining hardware IoT honey-
pots are non-trivial. As shown in Table 1, while building a hardware
IoT honeypot only costs 20 and 30 US dollars for purchasing a Rasp-
berry Pi and the RCPA (which are quite cheap), the Internet access
fee for the two devices reaches 80 and 30 US dollars per month
respectively (which are relatively expensive). Note that the two

6https://matt.ucc.asn.au/dropbear/dropbear.html
7http://www.linuxfromscratch.org/blfs/view/svn/postlfs/initramfs.html

devices cannot share an Internet connection (e.g., through NAT),
because the honeypot has to be directly exposed to the Internet
without NAT (otherwise, many attacks cannot reach the honeypot).

Moreover, maintaining hardware IoT honeypots incurs high over-
head. In particular, the attempts to reset hardware honeypots are
not guaranteed to be successful. Oftentimes, we have to manually
check low-level infrastructure dependencies, such as the underlying
Internet connections, the power supply, and the hardware devices.
Glitches of any involved entity would increase the maintenance
overhead.

Implications to software IoT honeypots. Our experiences
show that hardware IoT honeypots are hard to scale due to the
excessive deployment cost and maintenance overhead. To deploy
IoT honeypots at scale would require software-based solutions. Our
experiences reveal that the main obstacles of hardware deploy-
ments lie in the examination of low-level infrastructure dependen-
cies. Therefore, if we can guarantee the reliability and scalability of
low-level infrastructures, the issues would be effectively avoided
or alleviated. This drives our efforts to build cloud-based software
IoT honeypots, as cloud platforms offer probably the most reliable,
scalable, and cost-efficient solution to a global-scale deployment of
virtual computing infrastructure.

Meanwhile, we require the cloud-based software honeypots to
possess a similar level of fidelity to the hardware IoT honeypots. Our
collected measurement data from the hardware honeypots offers us
useful implications for ensuring the fidelity of software honeypots.
First, we find that 9,132 attacks attempted to acquire sensitive sys-
tem information via commands like lscpu and cat/proc/cpuinfo,
which enables attackers to detect software honeypots running on
VM instances; thus, our software honeypots should be able to forge
real system information (e.g., CPU information), making the soft-
ware honeypots look like real IoT devices (detailed in §2.3.1). Second,
we notice that 187 attacks used commands like lsusb (listing con-
nected USB devices) to detect potential honeypots; thus, we should
enable common buses to ensure the fidelity (detailed in §2.3.1).

2.3 Software IoT Honeypots
Figures 4 illustrates our software-based IoT honeypot design. We
extend the Data Collector and the Power Controller described in
§2.2 to integrate our hardware IoT honeypots. This includes im-
plementing the reset capability for software IoT honeypots in the
Power Controller.

The internal structure of a software IoT honeypot consists of
three modules: High Fidelity Maintainer (§2.3.1), Shell Interceptor
and Inference Terminal (§2.3.2), and Access Controller (§2.3.3). The

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

485

Data Collector
& Power Controller

reset power control

Peripheral
Bus

Shell Interceptor

QEMU with OpenWrt

hpfeeds

Software
Honeypot

ETHERNET

USB

USB

HDMI
PWR IN

U2
U1

A/
V

CA
M

ER
A

D
IS

PL
AY

RU
N

AC
T

PW
R

G
PI

O

G
PI

O
 3

G
PI

O
 1

1

G
ro

un
d

3V
3

G
PI

O
 1

9

ID
_S

D

G
PI

O
 2

G
PI

O
 2

6

G
ro

un
d

G
PI

O
 9

3V
3

G
PI

O
 2

7
G

PI
O

 1
7

G
ro

un
d

G
PI

O
 1

0

G
PI

O
 6

G
PI

O
 4

G
PI

O
 5

G
PI

O
 1

3

G
PI

O
 2

2

G
PI

O
 2

1
G

PI
O

 2
0

G
PI

O
 1

6
G

ro
un

d
G

PI
O

 1
2

G
ro

un
d

ID
_S

C
G

PI
O

 7
G

PI
O

 8
G

PI
O

 2
5

G
ro

un
d

G
PI

O
 2

4
G

PI
O

 2
3

G
ro

un
d

G
PI

O
 1

8
G

PI
O

 1
5

G
PI

O
 1

4
G

ro
un

d
5V

5V

Raspberry Pi 2
Model B

Hardware
Honeypot

reset
RESET-EN

RESET

ON

RX

TX

L

MADE IN ITALY

A
R

EF G
N

D

13 12 ~1
1

~1
0 ~9 8 7 ~6 ~5 4 ~3 2

TX
 1

R
X

0

ARDUINO

W
W

W
.A

R
D

U
IN

O
.C

C

R
ES

ET

3.
3V

5V

G
N

D

G
N

D

Vi
n

A
0

A
1

A
2

A
3

A
4

A
5

DIGITAL (PWM~)

POWER ANALOG IN

UNO∞+- Remote Control
Power Adapter

Inference
Terminal

hpfeeds

High Fidelity
Maintainer

Ac
ce

ss
 C

on
tro

lle
r

plaintext

emulating
Attacks

Outbound
Packets

Attacks

Outbound
Packets

Figure 4: Architectural overview of our system, aswell as the
internal structure of a software IoT honeypot.

software IoT honeypot can emulate the following typical IoT devices
featured by their heterogeneous architectures and compositions:

Intel Galileo Gen 1 with x86; Dreambox 600 PVR with PowerPC;
BeagleBoard with ARM Cortex-A8; Orange Pi Zero with ARM
Cortex-A7; Omega2 with MIPS 24K; RouterBOARD RB953GS with
MIPS 74Kc.

2.3.1 High Fidelity Maintainer. The High Fidelity Maintainer im-
plements a set of strategies to prevent attackers from identifying
our honeypots.

Customizing QEMU configurations. To enhance the fidelity of
software honeypots, we tune the hardware configurations of QEMU
in each software honeypot so that it can resemble its emulated IoT
device in capability. As QEMU provides a series of CPU profiles,
we select the CPU profile that best matches the CPU metrics of
the emulated IoT device. We set its memory capacity as equal to
that of the emulated IoT device. As we use initramfs to achieve
an in-memory filesystem (§2.2), there is no need to emulate disks
(most IoT devices do not own disks).

Masking sensitive system information. Since attackers can
probe whether an IoT device is emulated by a VM based on sys-
tem and kernel information (e.g., by checking /proc) [2], we mask
the VM system and kernel information. For each software honey-
pot, we forge /proc/cpuinfo in OpenWrt and make it look like a
commercial CPU used by real IoT devices.

