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Abstract

Mobile emulation, which creates full-fledged software mo-

bile devices on a physical PC/server, is pivotal to the mo-

bile ecosystem, especially for PC-based mobile gaming, app

debugging, and malware detection. Unfortunately, existing

mobile emulators perform poorly on graphics-intensive apps

in terms of either efficiency or compatibility or both. To ad-

dress this, we introduce graphics projection, a novel graphics

virtualization mechanism that adds a small-size projection

space inside the guest memory of a virtual mobile device.

The projection space processes graphics operations involving

control contexts and resource handles without host interac-

tions. Novel flow control and data teleporting mechanisms are

devised to match the decoupled graphics processing rates of

the virtual device and the host GPU to maximize performance.

The resulting new Android emulator, dubbed Trinity, exhibits

an average of 93.3% native hardware performance and 97.2%

app support, in some cases outperforming other emulators

by more than an order of magnitude. It has been adopted by

Huawei DevEco Studio, a major Android IDE with millions

of developers.

1 Introduction

Mobile emulation has been a keystone of the mobile ecosys-

tem. Developers today typically debug their apps on generic

mobile emulators (e.g., Google’s Android Emulator, or GAE

for short) rather than on heterogeneous real devices. Also,

various dedicated mobile emulators (e.g., Bluestacks [14]

and DAOW [55]) are used to detect malware in app mar-

kets [21, 44, 54], to enable mobile gaming on PCs [14, 55],

and to empower the emerging notion of cloud gaming [36].

1.1 Motivation

To create full-fledged software mobile devices on a physical

PC/server, mobile emulators usually adopt the classic virtu-

alization framework [33, 40, 45, 46] where a mobile OS runs

in a virtual machine (VM), referred to as the guest, hosted

on a PC/server, referred to as the host. However, traditional

virtualization techniques are initially designed to work on

headless servers or common PCs without requiring strong

UI interactions within the VM, while real-world mobile apps

∗ Co-primary authors. Zhenhua Li is the corresponding author.

are highly interactive [37] and thus expecting mobile emu-

lators to have powerful graphics processing capabilities (as

provided by real mobile phones) [55]. This capability gap is

further aggravated by the substantial architectural differences

between the graphics stacks of desktop and mobile OSes [15].

Over the years, several approaches have been proposed to

fill the gap. Perhaps the most intuitive is solely relying on

a CPU to carry out a GPU’s functions. For example, as a

user-space library residing in mobile OSes (e.g., Android),

SwiftShader [26] helps a CPU mimic the processing routines

of a GPU. This achieves the best compatibility since any

mobile app can thus seamlessly run under a wide variety of

environments even without actual graphics hardware, but at

the cost of poor efficiency since a CPU is never suited to

handling the highly parallel (graphics) rendering tasks.

To improve the emulation efficiency, a natural approach is

multiplexing the host GPU within a PC/server through API

remoting [18, 50], which intercepts high-level graphics API

calls at the guest and then executes them on the host GPU with

dedicated RPC protocols and guest-host I/O pipes. Unfortu-

nately, the resulting products (e.g., GAE) cannot smoothly

run many common apps, let alone “heavy” (i.e., graphics-

intensive) apps for AR/VR viewing and 3D gaming. This

shortcoming stems from frequent VM Exits to the host to

execute API calls, introducing a considerable “tromboning”

effect [19] on the control and data flows. This results in addi-

tional idle waiting at the guest, as it must wait not only for the

API call to complete, but also for the added process of exiting

to the host and returning back to the guest.

To mitigate the issue, device emulation [17] moves the vir-

tualization boundary from the API level to the driver level.

It forwards guest-side graphics driver commands to the host

with a shared memory region inside the guest kernel to realize

their effects with the host GPU. Compared to high-level APIs,

driver commands are much fewer, more capable, and mostly

asynchronous [17], so device emulation effectively reduces

guest-host control/data exchanges and idle waiting. However,

the translation from API calls to driver commands degrades

critical high-level abstractions such as windows and threads

to low-level memory addresses and register values. Due to

the loss of high-level information, driver commands must

be sequentially executed at the host, degrading guest-side

multi-threaded rendering to host-side single-threaded render-

ing. Hence, the resulting emulators (e.g., QEMU-KVM) can

smoothly run regular apps but not heavy ones.
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Another approach is to break guest-host isolation by re-

moving the virtualization layer so apps can directly use the

GPU, as embodied in DAOW [55]. This requires manually

translating Linux system calls used by Android to Windows

ones. Unfortunately, many apps cannot run on DAOW be-

cause many (∼46%) system calls are not translated due to the

huge engineering efforts required for full system calls’ trans-

lation. Also, the supported apps must run under the protection

of additional sophisticated security defenses to compensate

for the lack of guest-host isolation.

1.2 Contribution

We present Trinity, a novel mobile emulator that simultane-

ously achieves high efficiency and compatibility. Our guiding

principle is to decouple the guest-host control and data ex-

changes and make them as asynchronous as possible when

multiplexing the host GPU under the virtualization frame-

work, so that frequent VM Exits for synchronous host-side

execution of API calls can be largely reduced. For this pur-

pose, we propose to add a projection space inside the guest

memory, where we selectively maintain a “projected” subset

of control contexts (termed shadow contexts) and resource

handles. Such contexts and handles are derived but different

from the real ones required by a physical GPU to perform ren-

dering, so as to reflect and reproduce the effects of guest-side

graphics operations (i.e., API calls). Thus, the vast majority

(99.93%) of graphics API calls do not need synchronous exe-

cution at the host, while consuming less than 1 MB memory

for even a heavy 3D app.

Concretely, when an Android app wants to draw a trian-

gle on a physical phone, it sequentially issues three types of

graphics API calls: context setting (Type-1), resource manage-

ment (Type-2), and drawing (Type-3). Type-1 prepare the can-

vas and bind resource handles; Type-2 populate the handles’

underlying resources with the triangle’s vertex coordinates,

filling colors/patterns, etc.; Type-3 instruct the GPU to render

and display the triangle. In contrast, as shown in Figure 1,

when the app runs in Trinity, Type-1 and Type-2 calls are first

executed only in the projection space, i.e., their effects are

temporarily reflected on the shadow contexts and resource

handles. Later upon drawing calls (Type-3), their effects are

delivered to the host to realize actual rendering.

Combined with graphics projection, an elastic flow control

algorithm is devised in Trinity to orchestrate the execution

speeds of control flows at both the guest and host sides. Re-

garding the guest-host data flows, we find that the major chal-

lenge of rapidly delivering them lies in the high dynamics

of system status and data volume (e.g., bursty data flows are

common in graphics operations). To this end, we find that the

dynamic situations in fact follow only a few patterns, each

of which requires specific data aggregation, persistence, and

arrival notification strategies. Therefore, we implement all

the required strategies, and utilize static timing analysis [12]
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Figure 1: Basic workflow of Trinity.

to estimate which strategy is best suited to a data flow. With

these efforts, we achieve high emulation efficiency for Trinity.

Similar to GAE, Trinity is also implemented atop QEMU

(for general device extensibility) and hosts the Android OS,

with 118K lines of C/C++ code. We evaluate its performance

using standard graphics benchmarks, the top-100 3D apps

from Google Play, and 10K apps randomly selected from

Google Play. We also compare the results with six mainstream

emulators: GAE, QEMU-KVM, Windows Subsystem for An-

droid, VMware Workstation, Bluestacks, and DAOW. The

evaluation shows that Trinity can achieve 80%∼110% (aver-

aging at 93.3%) native hardware performance, outperforming

the other emulators by 1.4× to 20×. For compatibility, Trinity

can run the top-100 3D apps and 97.2% of the 10K randomly

selected apps. To our knowledge, Trinity is the first and the

only Android emulator that can smoothly run heavy 3D apps

without losing compatibility (or security).

