
vSoC: Efficient Virtual System-on-Chip on
Heterogeneous Hardware

Jiaxing Qiu1, Zijie Zhou1, Yang Li1, Zhenhua Li1B, Feng Qian2
Hao Lin1,3, Di Gao1, Haitao Su1, Xin Miao1, Yunhao Liu1, Tianyin Xu3

1Tsinghua University 2University of Southern California 3University of Illinois Urbana-Champaign

Abstract
Emerging mobile apps such as UHD video and AR/VR access
diverse high-throughput hardware devices, e.g., video codecs,
cameras, and image processors. However, today’s mobile
emulators exhibit poor performance when emulating these
devices. We pinpoint the major reason to be the discrepancy
between the guest’s and host’s memory architectures for
hardware devices, i.e., the mobile guest’s centralized memory
on a system-on-chip (SoC) versus the PC/server’s separated
memory modules on individual hardware. Such a discrep-
ancy makes the shared virtual memory (SVM) architecture
of mobile emulators highly inefficient.

To address this, we design and implement vSoC, the first
virtual mobile SoC that enables virtual devices to efficiently
share data through a unified SVM framework. We then build
upon the SVM framework a prefetch engine that effectively
hides the overhead of coherence maintenance (which guar-
antees that devices sharing the same virtual memory see the
same data), a performance bottleneck in existing emulators.
Compared to state-of-the-art emulators, vSoC brings 12%-
49% higher frame rates to top popular mobile apps, while
achieving 1.8-9.0× frame rates and 35%-62% lower motion-
to-photon latency for emerging apps. vSoC is adopted by
Huawei DevEco Studio, a major mobile IDE.

CCS Concepts: • Software and its engineering→Virtual
machines; • Computer systems organization→ System
on a chip.

Keywords: virtualization, mobile systems, system-on-chip,
shared memory.
ACM Reference Format:
Jiaxing Qiu, Zijie Zhou, Yang Li, Zhenhua Li, Feng Qian, Hao Lin,
Di Gao, Haitao Su, Xin Miao, Yunhao Liu, Tianyin Xu. 2024. vSoC:

SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695946

Efficient Virtual System-on-Chip on Heterogeneous Hardware. In
ACM SIGOPS 30th Symposium on Operating Systems Principles (SOSP
’24), November 4–6, 2024, Austin, TX, USA.ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3694715.3695946

1 Introduction
Mobile emulation enables mobile OSes and apps to execute
seamlessly on PC/server machines. Recently, mobile OSes
and apps have been widely deployed on diverse platforms
such as televisions, smart cars, and AR/VR headsets. Dif-
ferent from traditional mobile apps, emerging apps on such
platforms (e.g., UHD video streaming and AR/VR) needmuch
better performance (4-16× resolutions, 60-180 FPS, and sub-
100ms motion-to-photon latency) to deliver a satisfying user
experience [6, 47, 49, 86]. Moreover, they intensively inter-
act with a variety of high-throughput System-on-Chip (SoC)
devices such as video codec, image signal processor (ISP),
and 2D/3D camera. Consequently, app developers have even
stronger demands for mobile emulators that can emulate the
entire mobile SoC efficiently, rather than individual devices
in previous work [7, 12, 15, 16, 18, 46, 58, 74, 84, 85].
Unfortunately, state-of-the-art emulators [18, 28, 48, 65,

73] (including Trinity [18], a high-performance mobile emu-
lator that can smoothly run GPU-intensive apps) exhibit poor
performance when running the emerging apps. They con-
stantly suffer from performance issues such as video stalls
and high motion-to-photon latency, compared to executions
on real mobile devices. With in-depth instrumentation of
the emulators, we pinpoint the major reason to be ineffi-
cient data sharing among virtual devices due to the hardware
architecture gap between mobile and PC/server systems.
In a mobile SoC, devices efficiently share data through a

unified memory architecture, where a single physical mem-
ory is connected to CPU and other devices. In contrast, many
PC/server devices have dedicated local memory; they ex-
change data with the main memory via buses. Given this
hardware architecture discrepancy, emulators have to adopt
a shared virtualmemory (SVM) architecture [51]. SVMpresents
an illusion of a unified address space to the guest mobile OSes
from physically distributed host memory. This is achieved by
transparently maintaining the data coherence among devices
and the main memory, i.e., devices sharing the same virtual
memory should see the same data.

Efficient SVM coherence maintenance is a key challenge to
virtualizing an SoC. Heavily inspired by the modular nature

558

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3694715.3695946
https://doi.org/10.1145/3694715.3695946
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694715.3695946&domain=pdf&date_stamp=2024-11-15

Guest Userspace

Emulator vGPU

Host Hardware

Guest Kernel Guest Physical Memory

Pass-
through

vCodecCopy 1 Copy 2

mmap

sync

...
mmap

Apps System Services

Figure 1. Memory architecture of typical emulators.

vSoC

Virtual Devices & Drivers

Host Hardware

SVM Framework

Virtual
Fence

SVM
Manager

pass handle

Guest Userspace Apps System Services

vGPU

vCodec

vCam

...

Prefetch Engine

Copy 2Copy 1

Figure 2. Memory architecture of vSoC.

of PC/server virtualization, virtual devices in existing mobile
emulators [28, 73] are largely agnostic of each other. As
a result, coherence is usually maintained with the help of
the guest (as demonstrated in Figure 1): a piece of guest
memory is mapped to guest system services and apps, and
each virtual device only needs to synchronize its local copy
with the guest memory and keep it up to date. Nevertheless,
when shared memory is used to move data between devices,
this architecture can lead to a waste of memory bandwidth
since data have to be frequently copied to and from the guest.

Worse still, mobile OSes and apps are built on the assump-
tion that data sharing among devices is efficient on a mobile
SoC, amplifying the inefficiencies in coherence protocols.
For example, the write-invalidate protocol [36] brings high
SVM access latency in practice—when data size is large, co-
herence maintenance can block the next SVM access for
milliseconds. The blocking is oftentimes unexpected to the
mobile OS, eventually causing response delays of hundreds
of milliseconds and visible frame drops in the apps.
This paper presents vSoC, the first virtual mobile SoC

that enables virtual devices to collaborate and share data
efficiently. As shown in Figure 2, the key idea of vSoC is
to break free from the traditional modular architecture of
virtual devices by building a unified SVM framework. An
immediate advantage of vSoC is that it has a global view
of virtual devices and their interactions, making it feasible
to directly transfer data between virtual devices without
guest involvement. Moreover, the unified framework en-
ables capturing data dynamics in vSoC, fostering an efficient
coherence protocol tailored to mobile emulation.

To design an efficient coherence protocol, we perform in-
depth measurement of shared memory in mobile systems.
We observe that the predominant usage of shared memory
is within data pipelines, which streamline data processing
among SoC devices, using shared memory as intermediate
storage. Another key observation is that since SoC devices
have fast unified memory, the cross-device control and data
flows of shared memory are usually ordered. To ensure this,
today’s OSes employ various mechanisms such as buffering
and VSync [32], which lead to unavoidable delays (avg. 17ms
based on our measurement) between consecutive shared
memory accesses. We refer to such delays as slack intervals.

While slack intervals are unavoidable, vSoC makes use of
them through prefetching: it predicts when and where the
next SVM access would occur, and fetches data updates to
the predicted device ahead of time. In this way, coherence
maintenance is hidden under slack intervals, thus boosting
the SVM performance. While prefetching has been widely
used in computer systems, designing a prefetch engine for
vSoC faces three unique challenges: how to robustly predict
SVM accesses; how to accommodate prefetching to different
slack interval durations; and how to guarantee the ordering
of SVM operations among host devices. We next highlight
our solutions to these challenges.