VM instances rearrangement among public clouds. Since we
deploy our software IoT honeypots in public clouds, it is possible for
attackers to infer our deployment based on IP addresses, because
the IP ranges of public clouds can be fully or partially retrieved. For
example, AWS fully releases its IP address ranges through public
web APIs8, and the IP address ranges of some public clouds can be
partially acquired by examining their ASes (autonomous systems).

We built two-fold approaches to mitigate the possibility of iden-
tifying VM-based honeypots based on IP addresses. First, when we
rent a VM instance from the eight public clouds, we fragmentize
the IP address selection for our honeypots by fragmentizing the
selection of VMs’ regions, zones, and in-zone IP ranges. Second, we
notice that all the eight public clouds offer the option of elastic IP ad-
dresses (without extra charges). Hence, we periodically change the
IP address of each software honeypot. During the first six months’
deployment, we noticed that 6.7% fewer attacks are captured by an
8https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

(a) Deployment statistics dur-
ing 06/15/2017–12/14/2017

Public Cloud #
AWS 12
Microsoft Azure 12
Google Cloud 12
DigitalOcean 12
Linode 14
Vultr 14
Alibaba 16
Tencent 16

(b) Deployment statistics dur-
ing 12/15/2017–06/14/2018

Public Cloud #
AWS 6
Microsoft Azure 9
Google Cloud 12
DigitalOcean 12
Linode 16
Vultr 21
Alibaba 16
Tencent 16

Table 2: Deployment changes of HoneyCloud. Here “#” de-
notes the number of deployed software honeypots.

Data Processor
& Executor

Window Resize

CHANNEL
_DATA

CHANNEL
_WINDOW
_ADJUST

Other
Processor

Other
Packet

Encryptor

Inference TerminalPlaintext &
Control Chars

Input

Output

DecryptorSSH Packet

Plaintext

Packet Processor

SSH Packet

Plaintext

Data Aggregator
Resize
Event

Shell Trace

Attacker Inside QEMU Outside QEMU

Figure 5: Working flow chart of the Shell Interceptor.

average honeypot hosted on AWS than an average honeypot hosted
on other public clouds. Thus, we move some honeypots from AWS
to Vultr (shown in Table 2).

2.3.2 Shell Interceptor & Inference Terminal. We build two mod-
ules, Shell Interceptor and Inference Terminal, inside and outside
QEMU respectively (see Figure 4), in order to capture the actions
the attackers conduct as well as the context of these actions such
as operation ordering.

We modified Dropbear to recover the whole interaction process
of SSH sessions. Specifically, we track the following events: connect-
ing, logging in, resizing the window, exchanging data, and logging
out.

Shell Interceptor. Figure 5 details how we extract and parse the
plaintext data from the interaction traffic flows in an SSH session.
When a data packet arrives at the server (using our modified Drop-
bear), it is first decrypted to plaintext. Next, the packet processor
detects the packet type, among which we focus on CHANNEL_DATA
(the actual terminal data) and CHANNEL_WINDOW_ADJUST (the resize
event coming from the terminal emulator). The plaintext terminal
data (including both ordinary and control characters) and the resize
event are then sent to the Inference Terminal for further analysis.
Here we omit the description of Telnet data interception since it is
much simpler than SSH data interception.

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

486

Table 3: Special escape sequences.

Sequence Effect Converted Text
1Bh c Reset Terminal [ESC c]
1Bh [H Reset Cursor [ESC [H]
1Bh [n J Erase in Display [ESC [n J]
1Bh [n K Erase in Line [ESC [n K]

Inference Terminal. Although the Shell Interceptor has acquired
plaintext data, there are still control characters and escape se-
quences to be handled in the data. For example, the input sequence
{“a”, “b”, “←”, “c”} should result in “acb”. If we simply ignore the con-
trol characters and escape sequences, we will get the wrong result
“abc”. Thereby, we need to recover the context of interactions. To
fulfill this, we feed the shell and terminal data into pyte9, a VTxxx
(the video terminal standard for terminal emulators)-compatible
terminal emulator. Since the terminal is screen-based (new content
flushes old content), we modify the program of pyte to recover the
full history of interactions instead of getting the interactions screen
by screen.

We convert special control characters and escape sequences
listed in Table 3 to plaintext so that we can know what has exactly
happened. Also, we store a separate copy of keystrokes for possible
hidden inputs (e.g., passwords).

We track the resize event for two reasons. First, the window
size of the terminal is crucial for recovering the characters that
may cross lines. Second, it is a bellwether that indicates a human
attacker rather than an automatic script (i.e., the authenticity of the
attacker).

Evidence collection. In order to collect as much information as
we can for further investigation and forensics, we also report and
record the following information:
• CPU usage as an important indicator of the execution of complex
computations. For example, new types of cyber attacks, such
as crypto-currency mining and ransomware, can be identified
based on this information.
• Process listwhich can track any unintentional, suspicious process
that indicates potential threats.
• Network packets.We first use libpcap to capture almost the full

trace of network activities. Then, to filter out irrelevant packets,
we ignore 1) the packets sent to the Inference Terminal and 2)
the SSH packets between attackers and honeypots since these
packets will eventually be handled by the Shell Interceptor.

2.3.3 Access Controller. Once a software honeypot is compromised
by attackers, we should ensure that the attackers cannot utilize it
to attack more IoT devices. Otherwise, HoneyCloud would become
a new malware incubator. An intuitive defense is to use access
control. However, the access control policy is difficult to specify
in our scenario, because we do not know which outbound packets
should be allowed or denied. Too restrictive policies could block
benign requests (e.g., DNS packets), while relaxed policies would
be of high risk.

9https://github.com/selectel/pyte

QEMU with OpenWrt Reset
Manager

Heartbeat

Reset
Heartbeat

ResetBeacon

Honeypot Node

MQTT

Back-end
Controller

Connect

Figure 6: Heartbeat-based failure recovery.

We adopt a data-driven approach that leverage the continuously
observed data to dynamically infer what packets are likely to be
malicious, and then only block those dangerous outbound accesses.
Our implementation employs Snort10 (running on the host VM
instance rather than the emulated IoT device) to monitor ingoing
and outgoing packet traffic. By analyzing the reports generated
by Snort, we can easily figure out the symmetry of data flows—
asymmetry of data flows is taken as the indicator of potential attacks
blocked by public clouds.

2.3.4 Reset Manager. We built heartbeat-based reset to periodically
send heartbeat messages to the back-end controller. Once the back-
end controller finds three consecutively missed heartbeats, it would
send a reset command to the QEMU. We also notice that some
malware (e.g.,Mirai) can kill the process of the SSH/Telnet server;
therefore, the Reset Manager also periodically tries to connect to
the QEMU via SSH/Telnet. Once the Reset Manager finds that the
connection fails, it also resets the QEMU. Figure 6 demonstrates
how the Reset Manager interacts with our Backend Controller.