Software/Code/Data Availability. Trinity has recently been

adopted by Huawei DevEco Studio [28], a major Android

IDE (integrated development environment) with millions of

developers. Currently, it is going through the beta test run for

minor functional adjustments and bug fixes. The binary, code,

and measurement data involved in this work are released at

https://TrinityEmulator.github.io/.

2 Understanding Mobile Graphics APIs

We first delve into the three types of APIs in OpenGL ES, the

de facto graphics framework of Android (§2.1), and then mea-

sure real-world 3D apps to obtain an in-depth understanding

of their graphics workloads (§2.2).

2.1 Background

Figure 2 shows a basic OpenGL ES program for drawing a

triangle. The program creates a graphics buffer in a GPU’s

graphics memory using a Type-2 API—glGenBuffers, pop-

ulates the buffer with the coordinate data of the triangle’s
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float vertices[9] = {  0.0f,  0.5f,  0.0f, // First vertex

                      -0.5f, -0.5f,  0.0f, // Second vertex

                       0.5f, -0.5f,  0.0f  // Third vertex

};  // Triangle vertices’ (x, y, z) coordinates

float *vtx_mapped_buf; // Address of the mapped buffer

void populate_buffer() {

 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), 

 0, GL_DYNAMIC_DRAW);

    ...

 // Type-2: query the buffer size

    int buf_size;

    glGetBufferParameteriv(GL_ARRAY_BUFFER, 

 GL_BUFFER_SIZE, &buf_size);

 // Type-2: map the buffer to main memory space

    vtx_mapped_buf = glMapBufferRange(GL_ARRAY_BUFFER, 

                       0, buf_size, GL_MAP_WRITE_BIT);

    memcpy(vtx_mapped_buf, vertices, buf_size);

    // Type-2: unmap the buffer

    glUnmapBuffer(GL_ARRAY_BUFFER);

}

(a) Populate the bound graphics buffer by latent mapping.

uint vertex_buffer_handle; // Graphics buffer handle

void draw() {

    ...

    // Type-2: allocate a buffer and generate its handle

    glGenBuffers(1, &vertex_buffer_handle);

    // Type-1: bind the buffer to context

    glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_handle);

    populate_buffer();

    ...

    // Type-3: draw the triangle

    glDrawArrays(GL_TRIANGLES, 0, 3);

    ...

}

1. The buffer’s handle is bound to the context

2. All subsequent 

operations do not 

need to specify the 

handle again

(b) Draw the triangle.

Figure 2: OpenGL ES code snippet for drawing a triangle.

vertices through a Type-1 API—glBindBuffer and a Type-

2 API—glMapBufferRange, and then instructs the GPU to

draw the triangle using a Type-3 API—glDrawArrays.

Type-1: Context Setting. To manipulate or use the allocated

graphics buffer, instead of passing the buffer’s handle to every

API call, the program first calls glBindBuffer, which binds

the handle to a thread-local context, i.e., the transparent, global

state of the thread. Then, all the subsequent buffer-related API

calls (e.g., the buffer population call glBufferData and the

drawing call glDrawArrays that uses the buffer data to draw)

will be directly applied to the bound buffer, without needing

to specify the buffer handle in their call parameters.

The above process is called context setting, which config-

ures critical information of the current thread’s context. This

programming paradigm avoids repeatedly transferring context

information from the main memory to the GPU, particularly

when the information is rarely modified. In general, the con-

text information that requires setup includes the current oper-

ation target, render configurations, and resource attributes.

The operation target identifies the object that subsequent API

calls will affect, e.g., in Figure 2 the buffer handle becomes

the operation target of subsequent API calls after it is bound

to the context. Render configurations define certain rendering

behaviors, e.g., whether to perform validation of pixel values

after a frame is rendered. Resource attributes correspond to

resources’ internal information, e.g., formats of images and

data alignment specifications.

Type-2: Resource Management. Resources involved in

graphics rendering include graphics buffers that store ver-

tice and texture data (“what to draw”), shader programs that

produce special graphics effects such as geometrical transfor-

mation (“how to draw”), and sync objects that set time-wise

sync points (“when to draw”). Graphics buffers hold most of

the graphics data and thus require careful management. To

populate a buffer with graphics data, there are mainly two

approaches—immediate copy and latent mapping.

With regard to immediate copy, data are passed into the

glBufferData API’s third call parameter and copied from

the main memory to the bound graphics buffer, i.e., the buffer

underlying vertex_buffer_handle. This approach is easy

to implement but involves synchronous, time-consuming

memory copies. In contrast, Figure 2 shows the latent map-

ping approach, where glBufferData is called but no data are

passed to it; glMapBufferRange instead maps the graphics

buffer to a main memory address, i.e., vtx_mapped_buf. The

data can then be directly stored in the mapped main memory

space, without needing to synchronously trigger memory-to-

GPU copies. The data are latently copied to the graphics

buffer by the GPU’s hardware copy engine (a DMA device)

usually when glUnmapBuffer is called to release the address

mapping, thus being more flexible and efficient.

Type-3: Drawing. After the contexts and resources are pre-

pared, the drawing phase is usually realized with just a few

API calls, e.g., glDrawArrays as shown in Figure 2. Such

APIs are all designed to be asynchronous in the first place, so

that the graphics processing throughput of a hardware GPU

can be maximized. When a drawing call is issued, the call is

simply pushed into the GPU’s command queue rather than

being executed synchronously.

Apart from the above operations for rendering a single

frame, graphics apps often need to render continuous frames

(i.e., animations) in practice. To this end, a modern graphics

app usually follows the delta timing principle [16] of graphics

programming, where the app measures the rendering time of

the current frame (referred to as the frame’s delta time) to

decide which scene should be rendered next. For example,

when a game app renders the movement of a game character,

the app would measure the delta time of the current frame to

compute how far the character should move (i.e., the charac-

ter’s coordinate change) in the next frame based on the delta

time and the character’s moving speed.
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Figure 3: Number of API calls issued

for rendering a single frame.
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Figure 5: Graphics data amount gener-

ated per second by top-100 3D apps.

Graphics APIs beyond OpenGL. While the above descrip-

tions focus on OpenGL (ES), we find that the API seman-

tics of other existing graphics frameworks (such as Vulkan)

have similar characteristics. Their APIs can also be cate-

gorized into the aforementioned three types. For example,

in Vulkan VKInstance is used for managing context infor-

mation, vkCreateBuffer is called for allocating buffer re-

sources, and vkCmdDraw issues drawing commands.

This is not surprising, but stems from a common GPU’s in-

ternal design. Like a CPU, a GPU usually leverages dedicated

state registers for determining the current operation targets

and parameters (i.e., contexts), based on which an array of

computation cores perform rendering and computing tasks in

parallel. Special high-bandwidth graphics memory is often

embedded in a GPU for holding a large amount of graphics

resources (e.g., vertex and texture), therefore mitigating the

memory wall issue observed in a CPU [53], i.e., the speed

disparity between memory accesses and computations. Cor-

respondingly, the three types of graphics API calls are then

used for manipulating these essential hardware components

throughout a rendering thread’s lifecycle.

2.2 Real-World Graphics Workloads

To obtain a deeper understanding of modern graphics work-

loads in terms of both control flow and data flow, we measure

the top-100 3D apps (which are all game apps) from Google

Play as of 11/20/2021 [51] by examining the distributions of

their API calls and the sizes of their generated graphics data.

We instrument vanilla Android 11’s system graphics library

to log the API calls and count the graphics data of a test app

during its run time. For each game app, we play a full game

set (whose specific operations depend on the app’s content) to

record the runtime API invocation data. The experiments are

conducted on a (middle-end) Google Pixel 5a device, which

is equipped with a Qualcomm Snapdragon 765G SoC, 6 GB

memory, 128 GB storage, and 1080p display.