To foster robust SVM access prediction, vSoC leverages its
global vantage point to collect various SVM usage data, prop-
erly maintained as two-layer hypergraphs, and uses them to
model the data flows of both virtual and physical devices.
We use hypergraphs (where an edge can connect more than
two vertices) because data flows in mobile systems may in-
volve more than two devices. Leveraging the global data
flow model, we demonstrate that even a simple algorithm
(exponential smoothing [19]) can achieve an SVM access
prediction accuracy of ≥99%.
To accommodate different slack interval durations, the

prefetch engine carefully controls how guest device drivers
should wait for a prefetch. Specifically, informed by the his-
tory of slack intervals and prefetch time provided by the
hypergraphs, guest drivers adaptively compensate for the
time difference if the slack interval is not long enough to
cover the prefetch. This prevents the prefetch from blocking
the next SVM access which hurts app performance.

The cross-device nature of prefetch brings the third chal-
lenge for efficient ordering of SVM commands among host
devices. The key problem is that command orders are only
known to guest drivers, but need to be enforced in the host,
leading to frequent guest-host control flow synchronizations
with high overhead [18, 81]. To solve the problem, we attach
order semantics to the commands dispatched by the guest
with virtualized fence instructions. The virtual fences take ef-
fect in pairs and represent happens-before relationships [61],
which are enforced in the host by translating the virtual
fences to device-specific locks and memory fences.

559

We integrate the above designs and implement vSoC for
Android and OpenHarmony, two Linux-based mobile sys-
tems, in 91K lines of C/C++ code. Note that vSoC is built
atop Trinity [18] to inherit its high-performance virtual GPU.
We compare vSoC’s performance against five mainstream
mobile emulators (Google Android Emulator [28], QEMU-
KVM [73], LDPlayer [48], Bluestacks [65], and Trinity [18])
with SVM microbenchmarks, top-25 popular mobile apps,
and 50 emerging apps (that extensively use SoC devices)
including UHD video, 360-degree video, AR/VR, camera, and
livestream. Compared to other emulators, vSoC brings 12%-
49% higher FPS to the top popular apps, while achieving
1.8-9.0× FPS and 35%-62% lower motion-to-photon latency
for the emerging apps. vSoC is adopted by Huawei DevEco
Studio [33], a major commercial mobile IDE.

In summary, the paper makes the following contributions:
• We present vSoC, the first virtual mobile SoC that breaks

free from the classical modular architecture of virtual de-
vices for ahead-of-time coherence management.

• We design a low-overhead access ordering mechanism for
vSoC with virtual memory fences, efficiently supporting
shared resource operations across virtual devices.

• We implement vSoC for two open-source mobile systems
and show that it can achieve considerable performance
improvements on a variety of applications.
The code and data of vSoC are publicly available at https:

//github.com/virtualsoc/vsoc.

2 Background and Motivation
The inefficiency of data sharing among virtual devices is
not mere coincidence; it originates from the hardware ar-
chitecture gap between mobile and PC/server systems. In
this section, we introduce the shared memory abstraction in
mobile systems (§2.1), how the abstraction is implemented in
typical emulators (§2.2), reveal the real-world characteristics
of shared memory (§2.3), and finally, discuss its implications
for the design of vSoC (§2.4).

2.1 Mobile SoC and Shared Memory
The shared memory abstraction in mobile systems arises
from the pursuit of efficiency. To make mobile platforms
power- and space-efficient, their hardware universally adopts
the SoC architecture [70], where multiple devices (e.g., CPU,
GPU, ISP, and camera) are packaged into one chip and linked
to a single physical memory with a fast interconnect.
Consequently, the architecture of SoCs has shaped how

mobile systems interact with them. Since SoC devices physi-
cally share memory, mobile systems provide shared memory
interfaces to ease data management and sharing across de-
vices, for instance the AHardwareBuffer interface [21] in
Android, and the OH_NativeBuffer interface [67] in Open-
Harmony. The interface sits at the Hardware Abstraction
Layer (HAL) [29] of a mobile system, which is typically called

// allocates a shared memory region and returns a

// handle pointing to the region.

int alloc(struct shmem_module_t* module,

 struct region_t size,

 buffer_handle_t* handle);

// frees a shared memory region.

int free(struct shmem_module_t* module,

 buffer_handle_t handle);

// begins an access to the shared memory.

// 'usage' specifies if the access is RO, WO or RW.

// only the region specified by 'size' will be accessed.

// the virtual address is returned in 'vaddr'.

int begin_access(struct shmem_module_t const* module,

 buffer_handle_t handle, struct region_t size,

 int usage, void** vaddr);

// ends the access to the shared memory.

int end_access(struct shmem_module_t const* module,

 buffer_handle_t handle);

Figure 3. The shared memory interface of mobile systems.

by system services or apps and implemented by SoC manu-
facturers along with other device drivers.

A shared memory interface typically consists of the APIs
shown in Figure 3, providing a handle-based representa-
tion of shared memory. Since SoC devices adopt a unified
memory architecture, the actual allocation takes place in the
shared physical memory. The virtual address of the corre-
sponding region can be obtained and accessed by CPU by
calling begin_access. Moreover, the shared memory inter-
face is usually deeply integrated with the interfaces for other
SoC devices (e.g., OpenGL ES [41], OpenMAX [42], Camera
HAL [22]), so the handles can be directly passed to other
SoC devices. In this way, data can be shared among mobile
SoC devices efficiently.

2.2 Shared Virtual Memory in Mobile Emulation
While a mobile SoC achieves high power and space efficiency
through a monolithic architecture, PC/server devices are usu-
ally modular: they are connected to the main memory via
buses like PCI-e [2], allowing for upgrades and replacements
in case of failure. Since they are farther from the main mem-
ory, many of them (e.g., GPUs and DSPs) are equipped with
dedicated device memory to accelerate local processing.
To support the mobile shared memory abstraction on

PC/server devices, mobile emulators have to adopt an SVM
architecture [51], which presents the illusion of a unified
address space with physically distributed memory. The illu-
sion is achieved by allowing PC/server devices to have local
copies of the SVM data and copying data between devices
to make sure that they access up-to-date data. For instance,
suppose two virtual devices (𝑉𝑎 and 𝑉𝑏) use two different
physical devices (𝑃𝑎 and 𝑃𝑏) in the host. The guest OS first
commands 𝑉𝑎’s driver to write to an SVM region and then
commands 𝑉𝑏 ’s driver to read from it. In the host, 𝑃𝑎 creates
its copy of the SVM region and writes to it, but 𝑃𝑏 cannot

560

https://github.com/virtualsoc/vsoc
https://github.com/virtualsoc/vsoc

access 𝑃𝑎’s device memory. Therefore, the emulator needs to
copy the data from 𝑃𝑎 to 𝑃𝑏 before 𝑃𝑏 accesses the data—the
data copying is termed coherence maintenance.
However, existing mobile emulators heavily follow the

modular PC/server hardware architecture, making SVM co-
herence maintenance a key challenge towards the goal of
efficient data sharing. In the emulators, virtual devices are
designed to operate independently of each other; they can
even use different I/O virtualization techniques, like a par-
avirtualized GPU and a passthrough camera. Even for Google
Android Emulator [28] which is optimized for mobile sys-
tems, we only observe limited collaboration between the
virtual codec and the GPU device.

Since virtual devices in mobile emulators are largely iso-
lated from each other, SVM coherence is typically main-
tained with the help of guest memory. For each SVM region,
a piece of guest memory is allocated through kmalloc [57]
andmapped to userspace via mmap [56], so thatmobile system
services and apps have the same view of the guest memory.
Each virtual device only needs to keep the guest memory up
to date, by fetching data to and from its local memory1.
Nevertheless, this memory architecture can lead to high

memory bandwidth overhead when shared memory is used
as intermediate storage between two devices, i.e., SVM data
are written by one device and read by another. Taking the
previous example (𝑃𝑎 writes and 𝑃𝑏 reads), after 𝑃𝑎 writes,𝑉𝑎
copies the written data to the guest memory𝐺 , and before 𝑃𝑏
reads,𝑉𝑏 copies the data from𝐺 back to 𝑃𝑏 . For a simple pair
of W/R operations, data have to be copied twice (to and from
the guest), not to mention that they cross the virtualization
boundary which further slows down the copying. Worse
still, such usage of shared memory is frequent in today’s
emerging mobile apps, as will be revealed below.