3 FINDINGS AND IMPLICATIONS
This section analyzes the collected results of our deployed hon-
eypots in a whole year (06/2017–06/2018). We first introduce the
working flows and general statistics of our captured attacks (§3.1).
Then, we present the detailed study on fileless attacks (§3.3 and
§3.4), and suggest defense strategies against fileless attacks (§3.5).

3.1 General Characteristics and Statistics
Asmentioned in §1, attacks on IoT devices are either malware-based
or do not involve malware (fileless). The former must download
certain malware files from the Internet to launch the attacks, while
the latter do not need to download any malware file. Based on the
attacks captured by us, their general working flows are depicted in
Figure 7. For malware-based attacks, there are generally three steps
to go through 1) intrusion, 2) infection, and 3) monetization. In
the intrusion phase, most malware uses brute-force methods (e.g.,
common usernames and weak passwords) to attempt to log in to
IoT devices. After the attackers successfully log in, they enter the
infection phase where wget and tftp are typically used to download
the required malware. The downloaded malware usually connects
to the command and control (a.k.a., C&C) server to wait for the
command. Once receiving the command, the malware can perform
various kinds of attacks, such as DoS attacks and Telnet/SSH scans.
Note that the malware-based attack flows we captured are basically
consistent with those found in previous work [27].

For fileless attacks, the attack behaviors we captured differ from
those for malware-based attacks in the second and third phases. In

10https://www.snort.org/

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

487

Weak
Password

Intrusion

Security
Flaws

Infection

Download
Malware

Set up
Port Forward

DoS

Typical
Monetization

Telnet/SSH
Scan

Ransom

Figure 7: General working flows of captured attacks.

the infection phase, no malware is downloaded; therefore, tradi-
tional detection techniques based on malware fingerprinting can-
not be applied. Instead, attackers modify certain system-level files
and/or set up port forwarding and backdoors for later use. In the
monetization phase, apart from DoS and Telnet/SSH scan, some
other goals are achieved as detailed in §3.3 and Figure 8.

Quantitatively, from Jun. 2017 to Jun. 2018 our hardware IoT
honeypots attracted more than 14.5 million suspicious connections.
Among these connections, 85.8% are SSH/Telnet (ports 22, 23, 2222,
and 2323) connections, 6.2% are SMB (port 445) connections, and
2.5% are HTTP(S) (ports 80, 443, and 8080) connections. As men-
tioned in §2, these connections led to 1.6 million effective attacks11,
where 0.75 million are malware-based attacks, and 0.08 million are
fileless attacks. In other words, each hardware honeypot receives
9,930 suspicious connections and 1,100 effective attacks per day on
average, showing that attacks on IoT devices are actually frequent at
present.

Besides the four hardware honeypots, we have deployed 108
software honeypots in eight public clouds since Jun. 2017. They are
geo-distributed across Europe, Asia, North America, South Amer-
ica, and Australia. As of Jun. 2018, we had observed 249 million
suspicious connections to them, among which 78.3% are SSH/Telnet
connections, 8.9% are SMB connections, and 3.2% are HTTP(S) con-
nections. Other connections use ports 3389 (RDP), 3306 (MySQL),
1433 (SQL Server), and so on. As mentioned in §2, these connections
led to 26.4 million effective attacks, where 14.6 million are malware-
based attacks, and 1.4 million are fileless attacks. Meanwhile, only
37 window resize events are captured, indicating that most attacks
are launched automatically (refer to §2.3.2). In other words, each
software honeypot receives 6300 suspicious connections and 670
effective attacks per day on average.

Compared to an average hardware honeypot, an average soft-
ware honeypot attracts 37% fewer suspicious connections and 39%
fewer attacks (more specifically, 28% fewer malware attacks and
37% fewer fileless attacks). This indicates that our developed soft-
ware honeypots do not possess perfect fidelity, and the reasons
are mainly two folds. First, some public clouds are likely to have
prevented certain types of attacks before these attacks reach our
software honeypots. Second, even if attacks reach our honeypots,

11A successful login is counted as an effective attack. If any file is downloaded (via
wget), it is counted as a malware-based attack. If no file is downloaded but any com-
mand is executed, it is counted as a fileless attack.

it is possible that some attackers leveraged more in-depth informa-
tion (e.g., CPU bugs and model-specific registers [29]) and advanced
techniques (e.g., execution analysis [9]) to infer the VM identity of
our honeypots, although multi-fold endeavors have been made to
mitigate the exposure of VM identity in HoneyCloud (as specified
in §2.3.1). Both reasons might reduce the amount of our detectable
malware and fileless attacks.

In order to understand to what extent a public cloud has carried
out such prevention, we launched various common attacks (such
as port scanning and brute-force authentication cracking) against
our honeypots in the eight public clouds from universities and
the public clouds. The attacks were launched once per hour and
lasted for a whole day. The results show that all our attacks can
reach our honeypots in the public clouds except Alibaba Cloud12.
This indicates that attack filtering in public clouds may indeed
be one of the possible causes, but the impact to our study is not
significant since the majority (7) of the 8 public clouds we used
are not affected. Besides, according to the results shown later, all
the types of attacks captured by our hardware honeypots are also
captured by our software honeypots (but not vice versa).

3.2 Malware-based Attacks
In total, our hardware honeypots have collected 426 different types
of malware (in terms of fingerprints) downloaded by the attackers,
and they can be classified into seven general categories as shown
in Figure 8a according to VirusTotal. In comparison, our software
honeypots have collected 598 different types of malware, fully cov-
ering the 426 different types captured by hardware honeypots. The
598 different types of malware can be classified into nine general
categories as shown in Figure 8b. Among these categories, Mirai
takes a significant portion—when malware binaries successfully
intrude into our honeypots, 73.3% and 80.2% of them are Mirai as
for hardware honeypots and software honeypots, respectively.

In addition, we find that the vast majority (∼92.1%) of malware-
based attacks are targeting multiple architectures of IoT devices.
This characteristic is observed before by previous work [27], and
we are able to confirm and further quantify it. Specifically, our
collected malware (e.g.,Mirai, Dofloo, and Ganiw) is usually capable
of running upon various architectures with various versions of
binaries, including 32/64-bit x86 (28.9%), ARM (v7 & v8, 27.3% in
total), MIPS 13 (Big & Little Endian, 25.7% in total), PowerPC 14

(9.2%), and SPARC 15 (8.9%). This highlights the pressing need for a
flexible, software IoT honeypot solution, as a software honeypot
can be easily configured to support the above architectures.

