Cloud Transcoder:

Bridging the Format and Resolution Gap between Internet Videos and Mobile Devices

Zhenhua Li, Peking University

Yan Huang, Gang Liu, Fuchen Wang, Tencent Research

Zhi-Li Zhang, University of Minnesota

Yafei Dai, Peking University

About Mobile Devices

- Mobile devices
 - more and more popular
 - more than PCs

- Mobile traffic
 - only iPad accounts to 10% Internet traffic!
 - mostly headed for video streaming

"Gap" Between Mobile and Videos

- Today's mobile video streaming is still challenging for a number of reasons
 - small and diverse screens
 - low battery power
 - embedded CPU
- Today's Internet videos
 - mostly PC-oriented
 - single format (soft encode)

€A5

¢A4

- very limited resolutions

Format and resolution Gap

Local transcoding

- Computation complexity of video transcoding
 - usually as 5 20 times as that of video decoding (viewing)

- easily consume up the battery power of a mobile device

- So, today's mobile users often have K to utilize their PCs with auxiliary software
 - iTunes, AirVideo, etc.
 - very inconvenient

VLC Stream & Convert Pro TravelDevel

iPod Video Converter Wolfgang Schmuck

Air Video

Kies

Cloud-based transcoding

- Recent years, a worldwide upsurge of cloud service deployments
 - gradually move computation-intensive works from light-weight users onto heavy-weight clouds
- Traditional cloud transcoding solution
 - typically let users upload their original videos
 - work well for transcoding audios and short videos

 unfit for long videos: 1. asymmetric Internet access (like ADSL), 2. Long videos consume very much computing resource, users need to wait a long time

Multi-format support mobile player

- support full format video (373)
- Cannot not solve the resolution adaption problem
- http://player.qq.com

Cloud Transcoder **TENCNET**

Looks simple and straightforward, while works effectively!

Work flow

- 1. The user only uploads a video request
 - < video link; format, resolution, ...>

HTTP/FTP/RTSP link BT/eMule/Magnet link User-sp

User-specified transcoding parameters

- 2. The cloud caches both original videos and transcoded videos
- 3. The cloud transfers transcoded videos back to users with a high data rate
 - via the intra-cloud data transfer accelerations
 - detailed described in Cloud Download Paper 2011 ACM MM

Advantages

- Time Saver
 - Uploading time
 - Transcoding time

- Energy

 Mobile user only consumes energy in the last step
 fast retrieving the transcoded video from the cloud
 - Cloud Transcoder provides energy-efficient ondemand video transcoding service to mobile users

Problem and solutions

- Cloud Transcoder moves all the video download and transcoding works from its users to the cloud
- So, a critical problem: how to handle the resulting heavy download bandwidth pressure and transcoding computation pressure on the cloud
- Our solutions:
 - implicit data reuse among users via cloud cache
 - explicit transcoding recommendation and prediction

- simple but effective: (1) download task cache hit ratio \rightarrow 87%, (2) transcode task cache hit ratio \rightarrow 66%

Real-world system

Cloud Transcoder

- deployed since May 2011
- employs 244 commodity servers
- across ten biggest ISP networks in China
- serving ~8600 requests from ~4000 users per day
- 96% original videos are long videos (> 100 MB)
- system architecture is planned to serve 100,000 requests per day

Building Block	Number of servers	CPU (4 cores)	Memory	Storage	Bandwidth	
ISP Proxy	6	Intel Xeon X3430 @2.4 GHz	8 GB	250 GB	1 Gbps (Intranet), 0.3	
					Gbps (Internet)	
Task Manager	4	Intel Xeon X3210 @2.13 GHz	8 GB	250 GB	1 Gbps (Intranet)	
Task Dispatcher	3	Intel Xeon X3210 @2.13 GHz	8 GB	460 GB	1 Gbps (Intranet)	
Downloaders	20	Intel Xeon X3430 @2.4 GHz	8 GB	460 GB	1 Gbps (Intranet),	
					~0.325 Gbps (Internet)	
Transcoders	15	Intel Xeon X3430 @2.4 GHz	8 GB	460 GB	1 Gbps (Intranet)	
Cloud Cache	170 chunk servers, 23 upload	Intel Xeon 5130 @2.0 GHz	8 GB	4 TB (chunk server),	1 Gbps (Intranet), ~0.3	
	servers, and 3 index servers			250 GB (upload server)	Gbps (Internet)	

System Overview

Transcoding Prediction

- When the average *computation pressure (CPU utilization)* of the transcoders stays below a certain threshold (50%) during a certain period (one hour)
 - Task Manager starts to predict which videos are likely to be requested for transcoding into which formats and resolutions
 - based on the video popularity information
 - Task Manager picks top-1000 popular videos and top-3 popular transcoding parameters to initiate transcoding tasks

- part of the transcoding computation pressure in "hot" time has been moved to "cold" time for load balancing

Figure 3: Average CPU utilization of the transcoders in one day (with prediction) and the other day (without prediction), respectively.

Cloud Cache

Cloud Cache capacity planning

- Plan to handle 100K daily requests
 - avg size of original videos: 827 MB
 - a novel video is stored for 12 days
 - avg cache hit ratio of original videos: 87%
 - Original video cache capacity: C1 = 827 MB * 100K * 12 * (1-87%) = 126 TB
 - an original video has 3 transcoded videos in average
 - avg size of transcoded videos: 466 MB
 - Transcoded video cache capacity: C2 = 466 MB * 100K * 12 * (1-87%) = 213 TB
 - In total, C = C1 + C2 ≈ 340 TB

Cloud Cache replacement strategy

- Trace-driven simulations
- Compare FIFO, LRU and LFU
- LFU performs the best!

Performance Evaluation

- complete running log of Cloud Transcoder in 23 days (Oct. 1–23, 2011)
 - 197,400 video transcoding tasks involving 76,293 unique videos
 - 85% video links are P2P links
 - most popular transcoding parameters: (1) MP4-1024*768 (iPad), (2) MP4-640*480 (iPhone & Android), (3) 3GP-352*288 (Android)

Figure 6: Daily statistics.

Figure 7: Original file size.

Figure 8: Transcoded file size.

Results

Figure 9: Retrieve duration.

Figure 10: Download duration.

Figure 11: Data transfer rate.

/				
Data transfer rate (\approx KBps)	50	100	200	300
iPhone battery consumption (%)	8.7	8.9	9.0	9.2
iPad2 battery consumption (%) \leq	4.5	4.8	5.0	5.1

Future work

- Cloud Transcoder: a novel prototype system
 - still at its startup stage
 - tend to adopt straightforward and solid designs
 - still considerable optimization space
- Other cloud transcoding services
 - mobile web browsers

Q & A