2.3 Real-World Usage of Shared Memory
To understand the real-world usage of shared memory in mo-
bile systems, we perform in-depth measurements of shared
memory in Android. Since OpenHarmony is a recent mobile
system and does not have a mature app ecosystem yet [68],
OpenHarmony is not included in the measurement.
Workloads. As shown in Table 1, we choose 50 emerg-
ing apps from five categories that run at high visual fidelity
(UHD + 60 FPS) and simultaneously use multiple SoC devices.
For the first three categories, we select the top-10 popular
apps from Google Play (as of Mar. 2024). For AR apps, since
the Google ARCore [27] framework is not supported on most
emulators (but is adopted by many AR apps), we select the
top-10 popular apps that can run without Google ARCore.
For livestream apps, we select the top-10 popular apps that
support video streaming over local area networks to mini-
mize the impact of network instabilities on the results.

1Local memory might be device memory for hardware-accelerated virtual
devices, or main memory for software-emulated devices.

Table 1. The five types of emerging apps involved.

Type Devices Involved Count Duration
UHD Video Codec, GPU, Display 10 5 min per app
360° Video Codec, GPU, Display 10 5 min per app
Camera Camera, ISP, GPU, Display 10 5 min per app
AR Camera, ISP, GPU, Display 10 5 min per app
Livestream Codec, GPU, Display, NIC 10 5 min per app

To keep the comparisons fair and straightforward, we
strictly control various aspects of the workloads. The videos
played in the UHD/360° video apps are of UHD resolution
(3840×2160), with 60 FPS frame rate and 300 Mbps bitrate.
Livestream apps are configured to use RTMP [1], a univer-
sally supported livestream protocol. The streaming resolu-
tion is set to UHD, the frame rate is set to 60 FPS, while
the bitrate is left default since different apps support dif-
ferent bitrate ranges. We serve livestream requests using
nginx [83], a popular web server program. The web server
runs on a dedicated machine with Intel i7-8700K CPU and
32 GB DDR4 memory running Ubuntu 22.04, connected to
the devices under test using Gigabit Ethernet.
Devices Under Test. The measurement is conducted on
a Google Pixel 6a device and two open-source emulators:
Google Android Emulator (GAE) [28] and QEMU-KVM [73].
The basic configurations of the emulators are the same as
those of the physical device, each with an 8-core CPU, 6 GB
memory, and a Full-HD+ (2400×1080) display. The emulators
run on a high-end commodity desktop PCwith a 24-core Intel
i9-13900K CPU @ 3.0 GHz, 64 GB RAM (DDR5 5600 MHz),
a NVIDIA RTX 3060 dedicated GPU, and a HIKVISION V148
USB camera capable of streaming UHD video at 60 FPS. GAE
is run on the Windows 11 23H2 version, and QEMU-KVM is
run on Ubuntu 22.04.
Methodology. We instrument the test system to obtain
detailed traces of SVM usage. More concretely, we instru-
ment the shared memory interface (§2.1) to collect detailed
information of shared memory including its size, R/W usage,
and API call duration, as well as the name of the caller pro-
cess/thread to identify the app or system service using the
interface2. For the emulators, we further instrument their
SVM implementations to track the usages of SVM in virtual
devices and the durations of coherence maintenances. That
is why we choose open-source emulators instead of commer-
cial emulators like Bluestacks [65] in the measurement.
Observations. Shared memory is frequently used in all the
emerging apps, with an average of 261-323 API calls per sec-
ond for each category. The top-3 system services / apps that
heavily use the shared memory are all hardware-related: me-
dia service (28%, operates the codec device), SurfaceFlinger
(23%, operates the GPU), and camera service (19%, operates
the camera and ISP).
2In Android, system services typically live in independent userspace pro-
cesses to improve system security and stability.

561

0 5 10 15 20 25
Memory Size (MiB)

0.2
0.4
0.6
0.8

1

C
D

F

Max = 31.64
Mean = 5.88

Max = 31.64
Mean = 5.76

Max = 31.64
Mean = 5.72

Pixel 6a
GAE
QEMU-KVM

Figure 4. Size of shared memory on the three
platforms.

0 2 4 6 8 10 12
Coherence Maintenance (ms)

0.2
0.4
0.6
0.8

1

C
D

F

Max = 60.34
Mean = 7.05
Median = 6.43
Min = 0.04

Max = 217.30
Mean = 6.15
Median = 5.67
Min = 4.32

GAE QEMU-KVM

Figure 5. Coherence time cost of the two
emulators.

0 10 20 30 40 50
Slack Interval (ms)

0.2
0.4
0.6
0.8

1

C
D

F

Max = 461.60
Mean = 15.83
Median = 11.66

Max = 178.46
Mean = 18.97
Median = 12.18

Max = 274.74
Mean = 16.72
Median = 9.34

Pixel 6a GAE QEMU-KVM

Figure 6. Slack intervals of the three plat-
forms.

Interestingly, the vast majority (99%) of SVM regions only
serve one or two processes, and further, 96% of SVM usages
in these regions exhibit a regular cyclic R/W pattern: after
the first process writes to SVM, the second process reads
the data, and then the first process writes again, and so on.
The regular pattern suggests that most SVM regions are
part of one-way data pipelines. Like an image pipeline in
camera apps where the camera captures, the ISP processes,
and the GPU renders the image, data pipelines boost the
power efficiency of mobile platforms by streamlining data
processing among specialized SoC devices. In a pipeline,
shared memory is used as intermediate storage to forward
data between devices.
We also observe minor usages of the shared memory in-

terface. For instance, a minor portion of shared memory
accesses (1%) exclusively happen between app processes
and are only accessed by CPU, indicating that the shared
memory interface might be used for normal inter-process
communications (IPC) as well.
Moreover, as shown in Figure 4, the shared memory re-

gions allocated by the apps are usually quite large (49% of
regions are more than 1 MiB). On all three platforms, there
are two prevalent sizes of shared memory: 9.9 MiB and 15.8
MiB.We discover that they are respectively the size of display
buffers (9.9 MiB = 2400×1080×4 Byte) and UHD video frames
(15.8 MiB = 3840×2160×2 Byte), further demonstrating the
prevalence of data pipelines. The large size of shared mem-
ory also leads to high coherence maintenance overheads in
the emulators. As shown in Figure 5, the average duration
of coherence maintenance in GAE and QEMU-KVM are as
high as 7.1 ms and 6.2 ms.
More importantly, we observe that mobile systems typ-

ically use shared memory in an ordered but uncontinuous
way. SVM accesses do not happen immediately next to each
other; instead, there are intervals between adjacent accesses
that happen in two processes, which we term as slack inter-
vals. As shown in Figure 6, the slack intervals are typically
tens of milliseconds (avg. 17.2 ms), usually longer than the
coherence maintenances of the emulators (avg. 6.7ms). Slack
intervals exist because it is hard to pace the execution of

devices with millisecond-level accuracy even for a physical
SoC. For instance, many system services adopt access syn-
chronization mechanisms (e.g., VSync [32]) to protect shared
memory from concurrent writes. Some latency-insensitive
pipelines (e.g., video playback pipelines) further use buffer-
ing to smooth out jitters, so in Figure 6, some slack intervals
(>30 ms) are significantly longer than others (<20 ms). It
is worth noting that these OS-level synchronization mech-
anisms (e.g., VSync and buffering) are independent of the
underlying hardware, so the durations of slack intervals on
emulators and the physical device are very similar.

2.4 Implications for vSoC
The measurement of real-world SVM usage provides us with
valuable insights into the design of vSoC.

First, slow coherence maintenance is a key performance
problem in existing emulators. Each data pipeline involves
one or more coherence maintenances, which each takes
>6 ms to complete, because of the inefficient data copies
across the virtualization boundary (see §2.2). As a reference,
for an app to run smoothly at 60 FPS, only 16.7ms is allowed
for a video frame to go through a data pipeline. Slow coher-
ence maintenances occupy the already tight time budget for
app frames, leave less room for the actual data processing,
and ultimately lead to slow and dropped frames.
Another key implication is that we can make use of the

slack intervals in mobile systems to boost SVM performance.
The idea is to use a prefetch coherence protocol: it tracks the
data flows associated with SVM regions, predicts the next
accessing device according to historical usage, and fetches
data updates to the predicted device during the slack inter-
vals. In this way, coherence maintenance is hidden under
slack intervals, significantly reducing the time overhead.