3.3 Fileless Attack Taxonomy
Besides malware-based attacks, our software honeypots have cap-
tured eight different types of fileless attacks (in terms of behaviors
and intents). In comparison, our hardware honeypots have cap-
tured only five types (II - V, VII) among the abovementioned eight

12After performing port scanning using nmap, Alibaba Cloud blocked our SSH con-
nection from the same machine.
13Broadcom and Atheros have made lots of MIPS SoCs for WiFi routers. Ingenic also
provides various MIPS solutions.
14There are a number of PowerPC-based set-top boxes and game consoles like Wii
and PlayStation.
15SPARC-based SoCs have been produced over years, such as LEON.

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

488

Malware

UDP Flood

TCP Flood

Telnet/SSH Scan

Mirai GRE Flood

ICMP Flood

Category Monetization

(73.3%)
Shell

(12.6%)

PNScan
(4.9%)

Dofloo
(3.9%)

Mayday
(2.6%)

Shellbot
(2.0%)

Ganiw
(0.7%)

ELF Downloading

Non-malware
Attack

FS Change

Shell CMD
w/o FS Change

Device Sabotage

Monopolizing Device

Data Theft

Malformed Request

(53.7%, II)

(46.3%, III - V, VII)

(a) Attacks captured by hardware honeypots.

Malware UDP Flood

TCP Flood

Telnet/SSH Scan

GRE Flood

ICMP Flood

Category Monetization

Non-malware
Attack

FS Change

ELF Downloading

Mirai (80.2%)

Shell (8.2%)

PNScan (2.7%)

Dofloo (2.0%)

BitcoinMiner (1.5%)

Mayday (1.5%)

Shellbot (1.4%)

Xor.DDoS (1.5%)

Ganiw (1.0%)

Bitcoin Mining

Shell CMD
w/o FS Change

No CMD

Device Sabotage

Monopolizing Device

Data Theft

Malformed Request

(56.2%, I - II)

(43.5%, III - VII)

(0.3%, VIII)

(b) Attacks captured by software honeypots.

Figure 8: Attacks captured by our hardware and software honeypots in HoneyCloud. FS is short for filesystem and CMD is
short for command. Note that in Figure 8b we only plot the new connection lines relative to those in Figure 8a.

types, probably because the number of hardware honeypots is much
smaller. Without the malware files, we find that it is more difficult
to identify and classify fileless attacks. To the best of our knowledge,
in this paper we are the first to systematically characterize fileless
attacks on IoT systems in the wild. Specifically, by comprehensively
correlating the disclosed shell commands, the monitored filesystem
change, the recorded data-flow traffic, and third parties’ online
reports, we identify 1.5 million fileless attacks and empirically infer
their behaviors/intents as follows (the value in the parentheses
denotes the percentage of the corresponding fileless attacks):
• Type I: Occupying end systems (1.8%), e.g., by altering the pass-
word of an IoT device (via passwd). Once the password is changed,
the attacker is able to access the device later and prevent other
people from logging in.
• Type II: Damaging system data (54.4%), e.g., by removing or
altering certain configuration files or programs (via rm and dd).
The typical scenario is to remove the watchdog daemon, which
opens the watchdog device (/dev/watchdog) and makes several
tests to check the system status. Once the daemon is removed,
the watchdog device will not be opened. Then, the device will not
reboot when it malfunctions. Thereby, the attacker may occupy
and utilize the system for a longer time.
• Type III: Preventing system monitoring/auditing services (8.5%),
e.g., by killing the watchdog processes or stopping certain ser-
vices (via kill and service). For instance, after stopping the
firewall service, attackers can better exploit known vulnerabili-
ties to launch attacks.
• Type IV: Retrieving system information (7.4%), e.g., by getting the
hardware information (via lscpu) and the system information
(via uname, netstat, ps, and free). Such information may be
useful for launching further attacks for specific purposes, e.g.,
downloading and executing platform-specific malware binaries.
• Type V: Stealing valuable data (23.5%), e.g., by reading passwords
and/or certain configuration files (via cat). Note that although

passwords stored in /etc/shadow are salted and hashed, the at-
tackers may still be able to analyze user behaviors or recover the
passwords using tools like John the Ripper password cracker16.
• Type VI: Launching network attacks (0.3%), e.g., by sending mal-

formed HTTP requests to exploit the vulnerabilities of targeted
web servers (via wget and curl) to launch DoS attacks [8]. Other
typical attacks include OpenSSL Heartbleed and SQL injections.
• Type VII: Issuing other shell commands for unclear reasons
(3.8%). There are other shell commands issued in our observed
fileless attacks, whose purposes are currently not entirely clear
to us, including who, help, lastlog, sleep, and so on. For some
commands like who and lastlog, we speculate that the attacker
may be collecting and analyzing other system users atop the
same device.
• Type VIII: Conducting attacks where no shell command is in-
volved (0.3%). A typical example, referred to as SSH Tunneling
Attack, is demonstrated in Figure 9a, where the attacker has
compromised an IoT device when launching this attack. Once
he gets the correct credentials of the SSH service (usually via
brute force) on another IoT device, he converts this (another) IoT
device into a proxy server by setting up SSH port forwarding
on the compromised device (i.e., our honeypots, see the SSH
Tunnel in Figure 9a). Usually, he binds the SSH port forwarding
service (on the compromised device) to a loopback address to
prevent other machines from connecting to the service. Then,
the attacker launches the attack from the compromised device.
Because the network flows are all proxied to the other IoT de-
vices, the real IP address of the attacker is hidden and it is rather
difficult to track such attacks.
The last type of fileless attacks is actually quite challenging to

detect since there is no shell command issued and typically no
filesystem change noticed. In order to pinpoint such attacks, we
usually have to make cross-community explorations. Figure 9b

16https://www.openwall.com/john/

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

489

IoT DeviceIoT Device

Attacker

Compromised
Device

IoT Device

SSH Tunnel

Loopback

Victim

DoS / Malform Request /…

SSH Port
Forwarding

<local port>

<SSH port>

<HTTP port>

(a) Details of the SSH Tunneling
Attack.

Honeypot

SSH Service

FreeBitco.in

4. DDoS attack claimed on Twitter
at 21:21, Oct. 25, 2017 (UTC)

3. Search “freebitco.in”
and “attack” in Google

1. Outbound traffic exceeds limit
at 16:08, Oct. 25, 2017 (UTC)

2. List strings
in pcap files

Antivirus
Community

(b) Analysis procedure of the SSH Tunneling Attack.