Figure 3 shows that an average of 2,187 API calls are issued

for rendering a single frame. For most (88%) of the frames,

the number of API calls is larger than 1,000. Figure 4 depicts

the percentages of specific types of API calls. As shown,

the distribution is quite skewed—Type-1 and Type-2 occupy

the vast majority (around 94% on average), while Type-3

take up merely 6% on average. Additionally, we find that

despite being the majority, most Type-1 and Type-2 calls do

not have immediate effects on the final rendering results until

Type-3 calls are issued. For example, graphics data stored

in a graphics buffer are usually not used by the GPU before

certain drawing calls are issued.

With respect to data flow, there also exists considerable

disparity in the graphics data amount generated per second,

as indicated in Figure 5. While 90% of the graphics data

generated per second are less than 60 MB in size, the peak data

rate can be as high as 1.06 GB/second, revealing significant

data rate dynamics in real-world graphics workloads.

2.3 Implications for Mobile Emulation

Type-1 and Type-2 calls are relatively cheap when executed

natively, but this may not be the case in a virtualized environ-

ment. If a Type-1 or Type-2 call is synchronously executed on

the host GPU, it can be expensive to first exit the guest, then

wait for the host to execute the call, and then return back to

the guest. This “tromboning” process adds substantial latency

to what might otherwise be an inexpensive call, especially

when Type-1 and Type-2 calls are very frequent.

To mitigate the problem, an intuitive approach is using a

buffer to batch void API calls, i.e., calls that do not return any

values, so that not only the void Type-1 and Type-2 calls are

delayed, but the asynchronous nature of Type-3 calls (which

are all void calls) can also be exploited. However, the resulting

efficiency improvement is limited by the proportion of void

API calls, i.e., only 41.4% according to our measurement.

Thus, it is no wonder that GAE, which takes this approach to

improve efficiency, cannot smoothly run many common apps.

In hopes of fundamentally addressing the problem, we

make the following key observation—resource-related opera-

tions (involving all Type-2 and most Type-1 operations) are

fully handle-based. That is to say, these operations only in-

teract with indirect, lightweight resource handles in the main
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memory, rather than the actual resources lying in the GPU’s

graphics memory. As demonstrated in Figure 2, a resource

handle is merely an unsigned integer. In hardware GPU envi-

ronments, this greatly facilitates the manipulation of graphics

resources (without actually holding them in the main mem-

ory), thus avoiding frequently exchanging a large volume of

graphics data between the main memory and the graphics

memory. Note that the two memories are isolated hardware

components connected via a relatively slow PCI bus.

We can exploit this key insight to accelerate mobile emula-

tion, given that guest and host are also isolated by virtualiza-

tion. We “project” a selective subset of contexts and resource

handles, which are necessary for realizing actual rendering at

the host GPU, onto the address spaces of guest processes; the

resulting contexts after projection are termed shadow contexts.

With the help of shadow contexts and resource handles, most

(void and non-void) APIs can be asynchronously executed

at the host. Moreover, certain Type-1 and Type-2 API calls

(mostly used for querying context and resource information)

can be directly accomplished within the projection space,

completely eliminating their execution at the host.

3 System Overview

Figure 6 depicts Trinity’s system architecture. It uses virtu-

alization to isolate guest and host execution environments

to retain strong compatibility and security. At the heart of

Trinity lies a small-size graphics projection space, which is

allocated inside the memory of a guest app/system process.

Within the space, we maintain a special set of shadow contexts

and resource handles which correspond to a subset of control

contexts and resources inside a hardware GPU (cf. §4).

Once Type-1 or Type-2 API calls issued from a guest pro-

cess are executed in the projection space, the shadow contexts

and resource handles will reflect and preserve their effects.

Control flow then returns to the guest process for executing its

next program logic without synchronously waiting for host-

side execution of the API calls (as conducted by API remot-

ing). Meanwhile, the host contexts are asynchronously aligned

with the shadow contexts; mappings are asynchronously es-

tablished between resource handles and host resources.

Since synchronous host-side API execution is avoided,

rather than exiting to the host to deliver data, the host can

choose to asynchronously fetch the guest data required for

API execution from the guest memory space through polling

(cf. §6.1), thus reducing frequent VM Exits. Later when the

guest process issues Type-3 API calls, they are also asyn-

chronously executed at the host as they are designed to be

asynchronous. In this manner, the originally time-consuming

guest-host interactions can be effectively decomposed into

interleaved and mostly asynchronous guest-projection inter-

actions and projection-host interactions.

For example, when running the program in Figure 2, Trinity

directly generates a buffer handle upon the Type-2 API call
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Figure 6: Architectural overview of Trinity.

glGenBuffers, which is then sent to the host. When the pro-

gram finishes sending the handle, its control flow continues;

meanwhile, the host asynchronously allocates a buffer and

its handle by also calling glGenBuffers in a dedicated host

rendering thread using the host-side desktop OpenGL library,

whose APIs are a superset of OpenGL ES APIs.

The relation between the host handle and the guest one is

recorded in a hash table at the host. When glBindBuffer

(Type-1) is called with the guest handle, Trinity adjusts the

shadow context information of the currently bound buffer han-

dle, and then sends the bound guest handle to the host. When

the guest finishes sending the handle, the host asynchronously

looks up the corresponding host handle in the hash table, and

then calls glBindBuffer at the host to bind the host buffer

(handle) in the rendering thread.

When glMapBufferRange (Type-2) is called, Trinity al-

locates a guest memory space and returns it to the guest

program. When glUnmapBuffer (Type-2) is called, Trinity

transfers the data in the guest memory space to the host, as

no further modifications can be made to the data then. At the

host side, the real buffer is then asynchronously populated

with the data also through glMapBufferRange. Finally, upon

glDrawArrays (Type-3), Trinity asynchronously executes it

at the host rendering thread, so as to instruct the host GPU to

realize actual rendering with the graphics buffer’s data.

To sum up, Trinity’s projection space provides two key

advantages. First, it helps to avoid synchronous host-side

execution of APIs (as in API remoting), even for non-void

calls (such as glGenBuffers) that need to be processed im-

mediately, so that expensive VM Exits can also be reduced.

Second, it can resolve the API calls for querying context and

resource information, such as glGetBufferParameteriv
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in Figure 2, without sending them to the host. Quantitatively,

99.93% calls do not need synchronous host-side API exe-

cution, among which 26% are directly resolved at the guest

(cf. §8.3). Although the projection space can involve pro-

cessing certain calls twice—once at the guest and once at

the host, this is done with relatively cheap operations whose

extra costs are more than outweighed by the savings from

reduced synchronous host-side execution of the APIs and the

accompanied VM Exits.

To maximize Trinity’s graphics processing throughput, all

the above guest-side and host-side operations are coordinated

by an elastic flow control algorithm (§5). Furthermore, the

projection-host interactions are accomplished via a data tele-

porting method (§6) that attempts to maximize the data deliv-

ery throughput under high data and system dynamics.

4 Graphics Projection

We present the construction and maintenance of shadow con-

texts (§4.1) and resource handles (§4.2), i.e., the key data

structures that format the projection space.

4.1 Shadow Context

In §2.1, we have introduced that Type-1 APIs are usually used

to manipulate three types of context information: 1) operation

target, 2) render configurations, and 3) resource attributes.

Apart from the above, as shown in Figure 6, context infor-

mation in a real GPU environment also includes 4) rendered

pixels and 5) execution status. Here rendered pixels refer to

the rendered pixels stored in graphics memory, and execution

status is the current status of the GPU’s command queues.

For a shadow context, we carefully select to maintain

the following three types of context information: 1) oper-

ation target, 2) render configurations, and 3) resource at-

tributes. Consequently, with the above information, subse-

quent reads of context information can be directly fulfilled

with the shadow contexts without resorting to the host. The

shadow context is maintained based on Type-1 calls issued

by a guest process. For example, when the process calls

glBindBuffer (as shown in Figure 2) to bind a buffer han-

dle (vertex_buffer_handle) as the current operation tar-

get, the operation target maintained in the shadow context

(usually an integer) will be modified to the buffer handle.