The prefetch protocol, nevertheless, comes with obstacles
in reality. Prefetch requires coordination between multiple
virtual devices, which is hard to achieve with typical em-
ulators whose virtual devices have limited knowledge of
each other (§2.2). Furthermore, without access to enough
cross-device SVM usage information, prefetching can suffer
from frequent prediction failures which completely nullify

562

its benefits. Whenever a prediction failure happens, coher-
ence maintenance has to be re-performed, leading to high
time and bandwidth overhead, while additionally wasting
the ahead-of-time data copies. Therefore, to enable efficient
coherence management of SVM, a unified architecture for
the shared memory is necessary.

3 System Design
This section presents the internals of vSoC. §3.1 covers the
overall architecture of vSoC, while §3.2, §3.3 and §3.4 detail
the design choices made in various components of vSoC.

3.1 Overview
vSoC sets out to meet the following design goals: (1) pro-
viding a unified virtualization of shared memory for the
virtual devices; (2) designing an efficient coherence proto-
col in the context of mobile emulation; (3) addressing other
performance issues of existing SVM architectures.
To achieve the above design goals, vSoC breaks through

the boundary of virtual devices. As illustrated in Figure 2,
vSoC features an SVM framework that provides an efficient
SVM architecture for all the virtual devices. The SVM frame-
work itself is paravirtualized, including a host virtual device
and a guest kernel driver based on virtio [40] (the kernel
itself is unchanged). We choose paravirtualization instead
of other I/O virtualization techniques, because during app
development, hardware resources typically need to be shared
between the guest and the host. Nevertheless, since vSoC
primarily solves a memory architecture problem, its high-
level design is applicable to other virtualization techniques
like PCIe pass-through and containers as well.

The SVM framework consists of three components: SVM
Manager (§3.2), responsible for providing a unified internal
representation of SVM; Prefetch Engine (§3.3), that realizes
a robust prefetch coherence protocol for SVM; and Virtual
Command Fence (§3.4), which provides a low-overhead ac-
cess ordering mechanism for host operations. Powered by
the SVM framework, vSoC also includes a common set of
paravirtualized SoC devices, including GPU, display, ISP,
codec, camera, and cellular modem, which each has its own
host-side module and guest kernel driver.

3.2 The SVM Manager
The SVM Manager implements the shared memory interface
(§2.1) of mobile systems and manages the lifecycle of SVM
resources for vSoC.
Every SVM region is assigned a unique 64-bit ID upon

allocation. The memory space of each SVM region is lazily
allocated, because the actual device accessing the SVM region
can only be known when the first access occurs. Since only
the host emulator should be permitted to access host memory
to ensure guest-host isolation, most SVM data operations
must be done by the host. Therefore, regarding each SVM

region, the guest only caches a portion of metadata (e.g.,
size) to allow quick responses to control operations of SVM.
The complete metadata and actual resource handles (e.g., a
scatterlist of guest memory, or a handle to GPU memory)
required to perform actual data operations are maintained
in a host-side hashtable.
Owing to the unified representation offered by the SVM

Manager, virtual devices (and drivers) of vSoC can use the
unique ID to identify an SVM region, instead of carrying
the actual data with the device commands and worrying
about coherence maintenances. An immediate benefit of the
unified architecture is that, when shared memory is used
to transfer data between devices, coherence can be directly
maintained among virtual devices without guest involve-
ment, instead of having to rely on guest memory and result
in extra bandwidth consumption (§2.2).

Taking camera streaming as an example, the camera writes
to an SVM region which is read by the GPU afterwards. With
the old architecture (in §2.2), the process will trigger four
memory copies: (1) The image in the SVM is copied from the
camera hardware to the host memory. (2) The camera virtual
device copies the image in the host memory to the guest
memory corresponding to the SVM region.3 (3) The GPU
virtual device copies the image back to the host memory.
(4) The GPU uploads the image to the GPU memory. How-
ever, with the new architecture, only two memory copies are
needed: (1) The image is copied from the camera hardware to
the host memory. (2) The SVM framework copies the image
from the host memory to GPU memory.

Further, the SVM framework also opens up opportunities
for special-case optimizations. For instance, when two virtual
devices (e.g., codec and GPU) share the same physical device
(e.g., GPU), coherence maintenance can be done in-GPU,
without having to copy to and from host memory at all.
Essentially, the unified architecture allows the virtual devices
to find the shortest path for coherence maintenances and
saves both time and bandwidth.
Meanwhile, through interacting with the virtual devices,

SVM Manager collects SVM-related statistics across the sys-
tem stack (from apps to hardware). As will be detailed in the
next subsection (§3.3), such global information plays a key
role in enabling an efficient and robust coherence protocol.
To be concrete, SVMusage is collectedwith a two-layer graph
structure termed twin hypergraphs. As shown in Figure 7,
the twin hypergraphs consist of two directed hypergraphs
that respectively model the data flows of virtual and physical
devices, and a hashtable in between to map the SVM regions
to the data flows in the two hypergraphs. The twin hyper-
graphs are maintained in the host and initialized at emulator
startup. The nodes of the hypergraphs respectively represent

3The image cannot be directly copied from the camera hardware to the guest
memory, because camera APIs in OSes like Windows and macOS do not
accept non-contiguous virtual memory (e.g., guest memory) as destinations.

563

slack intervals

vCodec

vGPU vISP

vCamera

GPU CPU Camera

bus bandwidth

R/W usage

...

...

virtual devices

physical devices

SVM regions

Figure 7. The structure of the twin hypergraphs. Each hyperedge
characterizes a data flow. The dotted lines linking the two hyper-
graphs represent hashtable entries. The shaded areas to the left
exemplify the data recorded in each hypergraph.

virtual and physical devices and are known at compile time,
while the hyperedges as well as the hashtable mappings are
dynamically constructed at run time.
Essentially, the data flow of an SVM region results from

data dependency: data that were previously written by one
device are now read by another. A data flow can be described
by its source and destination devices, whose relationship
can be captured by a directed edge pointing from the source
device to the destination. In mobile systems, we use hyper-
edges when recording data flows because data dependency
might involve more than two devices, for instance when a
write in camera is accompanied by two reads in ISP and GPU.
Note that data flows and SVM regions have a one-to-many
relationship: different SVM regions might have the same data
dependency (e.g., when the data pipeline enables buffering
and a chain of buffers correspond to multiple SVM regions),
so they are all characterized by one hyperedge.
The need for two separate hypergraphs for virtual and

PC/server devices arises from the fact that virtual devices
do not have a one-to-one relationship with the underlying
hardware. A virtual device can dynamically map to the most
appropriate physical device depending on the guest work-
loads. For instance, when the guest requires decoding of a
video format the underlying codec or GPU device does not
support, we have to fall back to software decoding by CPU.
On the other side, multiple virtual devices can utilize the
same physical device as well. As an example, although GPUs
and displays are two discrete SoC modules that manage their
own resources and we need to provide two distinct virtual
devices for them, displays are usually managed by GPUs in
the PC/server host, in which case virtual displays ultimately
interact with the physical GPU as well.

The primary use of the twin hypergraphs is to group SVM
regions into data flows and record both high- and low-level
statistics of data flows with its two layers. Since virtual de-
vices directly interact with the guest, high-level information
of each data flow is recorded in its corresponding hyper-
edge, e.g., the virtual devices using the SVM, and the slack
intervals between consecutive cross-device SVM accesses.
The physical layer, in contrast, records low-level properties

related to the actual data transfer, including data size and
the available bandwidth of physical devices.
With the twin hypergraphs, data flows across the entire

virtual SoC are captured, but the recorded information in
each hypergraph is partial. Therefore, we use a hashtable in
between to map the SVM regions to the hyperedges in the
two layers. The mappings are dynamically updated when
SVM accesses are processed by the SVM Manager.