Victim

Compromised IoT Device

Last hop, Visible

SSH Tunnel
Attack Packet

(c) Network flow of the SSH Tunneling Attack.

Figure 9: (a) Details of the SSH Tunneling Attack, (b) the procedure describing how we identify the SSH Tunneling Attack, and
(c) how an attacker can launch a SSH Tunneling Attack against a target.

illustrates how we identify the SSH tunneling attack. First, by ex-
amining the recorded data-flow traffic, we found that the outbound
network traffic in one of our deployed software honeypots sud-
denly exceeded a reasonable limit at 16:08, Oct. 25, 2017 (UTC).
Also, the anomalous pattern of outbound traffic lasted for a cou-
ple of minutes, continuously sending HTTPS requests to a Bitcoin
lottery website https://freebitco.in. Then, we searched the domain
name of the website together with the keyword “attack” via Google,
and fortunately, we discovered a message posted on Twitter by the
website’s operators, reporting that they are under DDoS attacks on
the same day17. Furthermore, we searched for the attack in several
antivirus communities (including EXETOOLS, MalwareMustDie,
and IET Cyber Security Community), and found that a newly re-
ported kind of pivoting attacks [4] well matched the behaviors of
the attack we observed.18 Also, we learned that this attack is not
only stealthy but also powerful and scalable—it can easily amplify
its effect by manipulating a swarm of IoT devices and establishing
multiple layers of SSH tunnels (as demonstrated in Figure 9c).

3.4 Key Insights for Fileless Attacks
Aggregating the detailed study results in §3.3, we acquire several
valuable insights with respect to fileless IoT attacks. First, almost
all the previous studies on IoT attacks are focused on malware-
based attacks, while fileless attacks have been scarcely reported.
This may well mislead people to take fileless attacks as marginal
and insignificant. On the contrary, our study reveals that fileless
attacks are not only substantially more than expected—the number
of fileless attacks is as large as 9.7% of that of malware-based attacks,
but also capable of fulfilling a variety of functions and goals, some
of which are pretty powerful and stealthy (e.g., the SSH Tunneling
Attack). Additionally, we find that a root cause of this lies in the
weak authentication issue of today’s IoT devices, i.e., many widely-
used IoT devices are using a weak password at present [24]. The

17https://twitter.com/freebitco/status/923298533972652032
18Since the collected data were encrypted, we did not have direct, ideal evidence but
actually noticed that the patterns well matched. Note that the SSH tunnel is used for
forwarding data and does not involve shell interactions, so we cannot decrypt the data
using the Shell Interceptor and Inference Terminal (§2.3.2).

rm cat kill ps dd
passwd

chmod cp wget
service

others
0

10%

20%

30%

40%

50%

P
er

ce
nt

ag
e

Figure 10: Usage frequency of the shell commands.

issue makes it unprecedentedly easy for attackers to obtain remote
control of IoT devices and then perform malicious actions without
using malware.

Also, we observe that some system components (embodied by
specific shell commands) are “favored” by fileless attacks. Figure 10
lists the top-10 frequently used shell commands by fileless attacks.
Solely rm is used by 48% of the fileless attacks, while all the other
commands (excluding top-10) are used by only 2.7% of the fileless
attacks. In particular, the majority (65.7%) of our captured fileless
attacks are launched through a small set of commands: rm, kill, ps,
and passwd, which are enabled by default in our honeypots (and al-
most all real-world Linux-based IoT devices). For these commands,
actually not all of them are necessary for a special-purpose IoT
device. Thus, for a certain IoT device, if some of these frequently-
exploited shell commands are indeed unnecessary, the manufactur-
ers can disable them by customizing the device system so that the
attack surface can be reduced.

In addition, we notice that fileless attacks can also help malware-
based attacks or subsequent fileless attacks both stealthily and
effectively. Although it is not always necessary for adversaries to
acquire system information before attacking the system (e.g., they
may first download the malware binaries of various architectures
together and then run them one by one [14]), to our observations,
39.4% of the fileless attacks are collecting system information or

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

490

https://freebitco.in

performing de-immunization operations (e.g., shut down the fire-
wall and kill the watchdog) in order to allow more targeted and
efficient follow-up attacks.

Although the attack vectors discussed in this section are also
applied to general-purpose computers (PCs and servers), the attack
effects are totally different. PCs and servers are usually highly
protected with enhanced credentials, and thus they are significantly
less impacted by the attacks studied in this paper.

3.5 New Security Challenges and Defense
Directions

Based on the insights from our study, we are able to identify both
new security challenges introduced by fileless attacks and new
defense solution directions. First, 56.2% of fileless attacks (Type I–
II) modify the filesystem of the compromised IoT devices. To resist
such attacks, the device manufacturers should use a non-root user
as the default system user.

Second, we find that 99.7% of fileless attacks (Type I–VII) are
using shell commands, making these attacks detectable by auditing
the shell command history of IoT devices. Unfortunately, in prac-
tice, many IoT devices use a read-only filesystem (e.g., SquashFS19)
with the hope of enhancing security. This mitigates malware-based
attacks, but unexpectedly increases the difficulty (in persisting the
shell command history) of detecting fileless attacks. However, if
we make certain parts of the file system writable to enable shell
commend logging, e.g., using a hybrid filesystem (e.g., OverlayFS20)
or a versioning filesystem (e.g., Elephant [30]), this inevitability
makes it possible for malware-based attacks to download malware
files. Thus, this is a fundamental trade-off between the auditability
of fileless attacks and the security against malware-based attacks,
which we think is a new IoT security challenge introduced by file-
less attacks.

Third, we notice that 0.3% of fileless attacks (Type VIII) nei-
ther modify the filesystem nor execute any shell commands. Take
the aforementioned SSH Tunneling Attack as an example, which
exploits the SSH service in a number of IoT devices with weak pass-
words to construct a “tunnel” for launching attacks while hiding
the real sources.

We suggest that any IoT device unsuited to using a unique strong
password (e.g., limited by the production and assembly process—
low-end IoT devices are usually programmed before assembly, and
thus the firmware of multiple devices is often identical) stop pro-
viding SSH service to the public Internet. In case that users have
to manipulate the device remotely, they could utilize a VPN to get
access to the device; in other words, the SSH service is always
restrained to the local area network (LAN). The above defense
strategies can be integrated and embodied in an actionable work-
flow called IoTCheck, as demonstrated in Figure 11. In order to
assist manufacturers and administrators to validate and harden
the security of their IoT devices effectively (with regard to file-
less attacks), the IoTCheck workflow comprehensively examines
their multi-fold information including the password strength, root

19https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
20https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

IoTCheck

Use strong
password

Prevent public
SSH Access Audit locally

Upload to the
manufacturer

Upload to the
community

Components
all necessary?