The other two pieces of context information we choose

not to maintain, i.e., rendered pixels and execution status, are

related to a hardware GPU’s internal states. Managing such

information requires frequent interactions with the host GPU,

thus incurring prohibitively high overhead. If such informa-

tion is actually required, it will be retrieved from the host

synchronously. Fortunately, such cases occur with a pretty

low (0.07% on average) probability during an app’s rendering

(according to our measurement in §2.2). Even when such

cases occur, we make considerable efforts to minimize the

incurred time overhead by carefully designing the data tele-

porting method, which will be detailed in §6.

Similar to a CPU context, a rendering context is tightly

coupled with the thread model of an OS. At any given point

of time, a thread is bound to a single rendering context, while

a rendering context can be shared among multiple rendering

threads of a process to realize cooperative rendering. Thus,

in the graphics projection space of a process, we maintained

shadow contexts on a per-thread basis, while keeping a refer-

ence to the possible shared contexts.

4.2 Resource Handle

As introduced in §2.1, resources involved in graphics ren-

dering include graphics buffers, shader programs and sync

objects. Compared to contexts, the allocation of resource

handles and management of actual resources often require

more judicious data structure and algorithm design, as well

as guest-host cooperation, since they can easily induce in-

efficient memory usage and implicit synchronization, thus

impairing system performance.

Handle Allocation. As mentioned before, all the graphics

resources are managed through resource handles by modern

GPUs. Guided by this, when a guest process requests for a

resource allocation, we directly return a handle generated by

us, which is not backed with a real host GPU resource upon

handle generation. Then, after the control flow is returned

to the guest process, the host will perform actual resource

allocation in a transparent and asynchronous manner, and

record the mapping between the guest handle and the host

one in a host-side hash table. To make the guest-side handle

allocation efficient, we adopt a bitmap for managing each

type of resource handle, with which all the resource creation

and deletion can be done in O(1) time complexity, and we

can maintain good memory density through handle recycling.

Resource Management. After allocating resource handles

for a guest process, we also need to properly manage the ac-

tual resources underlying the allocated handles. In particular,

the management of buffer resources is critical to system per-

formance as they hold most of the graphics data. As discussed

in §2.1, there are two approaches to populating a graphics

buffer with data, i.e., immediate copy and latent mapping.

For the former, developers would call glBufferData and

pass the data’s memory address to the API to initiate copying

the data from the main memory to the graphics buffer. In

this case, we need to immediately transfer the data (upon the

API call) to the host as required by the API. For the latter,

as discussed in §3, the data transfer is conducted when the

guest memory space is unmapped (i.e., glUnmapBuffer is

called) by the guest process. When the data are transferred

to the host, we need to populate the actual host-side graphics

buffer with the data. To this end, we first ensure that the host

context is aligned with the shadow context so that the correct
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buffer is bound and populated. Then, to efficiently populate

the buffer, we copy the data to a graphics memory pool we

maintain at the host, which maps a pre-allocated graphics

memory space to a host main memory address also using

latent mapping. In this way, modern GPUs’ DMA copy engine

can still be fully utilized to conduct asynchronous graphics

buffer population without incurring implicit synchronization

(cf. §2.1). After this, the allocated guest memory space will

be released, avoiding redundant memory usages.

5 Flow Control

With the guest and host control flows becoming mostly de-

coupled with the help of the projection space, their execution

speeds also become highly uncoordinated. This is because

a guest process’ operations at the projection space usually

only involve lightweight adjustments to the shadow contexts

and resource handles, thus being much faster than host-side

operations (i.e., actual rendering using the hardware GPU).

At first glance, this should not raise any problems since

guest API calls that require (synchronous or asynchronous)

host-side executions can simply queue up at a guest block-

ing queue—if the queue is filled up, the guest process would

block until the host render engine finishes prior operations.

However, we find that in practice this could easily lead to

control flow oscillation. From the guest process’ perspective,

a large amount of API calls are first quickly handled by the

projection space when the data queue is not full. Soon, when

the queue is filled up, a subsequent call would suddenly take

a significantly longer time to complete as the queue is waiting

for the (slower) host-side actual rendering. The long process-

ing time further leads to a long delta time of the current frame

as discussed in §2.1. As a result, the guest process may gener-

ate abnormal animations following the delta timing principle,

e.g., a game character could move an abnormally long dis-

tance in just one frame due to the long delta time, leading to

poor user-perceived smoothness.

To resolve this problem, instead of solely relying on a

blocking queue, we orchestrate the execution speeds of con-

trol flows at both the guest and host sides. Our objective is

the fast reconciliation of the guest-side and host-side con-

trol flows, so that the overall performance of Trinity can be

staying at a high level. To this end, we design an elastic flow

control algorithm based on the classic MIMD (multiplicative-

increase/multiplicative-decrease) algorithm [31] in the com-

puter networking area, which promises fast reconciliation of

two network flows. To adapt MIMD to our graphics rendering

scenario, we regulate control flows’ execution speeds at the

fine granularity of each rendered frame.

In detail, when a guest rendering thread finishes all the

graphics operations related to a frame’s rendering, we let

it sleep for Ts milliseconds and wait for the host GPU to

finish the actual rendering. Ts is then calculated as Ts =
N′

N
×

(Th −Tg), where N′ is the current difference in the number

of rendered frames between the guest’s and host’s rendering

threads, N is the desirable maximum difference set by us (N is

currently set to 3 in Trinity as we use the widely-adopted triple

buffering mechanism for smooth rendering at the host), Th is

the host’s average frame time (for executing all the graphics

operations related to a frame) for the nearest N frames, and

Tg is the guest’s average frame time also for the nearest N

frames. Th and Tg are calculated by counting each frame’s

rendering time at the host and the guest sides.

Specifically, if N′
> N (i.e., the guest is too fast), Ts will

be multiplicatively increased to a longer time to approximate

the host’s rendering speed. Otherwise, Ts will be multiplica-

tively decreased, striving to maintain the current frame num-

ber difference at the desirable value. Typically, Ts lies between

several milliseconds and tens of milliseconds depending on

the guest-host rendering speed gap. In this way, Trinity can

quickly reconcile the guest-side and host-side control flows.

6 Data Teleporting

Fast guest-host data delivery is critical for keeping projection-

host interactions efficient. To realize this, we first analyze

system and data dynamics (§6.1) that constitute a major ob-

stacle to the goal, and then describe the workflow of our data

teleporting method (§6.2), which leverages static timing anal-

ysis to accommodate the dynamic situations.

6.1 System and Data Dynamics

When control flows are synchronously accompanied by data

flows, the guest-host data delivery mechanism can be very

simple. For example, in API remoting, VM Exits/Enters are

leveraged to achieve control handover and data exchange at

the same time. In Trinity, however, data flows are decoupled

from control flows (thanks to the graphics projection space),

so we are confronted with complicated situations as well

as design choices. Among these data flows, projection-host

data exchanges are the most likely to become a performance

bottleneck due to their crossing the virtualization boundary.

By carefully analyzing the projection-host data exchanges

when running top-100 3D apps, we find that the major chal-

lenge of rapidly delivering them lies in the high dynamics of

system status and data volume (abbreviated as system dynam-

ics and data dynamics respectively). With regard to system

dynamics, the major impact factors are the available memory

bandwidth and current CPU utilizations, which are not hard to

understand. As to data dynamics, call data of APIs that require

synchronous host execution are sensitive to end-to-end latency

(i.e., the delay until host-side executions of the calls), while

asynchronous ones require high processing throughput. Fur-

ther, we pay special attention to distinct data sizes and bursty

data exchanges (i.e., bulk data exchange during a short period

of time) which are common in modern graphics workloads as
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Figure 7: Workflow of data teleporting.

shown in Figure 5. In general, we can classify the dynamic

situations into ∼16 patterns, roughly corresponding to the

combinations of 1) high/low CPU utilization, 2) high/low

available memory bandwidth, 3) synchronous/asynchronous

API call data, and 4) large/small data sizes.