3.3 The Prefetch Engine
While the SVM Manager decides what to copy in coher-
ence maintenance, the prefetch engine deals with when. The
prefetch protocol has been briefly described in §2.4: it over-
laps coherence maintenance with the slack intervals to save
time. In reality, however, prefetch has to be carried out with
care to avoid problems that seriously affect its performance.
Firstly, since the protocol needs to warm up with historical
SVM usage, predictions usually fail for newly allocated SVM
regions, incurring high performance penalties on apps that
frequently switch data pipelines (e.g., short-form videos).
More importantly, in 26% of the measurement cases, the

slack intervals are insufficient to cover coherence main-
tenance; the next SVM access will have to wait until the
prefetch completes, leading to high SVM access latency. Un-
fortunately, even a slightly longer SVM access latency (e.g.,
2 ms) can create a serious chain reaction in mobile system
services and apps, which are built on the assumption that
data sharing among devices is efficient on a mobile SoC.
More concretely, high SVM access latency causes apps to
miss the current frame deadline and wait for the next (>16
ms of waiting), and in turn causes system services to further
miss the deadline by hundreds of milliseconds and lead to
visible frame drops (see §5.4 for an example).

The above problems set the following design goals for
a satisfying coherence protocol for vSoC: (1) maximizing
the accuracy of the predictions made in the protocol, (2)
minimizing the access latency of the next SVM operation
to avoid the chain reaction, and (3) maximizing the overlap
between coherence maintenances and the slack intervals.

To meet the goals, we design a prefetch engine that adap-
tively adjusts the synchronism of the prefetch protocol. The
basic idea is to control how guest drivers should wait for the
prefetch (i.e., whether guest and host executions should be
synchronous). If the slack intervals are not long enough to
cover prefetch, guest drivers can compensate for the time
delta by blocking ahead of time, as if the prefetch operation
is done synchronously. When the guest driver finishes the
compensation, it proceeds to other tasks (such as notifying
the completion of the SVM operation), and the remaining
portion of prefetch is done asynchronously.

Figure 8 exemplifies how the prefetch engine works. The
app/system commands device A to write to an SVM region
and then commands device B to read from it. Suppose that the
prefetch will take 10ms to complete, and there will be an 8ms

564

guest

host

time

device A

driver B

device B

driver A

app/system dispatch

write

write

read

dispatch read

slack int.

…

block

sync async

prefetch

Figure 8. Timeline of the robust prefetch protocol.

slack interval between the last write and the next read. To
fully utilize the slack intervals, prefetch begins immediately
after device A finishes writing. Then, to avoid SVM access
latency which may hurt app performance, A’s driver blocks
for the 2 ms time delta before returning the control flow
of the SVM to the system, making the prefetch operation
synchronous and blocking for the first 2 ms. If driver A does
not block, when the next read is dispatched, driver B will
have to wait for 2 ms (until the prefetch completes) before it
can access the actual data. However, such access latency is
unexpected to the app/system and will disrupt their schedule,
and may lead to performance loss.

To realize the robust prefetch protocol, some of the statis-
tics (e.g., the 10ms and 8ms in the above example) need to be
predicted, and that is where the twin hypergraphs come in. In
general, two types of predictions are involved in prefetching.
The first type is data dependency—whether a read will take
place after a write, and which physical device will perform
the read. To this purpose, we utilize the R/W history of the
physical data flow associated with an SVM region, includ-
ing the physical device ID and the operation type. Within
the same data pipeline, the prediction accuracy can reach
99+%, as the R/W operation flow shows very ordered pat-
terns (see §2.3). We record R/W history into coarse-grained
data flows instead of fine-grained SVM regions to achieve
zero-shot predictions for new SVM regions when switching
data pipelines.
The second type of prediction is on how much time the

guest driver needs to compensate for the prefetch. The fol-
lowing statistics are used: (1) size of the dirty SVM region;
(2) available bus bandwidth between two physical devices;
(3) historical slack intervals between virtual devices. Predic-
tions of this type can also be accurate because the statistics
are usually stable throughout the lifetime of a data pipeline.
For instance, while video apps may use different numbers of
buffers for different videos, we do not observe any app that
changes its buffering/VSync strategy during the playback of
one video, i.e., the slack intervals should be stable.
Regarding the actual prediction algorithms, since both

slack intervals and bus bandwidths can be seen as univariate
time series and exhibit no clear trend or seasonality patterns,
we use the single exponential smoothing algorithm [19], one
of the most widely used forecasting techniques due to its

simplicity, robustness, and accuracy [80]. In the algorithm,
the predicted value is a weighted average of the past values,
and the weights decay exponentially over time according to
a hyperparameter 𝛼 . 𝛼 is empirically chosen as 0.5 according
to our benchmarks.
Finally, in corner cases when prediction failures happen

three consecutive times, or the available bandwidth corre-
sponding to the operation falls below 50% of the maximum
observed bandwidth, we temporarily suspend prefetch to
avoid bandwidth waste.

3.4 Virtual Command Fence
Similar to many mobile emulators [18, 28], the guest drivers
and the host devices of vSoC are designed to work asyn-
chronously most of the time: the guest driver dispatches
control commands to the host virtual device, which has its
own threads and does the actual data processing. Each device
has one or more command queues, so that the guest can send
asynchronous commands in batch to reduce transport over-
head across the virtualization boundary. While the threading
paradigm works fine with independent virtual devices, an
access ordering problem arises when multiple virtual devices
operate on shared resources such as shared memory.

Take the common case of video rendering as an example.
The ideal execution order is as follows: (1) The codec driver
dispatches a write command to the virtual codec device
to write a decoded video frame to an SVM region; (2) The
virtual codec device writes to the SVM; (3) The guest OS
forwards the SVM handle to the GPU driver; (4) The GPU
driver dispatches a read command to the virtual GPU device
to read from the SVM and start drawing. Steps (1) and (3)
happen in the guest and are protected by locks, but if the
emulator does not synchronize steps (2) and (4), out-of-order
execution may happen (as shown in Figure 9a), since virtual
devices are independently scheduled from guest drivers.

To solve the problem, a common approach [18, 28] is to let
the guest driver perform shared resource operations atom-
ically. As shown in Figure 9b, in step (2), the codec driver
waits until the virtual codec device finishes writing (hence
“atomic” write) before returning the SVM handle to the guest
OS. Nevertheless, atomic operations introduce a head-of-
queue blocking problem: time-consuming atomic operations
block the codec driver from processing subsequent com-
mands and reduce overall throughput. Another approach is
to adopt an event-driven paradigm, where the guest driver
dispatches the instruction and proceeds to other tasks, until
the host execution has finished and notifies the guest driver
via emulated interrupts. The approach avoids guest idling,
but introduces extra VM-Exits from interrupts.
In essence, the key challenge to efficient access ordering

is that command orders are only known to guest drivers,
but need to be enforced in the host. Existing paradigms all
rely on guest drivers to guarantee access ordering, leading to
frequent guest-host control flow synchronizations that bring

565

guest

host

vCodec device

vGPU driver

vGPU device

vCodec driver

write

read

dispatch write

dispatch read

lock

sleep

oops!

time

(1)

(3)

(4)

(2)

(a) Guest-side locks do not protect host execution

time

write
read

dispatch write
lock

sleep

dispatch read

wait

guest

host

vCodec device

vGPU driver

vGPU device

vCodec driver (1)

(2)

(3)

(4)

(b) Guest-side lock & wait block the guest driver

read

dispatch write w/ fence

dispatch read w/ fence

lock

sleep
time

signal

wait

guest

host

vCodec device

vGPU driver

vGPU device

vCodec driver (1)

(3)

(2)

(4)

(c) Guest-side lock & fence achieve efficient access ordering

Figure 9. An example of access ordering between virtual devices.

high overhead. Therefore, we propose an alternative host
access ordering mechanism with minimal guest involvement,
termed virtual command fences.
The core idea is to attach virtualized instances of fences

to the commands dispatched by the guest, so that order se-
mantics can be carried to and enforced by the host alone.
To begin with, there are two types of virtual fence instruc-
tions: one that “signals” when the preceding operations have
finished, and one that “waits” until the signaling happens.
They are typically used in pairs to represent a happens-before
relationship [60], though multiple waits on a “signal” fence
are also allowed. Figure 9c illustrates the usage of the fences:
the codec driver inserts a “signal” fence into the command
queue of the codec virtual device after Step 2, and the GPU
driver inserts a “wait” fence before Step 4. The “wait” fence
acts like a barrier and ensures that the read command will
only be executed after the associated write has completed.
Meanwhile, the guest drivers are not affected and can process
subsequent commands.