No

Yes

No

Yes

No

Yes

Unique
strong

password?

Default user
is root?

Put most files in
read-only
filesystem

Remove useless
components

Enable shell
comand history
(Using a small
writable partition)

Figure 11: The IoTCheck work flow. Red texts denote that
essential actions should be taken. Blue boxes represent the
possible auditing schemes.

privilege, filesystem type, shell environment, SSH access, unnec-
essary components, and so forth. Based on the checking results,
easy-to-follow defense suggestions are then provided.

4 DISCUSSION ON LIMITATIONS
While we have comprehensively explored the practical way to build
and deploy Linux-based IoT software honeypots in public clouds,
still several limitations remain as to HoneyCloud.

Support of emerging IoT interfaces. Although QEMU provides
versatile emulations for a wide variety of peripherals/interfaces, it
still does not support some new interfaces like BT.1120 and MIPI
CSI, which are typically utilized by today’s IoT cameras. QEMU
also lacks the support of communication interfaces like ZigBee
and NFC, which are commonly seen in home automation devices.
This restricts our capability to design and deploy more kinds of IoT
software honeypots.

Robustness to the inference of VM identity. Multi-fold en-
deavors have been made to mitigate the exposure of VM identity in
HoneyCloud. However, it is still possible that some attackers may
leverage more in-depth information (e.g., CPU bugs and model-
specific registers [29]) and advanced techniques (e.g., execution
analysis [9]) to infer the VM identity of our software honeypots.
Besides, in order to study the concrete effectiveness of these above-
mentioned techniques, we may need to substantially upgrade our
current experiment design.

In-depth analysis on advanced attacks. HoneyCloud currently
cannot decrypt the traffic delivered in the SSH tunnel; therefore, we
typically do not knowwhat attackers actually do through the tunnel
and thus are not able to analyze the intentions of SSH tunneling
attacks. However, if the attackers send plaintext requests, we can

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

491

still capture and try to understand them. In addition, Advanced
Persistent Threats (APTs [32]) have been becoming popular recently.
Since HoneyCloud resets the deployed honeypots every now and
then and thus does not well persist attacks, HoneyCloud is currently
not quite suited to the analysis of APTs.

5 RELATEDWORK
Fileless attacks have gone through a long history as they are per-
haps the most direct and sophisticated attacks. This section re-
views prior studies on fileless attacks (§5.1) on both traditional
PCs/workstations and IoT devices. We also discuss existing honey-
pot solutions (§5.2) and compare them with HoneyCloud.

5.1 Fileless Attacks
As early as the 1980s (before the first batch of computer malware,
e.g., the Morris Internet worm, emerged [22]), fileless attacks had
been conducted on PCs and servers. Symantec’s Internet Security
Threat Report [34] categorizes security attacks into three types
based on their incursion methods. First, in the in-memory attacks,
attackers exploit vulnerabilities in the operating system or service
programs 21. A typical example is the EternalBlue attack, which
exploits a vulnerability in theWindows ServerMessage Block (SMB)
protocol to allow remotely executing arbitrary code via crafted
packets [7]. Second, in the non-PE (portable executable) file attacks,
adversaries take advantage of system tools available on the host
systems (e.g., PowerShell andMicrosoftWord) rather than PE files to
launch attacks [19]. Last but not the least, weak or stolen credentials
are often used to intrude the victim PCs or servers.

Fileless attacks against IoT devices had not been actively reported
until in recent years [10, 13]. For example, the research workgroup
MalwareMustDie discovered a criminal gang using the technique
of SSH TCP direct forwarding to launch fileless attacks mostly
targeting HTTP(S) servers [4].

5.2 Honeypot Solutions
Ever since late 1990s, honeypots have been widely developed to cap-
ture and analyze potential attacks on PCs and commodity servers,
with respect to Internet services such as remote login, email, and
web services. Most of the well-known Internet honeypots have
been included in the Honeynet project [20]. In general, designing
a honeypot system usually needs to balance the tradeoff among
four major properties: fidelity, scalability, persistence, and contain-
ment. Low-interaction honeypots (LIHs) typically simulate certain
services or aspects of a networked system, and thus are easier and
less resource-intensive to deploy in a large scale. Since they do not
actually provide a service or execute the functionality code, their fi-
delity is fairly low or limited, but their persistence and containment
are high. On the contrary, to keep high fidelity, high-interaction
honeypots (HIHs) offer full system functionality, which is typically
not supported by LIHs. This inevitably increases the difficulty and
complexity to achieve scalability, persistence, and containment.

As a representative LIH, Honeyd [28] can simulate multiple com-
puter systems at the network level in a flexible manner. Its flexibility

21Attackers can also pursue persistence of fileless attacks, e.g., by storing a malicious
script in the registry of a Windows PC, employing the scheduled task mechanism, or
leveraging the Windows Management Instrumentation (WMI) [17].

Fidelity

Co
nt
ai
nm

en
t Honeyd

(Honeycomb)
Potemkin

IoTPOT

Nepenthes

HoneyBow

Hardware

HoneyCloud

PhoneyC

Low High

Hi
gh

Figure 12: Design tradeoff of honeypots.

mainly lies in its capability to simulate any common services as
long as the service is pre-configured via its plug-in framework. It
can also approximate the network stack of different OSes and pro-
vide arbitrary routing topologies. Honeyd is able to deceive many
fingerprinting and network mapping tools, but can be easily recog-
nized (as a honeypot rather than a real Internet server) in several
inexpensive ways [26]. In addition, by automatically generating in-
trusion detection signatures for malicious network traffic patterns,
Honeycomb [23] effectively extends the functionality of Honeyd,
while does not essentially improve the fidelity and containment.

Nepenthes [12] and PhoneyC [25] are also LIHs. The former
concentrates on emulating the vulnerable parts (i.e., known vulner-
abilities) of services to collect the information of malware at scale,
thus leading to better efficiency and scalability. The latter is distin-
guished by its running at the client side (most honeypots run at the
server side), and thus is also called honeyclient. Targeting malware
in the web, PhoneyC emulates a fully featured HTTP client coupled
with dynamic language support and user behavior mimicking.

Vrable et al. built an HIH farm named Potemkin [33]. While
higher interactions often imply less scalability, Potemkin achieves
good scalability by leveraging operating system virtualization, ag-
gressive memory sharing, and late binding of resources. Honey-
Bow [38] is a high-interaction honeypot dedicated to collecting
the information of malware. Different from Nepenthes, HoneyBow
closelymonitors the file system and cross-checks the file list, instead
of analyzing the network flows.