To accommodate the dynamic situations, our key observa-

tion is that the guest-host data delivery process can be decom-

posed into three stages, i.e., data aggregation, data persistence

and arrival notification, as the data travel through the guest

user space, the guest kernel space and the host. Moreover, in

each of the stages, we find that there are mainly two different

data delivery strategies, which make opposing tradeoffs under

different dynamic situations as discussed below.

• Data Aggregation. As exercised in GAE, aggregating non-

void API calls with a user-space buffer can usually reduce

the frequency of user/kernel switches. This is also the case

for Trinity since host-side execution of API calls is mostly

asynchronous. However, if the data to be transferred are

particularly large (e.g., in bursty data exchanges), mem-

ory copies during data aggregation could bring larger time

overhead compared to user/kernel switches; hence, the data

should be delivered to the kernel as early as possible with-

out any aggregation.

• Data Persistence. For the data of a guest rendering thread,

we need to ensure their persistence until they are fetched

by the host. To this end, a simple strategy is blocking the

thread’s control flow until the data delivery is done (as

adopted by GAE). In Trinity, we realize that there is an

alternative strategy by using a special persistent space (e.g.,

in the guest kernel) to maintain the guest thread’s data,

so that there is no need to block the thread’s control flow.

Intuitively, this strategy is most suited to small data delivery,

which does not incur long-time memory copies.

• Arrival Notification. To notify the host to fetch the data that

have arrived, we can simply leverage the VM Exit-based

strategy (adopted by GAE), whose incurred delays can be as

low as tens of microseconds. This, however, can lead to the

guest core’s being completely stopped. Alternatively, for

asynchronous data fetching, we can utilize a data polling-

based strategy at the host, which does not incur the guest

world’s stopping but would introduce millisecond-level

delay due to the thread sleeping and CPU scheduling delays

of a common time-sharing host OS.

6.2 Workflow

Given that there is no single strategy that can accommodate

every dynamic situation, we implement in Trinity all the com-

binations of strategies. Almost all of them are implemented at

the guest side, except that data polling is realized by the host.

To decide the proper strategy during each stage of data de-

livery, we adopt the static timing analysis [12] method, which

calculates the expected delay of each timing step (i.e., stage)

incurred by different data delivery strategies. As mentioned

before, the stages include data aggregation, data persistence,

and arrival notification. Suppose a guest app wishes to deliver

a data chunk of size Sdata, the current copy speed of the guest

memory is Vguest , the current copy speed of the host memory

is Vhost . Below we elaborate on the workflow of data teleport-

ing which selects the suitable strategy in each data delivery

stage based on static timing analysis.

Data Aggregation. As shown in Figure 7, if the data to be

delivered are asynchronous API call data (i.e., call data of

APIs that do not need synchronous host-side execution), we

can aggregate them in a user-space buffer to reduce projection-

host interactions. However, aggregating the data in the buffer

incurs a memory copy, resulting in a delay of
Sdata
Vguest

. Otherwise,

an individual write system call will be invoked to write the

data to our kernel character device driver (cf. §7), whose time

overhead is Twrite. Obviously, if
Sdata
Vguest

< Twrite, we choose to

aggregate the data; else, we choose not to.

In contrast, for synchronous API call data we should always

avoid data aggregation since synchronous calls should be

immediately delivered to the host for executions. Then, along

with these non-aggregation data, the aggregation buffer will

also be written to our kernel driver and then cleared. We next

enter the data persistence stage.

Data Persistence. In this stage, our kernel driver will decide

whether to block the guest app’s control flow, or utilize an ad-

ditional persistent space for ensuring the persistence of a guest

thread’s data until the data are fetched by the host. Unlike the

user-space data aggregation buffer that serves to reduce the

frequency of entering the kernel and interacting with the host,

the kernel persistent space allows the app’s control flow to

quickly return to the user space for executing its next logic.

In practice, if we resort to the control flow blocking strategy,

the blocking time will consist of four parts: 1) the delay of

adding the data to a ring buffer shared by the guest and the

host for realizing data delivery—Tring, 2) the delay of host

notification—Thn, 3) the time for a host-side memory copy to

fetch data (detailed later in Data Fetching)—
Sdata
Vhost

, and 4) the
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delay of host-to-guest notification through interrupt injection

for returning the control flow to the guest app—Tgn. Here

the ring buffer does not directly store the data; instead, to

transfer a large volume of data, it holds a number of (currently

1024) pointers, each of which points to another ring buffer of

the same size, whose buffer item stores the data’s physical

addresses. Therefore, the blocking strategy’s time overhead

Tblocking is the sum of them: Tblocking = Tring+Thn+
Sdata
Vhost

+Tgn

Here we encounter a challenge: Thn is dependent on the arrival

notification strategy which we have not decided yet. Fortu-

nately, we find that when the control flow blocking strategy is

adopted, the app thread’s execution flow has already stopped.

Thus, a VM Exit’s side effect no longer matters in this case,

but its advantage of short delay makes it an appropriate choice.

We then naturally take the VM Exit-based arrival notification

strategy, so Thn generally equals the delay of a VM Exit.

On the other hand, if we choose to leverage a kernel per-

sistent space for data persistence, the time overhead comes

from 1) a memory copy to the persistent space and 2) adding

the data to the ring buffer, i.e., Tpersistent =
Sdata
Vguest

+Tring. After

the above are finished, the guest app’s control flow is immedi-

ately returned to its user space for executing its next program

logic, while the host asynchronously polls for data arrival and

fetches data (as to be detailed later).

Based on the calculated Tblocking and Tpersistent , we can then

choose the data persistence strategy with a smaller delay. Also,

for synchronous API call data, we directly choose the blocking

strategy because during synchronous calls the control flow

is naturally blocked until host-side executions. With respect

to the parameters used in the above analysis, they can be

either directly obtained (e.g., Sdata) or statistically estimated

by monitoring their recent values and calculating the average

(e.g., Vguest and Vhost ).

Arrival Notification. After the data are added to the ring

buffer, we then need to choose a proper strategy for notifying

the host of data arrival. In practice, we find that the arrival

notification strategy is closely related to the data persistence

strategy. Specifically, control flow blocking is particularly

sensitive to the arrival notification delay, and thus should be

coupled with VM Exits. On the contrary, the persistent space-

based strategy allows arrival notification and data fetching to

be asynchronous, and thus the polling-based strategy should

be selected; the polling is performed by a host-side data fetch-

ing thread (referred to as Data Fetcher) every millisecond.

Data Fetching. When Data Fetcher is notified of data ar-

rival, it would read the ring buffer to acquire the data. If the

data are contiguous in the guest physical memory (and thus

contiguous in the host virtual memory), the data can be di-

rectly accessed without further memory copy; otherwise, they

should be copied to a contiguous host buffer. The fetched

data are then distributed to the host render engine’s rendering

threads for realizing actual rendering.

7 Implementation

To realize Trinity, we make multiple modifications to the guest

Android system and QEMU. First, we find that Android (as

well as many UI-centric systems) clearly separates its versa-

tile user-level graphics frameworks/libraries [6, 49] from the

underlying system graphics library that realizes actual ren-

dering. This enables us to effectively delegate every graphics

API call by customizing only the system graphics library. At

the guest user space, we replace the original system graph-

ics library (i.e., libGLES) with our customized one, which

maintains the projection space and conducts flow control. The

library exposes the standard OpenGL ES interfaces to apps,

allowing them to seamlessly run without modifications.

To execute the delegated Type-1 and Type-2 APIs in the

projection space, we implement all of them in the system

graphics library, involving a total of 220 Type-1 APIs, 128

Type-2 APIs and 10 Type-3 APIs, which fully cover the stan-

dard OpenGL ES APIs from OpenGL ES 2.0 to the latest

OpenGL ES 3.2. Additionally, we implement all the 54 An-

droid Native Platform Graphics Interface (EGL) [5] functions

to interface with the Android native window system. In prac-

tice, many APIs have similar functions, simplifying their im-

plementations, e.g., glUniform has 33 variants used for data

arrays of different sizes and data types, such as glUniform2f

for two floats and glUniform3i for three integers.