Virtual command fences are designed to provide a unified
abstraction of access ordering for guest drivers, so that they
do not have to worry about intricate details regarding how
access ordering is done in the host. In fact, PC/server devices
like GPUs are asynchronous from CPU in nature, so when

guest commands involve execution in such devices, the host
needs to use device-specific synchronization primitives (e.g.,
glFenceSync for GPUs) to make sure that commands sent to
those devices are completed as well. Therefore, we maintain
a set of physical fence tables that track the status of device-
specific synchronization primitives of each PC/server device,
and a virtual fence table that aggregates the statuses and
facilitates status queries. To minimize the overhead incurred
by status queries, the virtual fence table is stored in the guest
kernel and shared to the host via MMIO, while the physical
fence tables are stored in the host.

Moreover, the virtual command fencemechanism is generic
and can be used in other weak-state synchronization cases in
which states in the host and guest should be eventually (but
not strongly) consistent. For instance, the mechanism is also
applied in GPU context switches to avoid GPU driver stalls
which reduce throughput. The rationale is that GPUs are
designed to be asynchronous from CPU: context switches
in the GPU virtual device can be deferred so long as the or-
der of switches is correct. Meanwhile, since the mechanism
increases the asynchronism of execution between the guest
and the host, and can cause guest drivers to send commands
too quickly (since they do not have to wait for host execu-
tion anymore), we adopt the MIMD flow control algorithm
of Trinity [59] to pace the execution of the two sides and
avoid commands from piling up in host command queues.

4 System Implementation
vSoC is based upon QEMU 7.1 [72], and hosts Android-x86
9.0 [13], as well as OpenHarmony 4.0 [68]. Since the imple-
mentation of vSoC only involves a set of guest-side drivers
and a host-side QEMU device, vSoC can be easily ported to
any higher version of QEMU, Android, and OpenHarmony.
vSoC can run on Windows and macOS with Intel/AMD x86
CPUs. We choose the x86 platform because vSoC aims to
run mobile systems on PCs and servers with heterogeneous
hardware, which are primarily x86-based. The x86 choice
is consistent with almost all mainstream mobile emulators.
vSoC provides compatibility for ARM-based apps with the
Intel Houdini binary translator [34].

In terms of implementation, the SVM framework includes
a QEMU device (in VMX root mode) and a set of Linux guest
kernel drivers (in VMX non-root mode). The virtual devices
are built as components of the SVM framework in the host,
and they are each accompanied with a guest kernel driver
as well. Some virtual devices (e.g., codec and GPU) are addi-
tionally accompanied by guest userspace drivers to integrate
with the respective interfaces of mobile systems. Host-guest
data transport in vSoC is based on the virtio [40] protocol,
a de-facto standard used both in macrokernels like Linux
and microkernels like seL4 [43].

Regarding the internals of the SVM framework, the prefetch
engine uses the DMA capabilities of supported devices (e.g.,

566

GPUs) to help reduce CPU load. Additionally, since the vir-
tual fence table used in §3.4 needs to be shared between the
guest and the host, we limit its size to one memory page (usu-
ally 4 KiB) to avoid the overhead of accessing non-contiguous
guest pages in the host, and we recycle signaled fence indices
when the supply of unused indices is low.

Besides an efficient SVM framework, a solid implementa-
tion of the virtual devices is also necessary for the efficiency
of vSoC. To leverage the high-performance virtual GPU of
the Trinity emulator [18], vSoC is built upon Trinity and
we refactor its virtual GPU and its associated guest-host
transport module with 55K and 4K lines of code changes.
Since the virtual display from the guest’s perspective is a
window in the host, we implement it with glfw [20], a cross-
platform library for window management. The virtual ISP
(Image Signal Processor) utilizes Google Android Emulator’s
YUVConvertermodule [5] for in-GPU colorspace conversion
of certain image formats, and libswscale [54], a software
colorspace conversion library for other formats.
The virtual codec is implemented with libavcodec [53],

a popular library that supports software and hardware de-
coding/encoding. We further use the OpenGL interop ex-
tensions [66] to achieve in-GPU video rendering with popu-
lar formats. The guest codec driver is implemented against
the OpenMAX IL specification [42] as required by Android
and OpenHarmony. The virtual camera is implemented with
libavdevice, a cross-platform library for manipulating pe-
ripheral devices. The virtual cellular modem is implemented
with reference to Google Android Emulator’s telephony
module [26] and supports the Radio Interface Layer (RIL) [30]
of Android and the RIL adapter [69] of OpenHarmony.

5 Evaluation
In this section, we answer the following questions about
the performance of vSoC: (1) how does the SVM framework
perform in practice (§5.2), (2) how does vSoC perform with
five types of emerging mobile apps (§5.3), (3) what is the
contribution of individual designs (§5.4), and (4) how do top
popular mobile apps receive the performance benefits (§5.5).

5.1 Experimental Setup

Devices Under Test. To understand the performance of
vSoC under heterogeneous hardware combinations, besides
the high-end desktop PC used in the measurement (§2.3), we
conduct our evaluation on a middle-end laptop PC as well.
The component devices in the two machines are all preva-
lent commodity PC/server hardware: the high-end machine
has a 24-core Intel i9-13900K CPU @ 3.0 GHz, 64 GB RAM
(DDR5 4800 MHz), a NVIDIA RTX 3060 dedicated GPU, and
a HIKVISION V148 USB camera; the middle-end machine
has a 6-core Intel i7-10750H CPU @ 2.6 GHz, 16 GB RAM
(DDR4 3200 MHz), a NVIDIA GTX 1660 Ti dedicated GPU,
and an integrated webcam. Both machines run the emulators

Table 2. SVM performance on the two PCs (high-end desktop vs.
middle-end laptop).

Metric vSoC GAE QEMU-KVM
Access Latency 0.34 / 0.38 ms 0.76 / 1.16 ms 0.22 / 0.25 ms
Coherence Cost 2.38 / 3.45 ms 7.05 / 11.27 ms 6.15 / 9.28 ms
Throughput 3.49 / 3.24 GB/s 1.56 / 1.00 GB/s 0.96 / 0.89 GB/s

under Windows 11 23H2 version, except the Linux-exclusive
QEMU-KVM, which we run on Ubuntu 22.04 LTS.
Target Emulators. Apart from vSoC, five mainstream
mobile emulators are involved in the evaluation, including
Google Android Emulator (GAE) [28], QEMU-KVM [73],
LDPlayer [48], Bluestacks [65], and Trinity [18]. The latest
publicly-available versions of the emulators as of Mar. 2024
are used. We configure every emulator instance with an 8-
core CPU, 8 GB RAM, and a UHD (3820×2160) display. The
display is configured with UHD resolution as opposed to
Full-HD (1920×1080) to closely emulate emerging mobile
platforms (e.g., TVs and AR/VR headsets), which are usually
equipped with high-resolution displays [64] including QHD,
UHD, and even 8K.
Workloads. The apps involved are the 50 emerging apps
listed in Table 1, and the workloads are the same as those in
§2.3. Each app is tested for 5 minutes on each emulator.