There have been a number of studies on IoT attacks using honey-
pots. For example, based on the deployment of their developed IoT-
POT systems, Minn et al. discover that Telnet-based attacks against
IoT devices have rocketed since 2014 [27]. Moreover, Gandhi et al.
set up a proxy-like honeypot system named HIoTPOT to separate
malicious users from authenticated users and store the detailed
information of malicious users [15]. Yang et al. set up hardware
honeypots for malware forensics [35]. Nevertheless, none of the
above efforts have ever captured or reported fileless attacks.

Figure 12 roughly positions the abovementioned systems (as
well as our HoneyCloud) in the design space of honeypots. We
only illustrate fidelity and containment as the two fundamental
dimensions. Compared with traditional honeypot designs such
as Potemkin, HoneyCloud has higher fidelity with the efforts of
High Fidelity Maintainer described in §2.3.1 (the hardware hon-
eypots have the highest fidelity). It also achieves higher level of

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

492

containment with the access control mechanism described in §2.3.3,
compared with other HIHs such as Potemkin, IoTPOT, and Honey-
Bow. Certainly, LIHs including Nepenthes, PhoneyC, and Honeyd
achieve the highest level of containment by giving away fidelity.
Our results and real-world deployment validate that HoneyCloud
makes good design and implementation tradeoffs and is able to
attract both malware-based and fileless attacks.

6 CONCLUSION
IoT attacks are pervasive and becoming increasingly severe as se-
curity threats. Existing researches in addressing IoT attacks mainly
focus on malware-based IoT attacks. While malware-based attacks
(e.g., Mirai) can quickly spread across IoT devices, they can be
effectively resisted by malware fingerprinting or static/dynamic
malware analyses. In the past few years, fileless attacks have been in-
creasingly observed and reported, in particular on Linux-based IoT
devices. Such attacks pose significant threats to the widely deployed
IoT devices across the world, but have not been systematically stud-
ied or comprehensively analyzed. To understand Linux-based IoT
attacks with a focus on fileless attacks, we build and deploy several
IoT devices as hardware honeypots, and a large number of specially
designed software honeypots in multiple public clouds, to capture
and analyze such attacks at scale in the wild. We collect the data
of a variety of real-world fileless attacks, profile their characteris-
tics and influences, and propose actionable defense strategies. We
believe that traditional threat models of IoT security, which have
been focusing on malware, need to take fileless attacks into serious
consideration, and a global, unified defense framework for fileless
attacks is in dire need.

ACKNOWLEDGMENTS
We sincerely thank our shepherd Dr. Urs Hengartner and the anony-
mous reviewers for their valuable feedback. We also appreciate
Yongfeng Zhang, Jie Li, Chen Geng, and Jinsong Ma for their con-
tributions to the deployment of HoneyCloud. This work is sup-
ported in part by the National Key R&D Program of China under
grant 2018YFB1004700, the National Natural Science Foundation
of China (NSFC) under grants 61632013, 61822205, 61432002 and
61632020, and the Key R&D Program of Zhejiang Province under
grant 2018C01088.

REFERENCES
[1] Internet of Things Security Research Report, 2017. http://www.nsfocus.com.cn/u

pload/contents/2017/12/20171205171653_35944.pdf. (Accessed on Mar. 15, 2019).
[2] Linux - Easy Way to Determine Virtualization Technology - Unix & Linux Stack

Exchange. https://unix.stackexchange.com/questions/89714/easy-way-to-deter
mine-virtualization-technology. (Accessed on Dec. 26, 2017).

[3] McAfee Labs: Cybercriminal Tactics Shifting From External Malware Threats to
‘fileless’ Attacks. https://www.dqindia.com/mcafee-labs-cybercriminal-tactics-
shifting-external-malware-threats-fileless-attacks/. (Accessed on Dec. 13, 2018).

[4] MMD-0062-2017 - Credential Harvesting by SSH Direct TCP Forward Attack via
IoT Botnet. http://blog.malwaremustdie.org/2017/02/mmd-0062-2017-ssh-direct
-tcp-forward-attack.html. (Accessed on Dec. 26, 2017).

[5] New Trends in the World of IoT Threats. https://securelist.com/new-trends-in-t
he-world-of-iot-threats/87991/. (Accessed on Mar. 15, 2019).

[6] Now You See Me: Exposing Fileless Malware – Microsoft Secure.
https://cloudblogs.microsoft.com/microsoftsecure/2018/01/24/now-you-
see-me-exposing-fileless-malware/. (Accessed on Sep. 01, 2018).

[7] NVD - CVE-2017-0143. https://nvd.nist.gov/vuln/detail/CVE-2017-0143. (Ac-
cessed on Sep. 18, 2018).

[8] NVD - CVE-2018-7262. https://nvd.nist.gov/vuln/detail/CVE-2018-7262. (Ac-
cessed on Sep. 11, 2018).

[9] QEMU Emulation Detection. https://wiki.koeln.ccc.de/images/d/d5/Openchaos_
qemudetect.pdf. (Accessed on Dec. 26, 2017).

[10] Tips for Guarding Against Untraceable, “Fileless” Cyberattacks.
http://www.govtech.com/security/Tips-for-Guarding-Against-Untraceab
le-Fileless-Cyberattacks.html. (Accessed on Sep. 18, 2018).

[11] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
et al. 2017. Understanding the Mirai Botnet. In Proceedings of USENIX Security.
Vancouver, BC, Canada.

[12] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Fe-
lix Freiling. 2006. The Nepenthes Platform: An Efficient Approach to Collect
Malware. In Proceedings of USENIX RAID. Hamburg, Germany.

[13] Fan Dang, Ennan Zhai, Zhenhua Li, Pengfei Zhou, Aziz Mohaisen, et al. 2019.
Pricing Data Tampering in Automated Fare Collection with NFC-Equipped Smart-
phones. IEEE Transactions on Mobile Computing 18, 5 (May 2019), 1159–1173.

[14] Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo Spognardi. 2018.
DDoS-Capable IoT Malwares: Comparative Analysis and Mirai Investigation.
Security and Communication Networks (Feb. 2018), 7178164:1–7178164:30.

[15] Usha Devi Gandhi, Priyan Malarvizhi Kumar, R. Varatharajan, Gunasekaran
Manogaran, Revathi Sundarasekar, et al. 2018. HIoTPOT: Surveillance on IoT
Devices against Recent Threats. Wireless Personal Communications (Jan. 2018).

[16] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. 2014. Malware Analysis and
Classification: A Survey. Journal of Information Security 05 (Jan. 2014), 56–64.