At the guest’s kernel space and the host, we realize data

teleporting via a QEMU virtual PCI device and a guest kernel

driver. As a typical character device driver, our kernel driver

mounts a device file in the guest filesystem, where the user-

space processes can read from and write to so as to achieve

generic data transferring. With this, API calls that require

host-side executions are compacted in a data packet and dis-

tributed to our host-side render engine. The render engine

then leverages the desktop OpenGL library to perform actual

rendering using the host GPU.

Trinity is implemented on top of QEMU 5.0 in 118K lines

of (C/C++) code (LoC). In total, the projection space, flow

control and data teleporting involve 113K LoC, 220 LoC

and 5K LoC, respectively. Among all the code, only around

2K LoC are OS-specific, involving kernel drivers and native

window system interactions.

Trinity hosts the Android-x86 system (version 9.0). Since

our modifications to QEMU and Android-x86 are dynamic

libraries and additional virtual devices, they can be easily ap-

plied to higher-version QEMU and Android. Trinity can run

on most of the mainstream OSes (e.g., Windows 10/11 and ma-

cOS 10/11/12) with both Intel and AMD x86 CPUs. It utilizes

hardware-assisted technologies (e.g., Intel VT and AMD-V)

for CPU/memory virtualization. For the compatibility with

ARM-based apps, Trinity incorporates Intel Houdini [29] into

the guest system for dynamic binary translation.
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8 Evaluation

We evaluate Trinity with regard to our goal of simultaneously

maintaining high efficiency and compatibility. First, we de-

scribe our experiment setup in §8.1. Next, we present the

evaluation results in §8.2, including 1) Trinity’s efficiency

measurement with standard 3D graphics benchmarks, 2) Trin-

ity’s smoothness situation with the top-100 3D apps from

Google Play, and 3) Trinity’s compatibility with 10K apps

randomly selected from Google Play. Finally, we present the

performance breakdown in §8.3 by removing each of the three

major system mechanisms—projection space, flow control

and data teleporting.

8.1 Experiment Setup

To understand the performance of Trinity in a comprehen-

sive manner, we compare it with six mainstream emulators,

including GAE, QEMU-KVM, VMware Workstation, Blues-

tacks, and DAOW, as well as Windows Subsystem for Android

(WSA)—a Hyper-V-based emulator released in Windows 11.

Their architectures and graphics stacks are shown in Table 1.

We use their latest versions as of Dec. 2021.

Software and Hardware Configurations. Regarding the

configurations of these emulators, we set up all their instances

with a 4-core CPU, 4 GB RAM, 64 GB storage, and 1080p

display (i.e., the display width and height are 1920 pixels and

1080 pixels, respectively) with 60 Hz refresh rate. However,

since WSA does not allow customizing configurations, we use

its default settings which utilize the host system’s resources

to the full extent. For other options (e.g., network) in the

emulators, we also leave them as default.

Our evaluation is conducted on a high-end PC and a middle-

end PC. The former has a 6-core Intel i7-8750H CPU @2.2

GHz, 16 GB RAM (DDR4 2666 MHz), and a NVIDIA GTX

1070 MAX-Q dedicated GPU. The latter has a 4-core Intel i5-

9300H CPU @2.4 GHz, 8GB RAM (DDR4 2666 MHz), and

an Intel UHD Graphics 630 integrated GPU. Their storage

devices are both 512 GB NVME SSD. Regarding the host OS,

we run most of the abovementioned emulators on Windows

11 (latest stable version) given that WSA, Bluestacks, and

DAOW are Windows-specific. However, since QEMU-KVM

is Linux-specific, we run it on Ubuntu 20.04 LTS which is

also the latest stable version as of Dec. 2021.

Workloads and Methodology. We use three different work-

loads to drive the experiments, in order to dig out the multi-

aspect performance of Trinity. First, we use representative

3D graphics benchmark applications: 3DMark [34] and

GFXBench [32], both of which are widely used for evaluating

mobile devices’ GPU performance. Together they provide

three specific benchmarks, which are referred to as Sling-

shot Unlimited Test 1 (3DMark), Slingshot Unlimited Test

2 (3DMark) and Manhattan Offscreen 1080p (GFXBench).

Table 1: Comparison of the evaluated emulators.

Mobile Emulator System Architecture Graphics Stack

GAE [23]
x86 Android on

customized QEMU
API remoting

WSA [41]
x86 Android on

Windows Hyper-V
API remoting

QEMU-KVM [46]
Android-x86

on QEMU
Device emulation

VMware

Workstation [52]

Android-x86 on

VMware Workstation
Device emulation

Bluestacks [14]
Android-x86

on VirtualBox
Proprietary

DAOW [55]
Direct Android

emulation on Windows

API translation

with ANGLE [22]

These benchmarks generate complex 3D scenes in an off-

screen manner, i.e., the rendering results are not displayed on

the screen and thus is not limited by the screen’s refresh rate,

so the graphics system’s full potential can be tested. In detail,

we run each benchmark on every emulator and hardware envi-

ronment for five times, and then calculate the average results

together with the error bars. Also, since the benchmarks come

with Windows versions as well, we further run them directly

on Windows to figure out the native hardware performance.

Second, to understand Trinity’s performance on real apps,

we run the top-100 3D (game) apps from Google Play as

of 11/20/2021 [51], which are the same 100 apps discussed

in §2.2. Concretely, for each of the apps, one of the authors

manually runs a (same) full game set on every emulator, and

repeats the experiment five times. During an app’s running, we

log the FPS (Frames Per Second) values of the app, which is a

common indicator of a mobile system’s running smoothness.

We then use the average FPS value of the five experiments

as the final FPS value of the app. Generally, we find that for

all the studied apps, the standard deviations of the five experi-

ments are all less than 4 FPS, indicating that the workloads

are mostly consistent among different experiments. Since all

the apps adopt the V-Sync mechanism to align their framer-

ates with the screen’s refresh rate (which is 60 Hz), their FPS

values are always smaller than 60.

Third, to further evaluate Trinity’s compatibility, we ran-

domly select 10K apps from Google Play in Trinity. We use

the Monkey UI exerciser [24] to generate random input events

for each app for one minute, and monitor possible app crashes.

8.2 Evaluation Results

Graphics Benchmark. Figure 8 and Figure 9 illustrate the

graphics benchmarks’ results obtained on the high-end PC

and the middle-end PC, respectively. Results of DAOW and

WSA are not complete because they cannot successfully run

all the benchmarks due to missing graphics APIs or abnormal

API behaviors as complained by the benchmark apps. As

shown, compared to the other emulators, Trinity can achieve

the best efficiency on all the three benchmarks with both PCs.
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Figure 8: Benchmark results on the high-end PC.

Native PC Trinity DAOW Bluestacks GAE VMware WSA QEMU-KVM0

10

20

30

40

50

60

70

Fr
am

es
 P

er
 S

ec
on

d

Slingshot Unlimited Test 1 (3DMark)
Slingshot Unlimited Test 2 (3DMark)
Manhattan Offscreen 1080p (GFXBench)

Figure 9: Benchmark results on the middle-end PC.

Specifically, on the high-end PC that is equipped with a

dedicated GPU, Trinity can outperform DAOW by an average

of 40.5%, and reach 93.3% of the high-end PC’s native hard-

ware performance. In particular, for Slingshot Unlimited Test

1 we can achieve 110% native performance. This is attributed

to the graphics memory pool (§4.2) maintained by Trinity at

the host which can fully exploit the host GPU’s DMA capa-

bility. Instead, the native version of the benchmark leverages

synchronous data delivery into the GPU rather than a DMA-

based approach, causing suboptimal performance. Further on

the middle-end PC, we observe that Trinity can outperform

the other emulators by at least 12.7%, indicating that Trinity

can still maintain decent efficiency even on an integrated GPU

with much poorer performance.