5.2 Microbenchmarks

Methodology. To characterize SVM performance, we mea-
sure its access latency, coherence time cost, and average
throughput. SVM access latency and coherence cost are mea-
sured in the same way as that in §2.3 by instrumenting the
AHardwareBuffer interface and the emulators, while aver-
age throughput is calculated by dividing the total size of data
accessed (excluding data wasted by broadcasting or prefetch
failures) by the duration of the test. Since the prefetch pro-
tocol in vSoC makes multiple predictions, we additionally
record the accuracy and the computation overhead of the
predictions. Since source code instrumentation is needed,
only GAE and QEMU-KVM are involved for comparison.
Results. Table 2 shows the SVM performance of the three
emulators. vSoC exhibits significantly lower coherence main-
tenance time cost than both GAE and QEMU-KVM (68% and
62% lower, respectively). That is because in vSoC, the ma-
jority (98%) of coherence maintenances are directly done in
the host with the help of the SVM framework, eliminating
the transport overhead across the virtualization boundary,
and fully exploiting DMA capabilities of PC/server hardware.
Since coherence maintenance time directly influences the
throughput of a data pipeline (see §2.3), the average SVM
throughput of vSoC is much higher than those of both GAE
and QEMU-KVM (163% and 264% higher, respectively).
The predictions involved in the prefetch coherence pro-

tocol turn out to be very accurate: we observe that its de-
vice prediction accuracy varies between 99% and 100% in

567

the five categories. The predictions of slack intervals and
prefetch time cost have low standard errors of 0.9 ms and
0.3 ms respectively. A manual inspection of the failures re-
veals that the prediction errors mostly occur during emulator
startup, when no historical data are available in the twin
hypergraphs. Benefiting from the robust prefetch protocol,
coherence maintenance seldom leads to SVM access latency,
and the average access latency of vSoC is a negligible 0.3 ms,
only slightly higher than the access latency of QEMU-KVM
due to the overhead of misprediction. The access latency of
QEMU-KVM is the lowest since its SVM is based on guest
memory and only involves page mapping costs, but that is
at the expense of both coherence time and throughput.

Due to the low-overhead prediction algorithm and various
data caches, the CPU overhead of the various mechanisms
and algorithms involved in vSoC (not including coherence
maintenances) is kept to a negligible level (<1%). The maxi-
mum memory overhead of the various data structures of the
SVM framework is 3.1 MiB.

5.3 Application Benchmarks

Methodology. The FPS and motion-to-photon latency of
the emerging apps are measured. The two metrics are key
indicators of the smoothness and responsiveness of mobile
apps [35]. Incidentally, since no user input is involved during
video playing, motion-to-photon latency is only measured
on AR, camera, and livestream apps.
We collect FPS of an app using the dumpsys command

from the Android Debug Bridge (ADB) shell [23]. For motion-
to-photon latency, we use a high-speed camera to record
videos of user interactions with the apps and examine each
video to compute the latencies. The videos are recorded at a
frame rate of 2000 FPS at Full-HD. We position the camera
at the side of the computer screen, so that both user actions
and the screen can be clearly observed. To ease recognition
of user actions, for camera and AR apps, we use flashlights to
produce sudden luminance changes on camera streams. For
livestream apps, we flash the screen contents of the emulators
using the built-in developer tools of Android [25]. For the
recorded videos, we examine each frame to recognize the
timestamp when the user action happens and the timestamp
when the corresponding response of the action manifests. In
this way, the motion-to-photon latency can be calculated as
the time delta of the two timestamps, with a negligible error
of up to two frames (1.0 ms) introduced by the camera.
Results. Out of the 50 emerging apps, vSoC, GAE, QEMU-
KVM, LDPlayer, Bluestacks, and Trinity can respectively run
48, 47, 42, 43, 44, and 20 of them. The criterion for a successful
run is that the app does not report errors, crash, or produce
Application-Not-Responding (ANR) [21] events during the
5-min test. Results of camera, AR, and livestream apps for
Trinity are missing because Trinity does not support cameras

or video encoders. The bar plots only contain performance
data of apps that can be successfully run.

Figure 10 and Figure 11 show the FPS results of the applica-
tion benchmarks on the two PCs. On the high-end machine,
vSoC can achieve nearly full (57) FPS on all five types of
emerging apps, with 82%, 160%, 292%, 656% and 797% better
FPS on average than GAE, QEMU-KVM, LDPlayer, Blues-
tacks, and Trinity. We observe that while vSoC can run the
emerging apps smoothly, other emulators all exhibit different
levels of stuttering. Taking UHD video as an example, while
GAE manages to play the videos at an acceptable framerate,
videos often freeze for seconds on Bluestacks and LDPlayer.
We also try to play lower-resolution videos (e.g., 1280×720)
on these emulators, and the results are smooth, indicating a
performance problem rather than a functional one.

Interestingly, we observe that while Trinity performs very
well in 3D gaming apps [18], it performs badly when run-
ning emerging apps. That is because Trinity is designed to
minimize GPU virtualization overhead, and therefore works
well on heavy-3D apps that extensively use GPU’s rendering
pipeline for real-time 3D rendering. vSoC does not outper-
form Trinity much on those heavy-3D apps. We evaluated
vSoC using the same set of apps used in the Trinity evalu-
ation. vSoC improves FPS of heavy-3D apps by only 1% on
average—those apps rarely involve other SoC devices and
shared memory. Trinity performs badly on emerging apps in
the UHD/360 Video category, because Trinity only has a soft-
ware virtual codec device inherited from Android-x86 [13].
Since Trinity’s focus is on GPUs, it does not implement hard-
ware codec devices or camera devices.

On the middle-end machine, where CPU and memory ca-
pabilities are relatively limited, vSoC manages to achieve an
average FPS of 53, with 188%-1113% higher performance than
the other emulators, as revealed in Figure 11. In particular,
the performance of the video apps on GAE drops signifi-
cantly (by 66%) on the middle-end PC. We observe that while
video apps can perform at around 30 FPS on GAE at first,
their performance quickly degrades to ~10 FPS within one
minute. After close inspection, we discover that the perfor-
mance drop is due to CPU thermal throttling on the laptop
PC, indicating further inefficiencies in the video decoder
implementation of GAE.
Regarding the end-to-end latency of the apps, vSoC has

the lowest latency among all the emulators, 62%, 60%, 61%,
and 35% lower than GAE, QEMU-KVM, LDPlayer, and Blues-
tacks on the high-end machine (Figure 13). The results fur-
ther demonstrate the benefits of a fully paravirtualized ar-
chitecture as opposed to hybrid architectures: while com-
mon wisdom suggests that PCIe pass-through is efficient
and low-overhead [71], pass-through devices introduce VM
transport overhead. When sharing data with paravirtualized
devices, making it inferior to a fully paravirtualized solution
like vSoC. On the middle-end laptop, the end-to-end latency

568

vSoCGAE Q-K LD BS Trinity0

20

40

60

FP
S

UHD Video
360° Video
Camera

AR
Livestream

Figure 10. FPS on high-end PC.

vSoCGAE Q-K LD BS Trinity0

20

40

60

FP
S

UHD Video
360° Video
Camera

AR
Livestream

Figure 11. FPS on middle-end PC.

vSoC Fence-off Prefetch-off0

25

50

75

100

FP
S

UHD Video
360° Video
Camera

AR
Livestream

Figure 12. FPS breakdown on high-end PC.

vSoC GAE Q-K LD BS0

300

600

900

la
te
nc
y(
m
s)

Camera
AR
Livestream

Figure 13. Latency on high-end PC.

vSoC GAE Q-K LD BS0

300

600

900

la
te
nc
y(
m
s)

Camera
AR
Livestream

Figure 14. Latency on middle-end PC.

vSoC GAE Q-K LD Trinity BS0

20

40

60

80

FP
S

Figure 15. FPS of other apps on high-end PC.

data are very similar to those on the high-end desktop ma-
chine (33%-61% lower, as shown in Figure 14), except that
the latency of camera and AR apps are lower by 8 ms on
average. That is because of the lower physical latency of
the integrated camera on the laptop—we directly measure
the camera latency on the two PCs using the DirectShow
API [76] of Windows, and find out that the end-to-end la-
tency of the integrated camera is indeed 10 ms lower than
the USB camera of the high-end desktop.