[17] Matt Graeber. 2015. Abusing Windows Management Instrumentation (WMI) to
Build a Persistent, Asyncronous, and Fileless Backdoor. In Black Hat. Las Vegas,
NV, USA.

[18] Jun Han, Shijia Pan, Manal Kumar Sinha, Hae Young Noh, Pei Zhang, et al. 2018.
Smart HomeOccupant Identification via Sensor Fusion Across On-Object Devices.
ACM Transactions on Sensor Networks 14, 3-4 (Dec. 2018), 23:1–23:22.

[19] Danny Hendler, Shay Kels, and Amir Rubin. 2018. Detecting Malicious Power-
Shell Commands Using Deep Neural Networks. In Proceedings of ACM ASIACCS.
Incheon, Republic of Korea.

[20] The Honeynet Project. http://www.honeynet.org/. (Accessed on Dec. 26, 2017).
[21] ISO/IEC 20922:2016 Information technology –Message Queuing Telemetry Trans-

port (MQTT) v3.1.1. http://www.iso.org.
[22] Brendan P. Kehoe. 1992. Zen and the Art of the Internet. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA.
[23] Christian Kreibich and Jon Crowcroft. 2004. Honeycomb: Creating Intrusion

Detection Signatures Using Honeypots. SIGCOMM Computer Communication
Review 34, 1 (Jan. 2004), 51–56.

[24] Franco Loi, Arunan Sivanathan, Hassan Habibi Gharakheili, Adam Radford,
and Vijay Sivaraman. 2017. Systematically Evaluating Security and Privacy for
Consumer IoT Devices. In Proceedings of ACM IoT S&P. Dallas, Texas, USA.

[25] Jose Nazario. 2009. PhoneyC: A Virtual Client Honeypot. In Proceedings of
USENIX LEET. Boston, MA, USA.

[26] Jon Oberheide and Manish Karir. 2010. Honeyd Detection via Packet Fragmenta-
tion. (Jul. 2010).

[27] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, et al. 2015. IoTPOT: Analysing the Rise of IoT Compromises.
In Proceedings of USENIX WOOT. Washington, D.C., USA.

[28] Niels Provos. 2004. A Virtual Honeypot Framework. In Proceedings of USENIX
Security. San Diego, CA, USA.

[29] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. 2007. Detecting
System Emulators. In Proceedings of ISC. Valparaíso, Chile.

[30] Douglas J. Santry, Michael J. Feeley, Norman C. Hutchinson, and Alistair C. Veitch.
1999. Elephant: The File System That Never Forgets. In Proceedings of ACMHotOS.
Rio Rico, AZ, USA.

[31] Lance Spitzner. 2003. Honeypots: Tracking Hackers. Vol. 1. Addison-Wesley
Reading.

[32] Colin Tankard. 2011. Advanced Persistent Threats and How to Monitor and
Deter Them. Network Security 2011, 8 (Aug. 2011), 16 – 19.

[33] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, et al. 2005.
Scalability, Fidelity, and Containment in the Potemkin Virtual Honeyfarm. In
Proceedings of USENIX SOSP. Brighton, United Kingdom.

[34] Candid Wueest and Himanshu Anand. 2017. Living Off the Land and Fileless
Attack Techniques. Technical Report.

[35] Jingyu Yang and Fan Dang. 2017. An IoT Honeypot Device for Malware Forensics.
In AVAR. Beijing, China.

[36] Zimu Zhou, ChenshuWu, Zheng Yang, and Yunhao Liu. 2015. Sensorless Sensing
with WiFi. Tsinghua Science and Technology 20, 1 (Feb. 2015), 1–6.

[37] Tong Zhu, Qiang Ma, Shanfeng Zhang, and Yunhao Liu. 2014. Context-free
Attacks Using Keyboard Acoustic Emanations. In Proceedings of ACM CCS. Scotts-
dale, AZ, USA.

[38] Jian-wei Zhuge, Xin-hui Han, Yong-lin Zhou, Cheng-yu Song, Jin-peng Guo, et al.
2007. HoneyBow: An Automated Malware Collection Tool based on the High-
Interaction Honeypot Principle. Journal of China Institute of Communications 28,
12 (Dec. 2007), 8.

Session 9: Nuts and Bolts MobiSys ’19, June 17–21, 2019, Seoul, Korea

493

http://www.nsfocus.com.cn/upload/contents/2017/12/20171205171653_35944.pdf
http://www.nsfocus.com.cn/upload/contents/2017/12/20171205171653_35944.pdf
https://unix.stackexchange.com/questions/89714/easy-way-to-determine-virtualization-technology
https://unix.stackexchange.com/questions/89714/easy-way-to-determine-virtualization-technology
https://www.dqindia.com/mcafee-labs-cybercriminal-tactics-shifting-external-malware-threats-fileless-attacks/
https://www.dqindia.com/mcafee-labs-cybercriminal-tactics-shifting-external-malware-threats-fileless-attacks/
http://blog.malwaremustdie.org/2017/02/mmd-0062-2017-ssh-direct-tcp-forward-attack.html
http://blog.malwaremustdie.org/2017/02/mmd-0062-2017-ssh-direct-tcp-forward-attack.html
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://cloudblogs.microsoft.com/microsoftsecure/2018/01/24/now-you-see-me-exposing-fileless-malware/
https://cloudblogs.microsoft.com/microsoftsecure/2018/01/24/now-you-see-me-exposing-fileless-malware/
https://nvd.nist.gov/vuln/detail/CVE-2017-0143
https://nvd.nist.gov/vuln/detail/CVE-2018-7262
https://wiki.koeln.ccc.de/images/d/d5/Openchaos_qemudetect.pdf
https://wiki.koeln.ccc.de/images/d/d5/Openchaos_qemudetect.pdf
http://www.govtech.com/security/Tips-for-Guarding-Against-Untraceable-Fileless-Cyberattacks.html
http://www.govtech.com/security/Tips-for-Guarding-Against-Untraceable-Fileless-Cyberattacks.html
http://www.honeynet.org/
http://www.iso.org

	Abstract
	1 Introduction
	1.1 Study Methodology (§2)
	1.2 Findings and Implications (§3)

	2 Honeypot Deployment
	2.1 Overview
	2.2 Hardware IoT Honeypots
	2.3 Software IoT Honeypots

	3 Findings and Implications
	3.1 General Characteristics and Statistics
	3.2 Malware-based Attacks
	3.3 Fileless Attack Taxonomy
	3.4 Key Insights for Fileless Attacks
	3.5 New Security Challenges and Defense Directions

	4 Discussion on Limitations
	5 Related Work
	5.1 Fileless Attacks
	5.2 Honeypot Solutions

	6 Conclusion
	Acknowledgments
	References