Top-100 3D Apps. Figure 10 depicts the average FPS of

the top-100 3D apps from Google Play on different emulator

platforms, when the apps are ranked by their FPS values on

the corresponding emulator. Particularly, if an app cannot be

successfully executed on (i.e., is incompatible with) an em-

ulator, its FPS value is taken as zero. Thus, the FPS values

can reflect both the compatibility and efficiency of different

emulators. In this regard, Trinity outperforms the other emu-

lators by an average of 22.4%∼538% on the evaluated PCs.

We next look into the compatibility and efficiency aspects of

the evaluated emulators, respectively.

For compatibility, the numbers of compatible apps of Trin-

ity, DAOW, Bluestacks, GAE, WSA, VMware, and QEMU-
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(a) High-end PC.
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(b) Middle-end PC.

Figure 10: Average FPS of the top-100 3D apps across dif-

ferent emulators on the high-end and middle-end PCs. The

“Best” line represents the highest FPS among the evaluated

emulators of each app. If an app cannot run normally on an

emulator, its corresponding FPS value is taken as zero.

KVM are 100, 82, 89, 91, 55, 35 and 36, respectively. Delv-

ing deeper, we find that the root causes of other emulators’

worse performance vary significantly. In detail, VMware and

QEMU-KVM show the worst compatibility, mostly because

their guest-side graphics stacks are both built atop the open-

source desktop Linux graphics library Mesa [39], whose API

behaviors sometimes differ from that of a typical Android

graphics library. For GAE, its incompatibility with apps in

fact roots in its poor efficiency—many incompatible apps

become unresponsive for a long time during a game set, thus

leading to Application Not Responding (ANR) [4]. For WSA,

the problem is generally the same as GAE, as we find that

WSA reuses most of the GAE’s host-side and guest-side sys-

tem components. Differently, its lack of Google Play Service

(essential for many apps’ running) in the guest system intro-

duces more compatibility issues. For Bluestacks, its stable

version runs an outdated Android 7.0 guest system, and thus

cannot run some recent apps. Notably, despite the selective

translation of system calls (cf. §1.1) that compromises com-

patibility, DAOW’s compatibility with the 100 game apps is
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only slightly worse than GAE, because it focuses on translat-

ing system calls frequently used by games [55].

For efficiency, we conduct a pairwise comparison between

Trinity and each of the emulators in terms of the FPS of the

apps that Trinity and the compared emulator can both suc-

cessfully execute. On the high-end PC, Trinity outperforms

DAOW, Bluestacks, GAE, WSA, VMware and QEMU-KVM

in terms of the compatible apps by an average of 6.1%, 9.8%,

164.8%, 34.1%, 8.6%, and 132.2%, respectively. We observe a

significant visual difference between Trinity and GAE, WSA,

and QEMU-KVM across all apps. We observe less visual dif-

ference between Trinity and DAOW, Bluestacks, and VMware

for many apps. However, the visual difference is very notice-

able especially on apps where Trinity performs more than 15

FPS better, for which there were 9, 12, and 5 apps for DAOW,

Bluestacks, and VMware, respectively. Regarding the average

FPS values of individual apps, we find that Trinity shows the

best efficiency on 76 of the apps. For the 24 apps that Trinity

shows worse efficiency, we find that the differences in the

apps’ average FPS values are all less than 6 FPS, with 12

of them are in fact less than 1 FPS. On these apps, we find

that there is not any notable smoothness difference between

Trinity and the emulators that yield the best FPS.

Similar situations can also be observed on the middle-end

PC (as demonstrated in Figure 10b). Trinity outperforms

DAOW, Bluestacks, GAE, WSA, VMware and QEMU-KVM

on the middle-end PC in terms of the compatible apps by an

average of 4.9%, 16.1%, 168.7%, 84.6%, 17%, and 137.7%,

respectively. Also, although there are more (42) apps where

Trinity does not yield the best efficiency, the FPS differences

are still mostly insignificant, with 36 of them being less than

5 FPS. For the remaining 6 apps, DAOW has the best FPS

and outperforms Trinity by 6 to 9 FPS, though we could not

perceive any visual difference between the two. Careful ex-

amination of the apps’ runtime situations shows that they tend

to heavily stress the CPU as its graphics scenes involve many

physics effects such as collisions and reflections, which re-

quire the CPU to perform heavy computations such as matrix

transformations. Thus, DAOW’s directly interfacing with the

hardware CPU without the virtualization layer allows it to

perform better than Trinity (as well as the other emulators),

particularly given the middle-end PC’s rather weak CPU. In

comparison, Trinity performs better than DAOW for all the 6

apps on the high-end PC.

Compatibility with Random 10K Apps. For the apps ran-

domly selected from Google Play, we can successfully install

all of them and run 97.2% of them without incurring app

crashes. For the apps we cannot run, we find that some (2.3%)

of them have also exhibited crashes on real devices; In addi-

tion, 0.43% require special hardware that Trinity currently has

not implemented, e.g., GPS, NFC and various sensors, which

is not hard to fix given the general device extensibility of

QEMU that Trinity is built on. Finally, the remaining 0.07%

seem to actively avoid being run in an emulator by closing

themselves when they notice that certain hardware configura-

tions (e.g., the CPU specification listed in /proc/cpuinfo)

are that of an emulator as complained in their runtime logs.

8.3 Performance Breakdown

To quantitatively understand the contributions of the proposed

mechanisms to Trinity’s efficiency, we respectively remove

each of the three major mechanisms of Trinity (i.e., projection

space, flow control and data teleporting), and measure the re-

sulting efficiency degradations when running the top-100 3D

apps on the high-end PC. In detail, removing projection space

degrades Trinity to API remoting, whose guest-host control

and data exchanges are still backed by our data teleporting

mechanism. Removing data teleporting disables all the static

timing analysis logics apart from data aggregation, which al-

lows us to retain at least the data transferring performance of

GAE since it also adopts a moderate buffer to batch void API

calls. For data persistence and arrival notification, we adopt

control flow blocking and VM Exit following GAE’s design.

Further, to fully demonstrate the efficiency impacts of the

three mechanisms, we also measure the performance break-

down when the maximum framerate restriction (which is 60

FPS) of the apps is removed. Note that we do not remove

this restriction when evaluating the top-100 3D apps in §8.2

since this requires source code modifications to the emulators,

while many of the emulators are proprietary (e.g., DAOW

and Bluestacks). Figure 11 depicts the average FPS values

of the top-100 3D apps in the breakdown experiments with

the 60-FPS framerate restriction, while Figure 12 shows the

results without the framerate restriction.

Projection Space. After the projection space is removed, the

average FPS drops by 6.1× (8.6×) with (without) the framer-

ate restriction, providing the most significant efficiency bene-

fits. This is not surprising as our in-depth analysis of the API

call characteristics (by instrumenting our system graphics li-

brary as discussed in §2.2 during the breakdown experiments)

shows that with the projection space, 99.93% of graphics API

calls do not require synchronous host-side executions. The

remaining 0.07% API calls are Type-1 calls related to the

context information we do not maintain in shadow contexts,

including the rendered pixels and execution status of a GPU

as discussed in §4.1.

Among these asynchronously-executed calls, 26% are di-

rectly resolved at the projection space (with our maintained

context and resource information), fundamentally avoiding

their needs for any host-side executions. Such calls are mostly

related to context manipulation and context/resource informa-

tion querying. For the remainder (74%), they involve APIs

for resource allocations and populations, as well as drawing

calls. We also measure the memory consumption of the added

projection space when running the top-100 3D apps by mon-

itoring the maximum memory consumed by our provided
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Figure 11: Performance breakdown with

regard to the top-100 3D apps with fram-

erate restriction.
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Figure 12: Performance breakdown with

regard to the top-100 3D apps without

framerate restriction.
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Figure 13: Throughput of data teleporting

and goldfish-pipe, with one and two

threads.
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Figure 14: Throughput of data teleporting

and goldfish-pipe, with three and four

threads.
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Figure 15: Throughput of data teleporting

using strategy exhaustion and static tim-

ing analysis, with one and two threads.
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Figure 16: Throughput of data teleporting

using strategy exhaustion and static tim-

ing analysis, with three and four threads.

system graphics library at the guest side. We find that the

projection space only takes an average of 466 KB (at most

1021 KB) memory for an app. The memory consumption is

small because the shadow contexts and resource handles are

mostly small integers, and our careful resource management

has prevented redundant memory usages.

Flow Control. On the other hand, flow control contributes

2.7% (5%) FPS improvement on average with (without) the

framerate restriction. This is because flow control mainly

serves to mitigate the control flow oscillation problem (cf.

§5), thus contributing less to the running smoothness as mea-

sured by FPS. To quantify the actual effects of flow control,

we further measure the occurrences of control flow oscil-

lations during the apps’ running. As a result, without flow

control, control flow oscillation occurs 20× more frequently

on average. When that happens, as discussed in §5, the apps’

animations will look extremely unsmooth from users’ per-

spective since many essential frames of the animations are

skipped (i.e., not rendered) by the apps as dictated by the delta

timing principle, while the total number of frames rendered

per second (i.e., FPS) remains mostly unchanged.

Data Teleporting. Finally, when data teleporting is disabled,

the fixed data delivery strategy cannot well adapt to system

and data dynamics, leading to 1.7× (2.2×) FPS degradation

with (without) the framerate restriction. To demystify the effi-

ciency gains brought by data teleporting, we further examine

its throughput under diverse system and data dynamics on

the high-end PC. Specifically, we develop a benchmark app

that synthesizes data chunks ranging from 4 KB (a contin-

uous memory page space) to 128 MB, and doubles the size

for each successive experiment. In each experiment, the app

writes the data chunk to our kernel character device file (cf.

§7) to transfer it to the host 1,000 times with one, two, three,

or four threads; here the number of threads varies from one

to four (the number of the emulator’s CPU cores) to mimic

different system dynamics. By measuring the time consumed

for data transfer, we can calculate the final throughput result.

In comparison, we conduct the same experiments on GAE’s

guest-host I/O pipe called goldfish-pipe, which is GAE’s

core infrastructure for sending API call data from the guest to

the host and realizing API remoting. To this end, we customize

GAE to include a dedicated graphics API for throughput
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measurement, which our benchmark app can call to transfer

guest data to the host as described above. This API is made

to be a void API so that GAE’s buffer for batching void APIs

can take effect. Consequently, as shown in Figure 13 and

Figure 14, data teleporting’s throughput clearly exceeds that

of goldfish-pipe under all the data and thread settings. On

average, data teleporting’s throughput is 5.3 times larger than

that of goldfish-pipe.

Furthermore, we wish to know the effectiveness of static

timing analysis. For this purpose, we measure the perfor-

mance of the data teleporting mechanism using the above

experiments when we adopt every possible strategy. Then,

we compare the highest throughput produced by the above

strategy exhaustion with that produced by the static timing

analysis. As shown in Figure 15 and Figure 16, the through-

put values produced by strategy exhaustion and static timing

analysis are very close (4% average deviation). More in detail,

static timing analysis can make the most suitable strategy

choice in 95.4% of the data delivery tasks.

9 Related Work

Commercial Mobile Emulators. A plethora of commercial

mobile emulators have similar architectures to the ones we

evaluate in §8. For instance, Anbox [3], which directly runs

Android’s Framework layer on a Linux PC, leverages the con-

tainer technique to achieve lightweight guest-host isolation,

and reuses GAE’s graphics stack—all the guest-side graph-

ics operations are sent to a host-side daemon for execution,

thus requiring synchronous inter-process communications.

Accordingly, its efficiency is similar to that of GAE.

LDPlayer [35], MEmu [38], NoxPlayer [42] and Genymo-

tion [20] all adopt the AOVB (Android-x86 on VirtualBox)

architecture (as in Bluestacks). To realize graphics rendering,

they also reuse some of the graphics libraries of GAE, e.g.,

libGLESv2_enc at the guest that encodes OpenGL ES API

calls into a data packet, and ANGLE [22] at the host that

translates guest-side OpenGL ES calls to desktop OpenGL

or Direct3D calls. Prior measurements [13, 55] show that the

performance of such AOVB-based emulators is close to that

of Bluestacks, probably due to their similar architectures.

GPU Virtualization. In PC/server virtualization, GPU mul-

tiplexing is typically achieved through hardware-assisted

GPU passthrough [1, 2] or mediated passthrough [27, 30, 43],

which allow a virtual machine (VM) to directly access the

host GPU by remapping its DMA channels and interrupts to

the guest. Differently, GPU passthrough monopolizes the host

GPU, while the mediated approach allows sharing the GPU

among multiple VMs through GPU context isolation.

However, the substantial differences between the graphics

stacks of desktop OSes and mobile OSes significantly hinder

their adoption by mobile emulators, as host GPUs’ drivers are

missing in mobile systems and developing them for mobile

environments is extremely complicated (since mainstream

desktop GPUs’ specifications are often proprietary). Hence,

we take a completely different approach of graphics projection

to address the problem of multiplexing the host GPU, which

is agnostic to the underlying hardware specifications and thus

should also be beneficial to PC/server GPU virtualization.

Cross-OS and Cross-Device Graphics Stacks. Trinity fo-

cuses on Android emulation on a PC, while several researches

have explored running iOS apps on Android graphics stacks

based on their similarities in OpenGL ES libraries [7,8]. This

suggests that Trinity’s graphics projection mechanism might

also be applicable to the emulation of iOS apps on a PC.

Also, various approaches remote graphics processing from

one device to another over a network [9–11, 25, 47, 48]. For

them, data exchanges over network often constitute a ma-

jor bottleneck, which is similar to the bottleneck of frequent

cross-boundary control/data exchanges in the virtualization

setting. Thus, our idea of decoupling guest/host control and

data flows via graphics projection should also be useful to

relevant studies and applications, e.g., cloud/edge gaming.

10 Conclusion

In this paper we present the design, implementation, perfor-

mance, and preliminary deployment of the Trinity mobile

emulator. It substantially boosts the efficiency of mobile emu-

lation while retaining high compatibility and security through

graphics projection, a novel approach that minimizes the cou-

pling between the guest-side and host-side graphics process-

ing. This unique design, together with strategic flow control

and data teleporting, make Trinity a first-of-its-kind emula-

tor that can smoothly run heavy 3D mobile games (achiev-

ing near-native hardware performance) and meanwhile retain

comprehensive app support and solid guest-host isolation.

As part of a major commercial Android IDE, Trinity is

expected to be used by millions of Android developers in

the near future, contributing vibrantly to the ecosystem. We

believe that many lessons and experiences gained from this

work could also be applied to (graphics-heavy) PC emulation

and cloud/edge gaming, as to be explored in our future work.
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A Artifact Appendix

Abstract

Trinity’s artifact is publicly available at GitHub. To facilitate

developing and using Trinity, we provide step-by-step instruc-

tions in the form of both documentations and videos. Please

refer to our README file at https://github.com/Tri

nityEmulator/TrinityEmulator for details.

Scope

The artifact can be used to reproduce all the major results,

including those of the graphics benchmarks and 3D apps.

Contents

Trinity’s artifact includes code of the host emulator, binary of

the guest Android system, and our evaluation scripts/data.

Hosting

We host the code/binary and data in two repositories (both in

the main branch). We also provide a DOI for the artifact.

• Trinity Code and Binary.

Link: https://github.com/TrinityEmulator/Tri

nityEmulator.

• Evaluation Data and Figure Plotting Script.

Link: https://github.com/TrinityEmulator/Eva

luationScript.

• DOI for the Artifact.

DOI: 10.5281/zenodo.6586575
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