To prevent the bias introduced by apps that cannot be run
on some emulators, we further make a pairwise comparison
between vSoC and each of the mainstream emulators in
terms of the FPS and latency of the apps (that vSoC and the
compared emulator can both successfully run). The results
are very close to the performance indicated by the bar plots:
compared to the other emulators, vSoC can achieve 84%-
828% better FPS and 36%-65% less latency on average on the
high-end machine, and 192%-1134% better FPS and 34%-64%
less latency on the middle-end machine.
Qualitative Study. We conducted a user study in Huawei
to understand the user-perceivable differences on the perfor-
mance of the emerging apps in Apr. 2024. 90 mobile develop-
ers from Huawei (aged 20-60, average 31) participated in the
study. We set up each emulator in a dedicated middle-end
laptop (with the same configuration as §5.1), and allow the
user to freely use the emerging apps and switch emulators
for a ten-minute session. The emulators’ identities are hid-
den from the users. In the meantime, they are asked to fill in
a questionnaire that ranks and gives ratings to the emulators
on video smoothness perceived by eyes, motion-to-photon

latency on camera/AR streams, and their overall user expe-
rience. The study is conducted with informed consent in
accordance with the ethical guidelines of the IRB.

In summary, the study reveals that most users do perceive
noticeable performance improvements in vSoC, especially
for experienced users of emerging apps. Out of the 90 people
crowdsourced, 83% perceive that vSoC is smoother than all
the other emulators based on video playback smoothness
perceived by eyes. 91% think that vSoC is less laggy than all
the other emulators when using camera/AR apps, and 56%
do not perceive any motion-to-photon latency in vSoC at all
(the number is only 12% for the best of other emulators).

Overall, 43% of the participants believe that vSoC sig-
nificantly improves their user experience compared to the
other emulators, and the percentage rises to 93% for the
15 participants who identified themselves as frequent users
of immersive apps. That aligns with existing studies which
show that emerging apps like AR/VR require 60-180 FPS and
sub-100ms motion-to-photon latency to achieve a satisfying
user experience and avoid motion sickness [47, 86].

5.4 Performance Breakdown

Methodology. To understand how individual components
contribute to the performance of vSoC, we respectively dis-
able the prefetch engine and the virtual fence mechanism,
and repeat the evaluation on the high-end desktop machine.
First, when the prefetch engine is disabled, we use the clas-
sic write-invalidate protocol [36] for coherence manage-
ment instead. In the write-invalidate protocol, memory is
lazily updated at the beginning of each SVM access (in the

569

0 1 2 3 4 5
Access Latency (ms)

0.2
0.4
0.6
0.8

1

C
D

F
Max = 40.54
Mean = 2.76
Median = 2.36
Min = 0.06

Max = 54.39
Mean = 0.34
Median = 0.03
Min = 0.00

vSoC Prefetch-off

Figure 16. Access latency on high-end PC
when the prefetch engine is turned off.

begin_access API of §2.1) to reduce memory bandwidth
consumption. Since data will be accessed by the new device
after the API returns, coherence maintenance needs synchro-
nous guest-host execution, and thus virtual command fences
cannot be used (other usages of the fences are not touched).
Second, when the virtual fence mechanism is disabled, we
fall back to commonly-adopted atomic operations (see §3.4)
for access ordering among host threads.
Results. As shown in Figure 12, after the prefetch engine
is turned off, the average performance of the emerging apps
drops by 30%. In particular, the performance of the video
apps drops by a staggering 66%. After a careful analysis of the
video playback pipeline, we discover that the frame drop is
caused by the high access latency of the write-invalidate pro-
tocol, as shown in Figure 16. To achieve real-time playback
and avoid stale frames, the video renderer (MediaCodec [24])
of Android will assign a presentation timestamp to a video
frame after it is decoded, indicating that GPU should finish
rendering the video frame and present it to the user by the
timestamp. Normally, video rendering is quick since it only
involves sampling the video frame as a GPU texture, but
unfortunately in emulation, when the GPU tries to access
the video frame stored in the shared memory, coherence
maintenance is triggered and blocks the render thread for up
to 40.54 ms, causing many frames to miss the presentation
deadline and get discarded.
Meanwhile, when the fence mechanism is disabled, we

observe a moderate 11% decrease in FPS on all five categories
of apps, showing that the virtual fence mechanism brings a
more generic improvement on app performance. The exten-
sive performance drop is reasonable since the mechanism is
applied not only to the SVM framework, but to individual
virtual devices like GPU as well (see §3.4).

5.5 Impact on Top Popular Apps

Methodology. To further identify the impact of the design
choices of vSoC on the performance of top popular apps
besides the emerging ones, we conduct regression testing on
the top-25 popular apps in Google Play (as of Apr. 2024), and
record the FPS of the apps. The measurement methodology
is the same as the application benchmarks in §5.3. Moreover,

we also carry out the performance breakdown experiment
in §5.4 with the 25 popular apps.
Results. Of the top-25 popular mobile apps, vSoC, GAE,
QEMU-KVM, LDPlayer, Bluestacks, and Trinity can respec-
tively run 25, 21, 17, 25, 24, and 24 of them. As shown in
Figure 15, vSoC respectively performs 49%, 18%, 23%, 24%,
and 12% better than GAE, QEMU-KVM, LDPlayer, Blues-
tacks, and Trinity in terms of average FPS. The bar plots only
contain performance data of apps that can be successfully
run, so we further conduct a pairwise FPS comparison be-
tween vSoC and each of the mainstream emulators, using
data from the apps that vSoC and the compared emulator can
both successfully run. The results are very close to the bar
plots as well: vSoC achieves 12%-49% better FPS. vSoC can
achieve moderate performance improvements when running
popular apps as well, because SVM is also commonly used
in other system components of the Android framework (e.g.,
Skia [31]) besides specialized data pipelines, and therefore
the SVM improvements of vSoC can benefit them as well.

Regarding performance regression, vSoC performs slightly
worse than the best of other emulators on 5 popular apps,
with 4% fewer FPS on average. In fact, the 5 apps run at
nearly 60 FPS (avg. 57.4 FPS) on vSoC. The reason behind
the negligible performance regression is that the SVM frame-
work in vSoC is on-demand and brings little overhead when
the app/system does not use it.
Regarding performance breakdown, when the prefetch

engine or the fence mechanism is disabled, 20 (80%) and 24
(96%) apps experience frame rate drops respectively, and the
average FPS of the apps decreases respectively by 6% and
8%, indicating that the design of vSoC can also moderately
improve the FPS of ordinary apps. Of the apps that do not
experience frame rate drops, we discover that they all run at
~60 FPS regardless of whether the mechanisms are enabled,
indicating that their workloads are relatively simple.

6 Porting to vSoC
vSoC already provides paravirtualized implementations of
a common set of SoC devices that satisfy the needs of most
mobile apps on the market. For those who want to add new
virtual devices to vSoC, they can choose to either port the
virtual devices into the SVM framework or leave them as-
is. vSoC is compatible with existing I/O virtualization ap-
proaches like PCIe pass-through (vSoC shares memory with
the new virtual device via the traditional method in §2.2),
so the new virtual device will work without modification
and without performance penalties. But to enjoy the perfor-
mance benefits of vSoC, one has to port the virtual device
into the SVM framework. Fortunately, porting virtual devices
to vSoC is usually a tractable process.

For common devices like GPU and camera (which already
have paravirtualized drivers), the porting process is quite
manageable. Usually, only memory-related code needs to

570

be changed, and memory-management functions usually
account for less than 20% of all the driver functions [37].
Specifically, the virtual device (along with its driver) needs
to provide a handle representation of its local memory, feed
information of its SVM usage into the hypergraphs, add
prefetch and fence commands after SVM accesses, and fi-
nally, provide means of copying data from and to other phys-
ical devices. As a reference, GAE’s image processor driver
and Trinity’s GPU driver can be minimally ported to vSoC
respectively with ~150 and 4K lines of code diffs.

If the virtual device does not have a paravirtualized driver,
porting to vSoC will require converting to a paravirtualized
driver, since the SVM framework is paravirtualized. Cer-
tainly, the engineering effort is not negligible. Thus, it is rec-
ommended to prioritize porting drivers of high-throughput
devices. For devices that are not performance-critical or data-
intensive (e.g., keyboards or touchscreens), conventional I/O
virtualization like PCIe pass-through can be used instead.

7 Related Work
Efficient Mobile Emulation. Mobile emulation has be-
come a keystone of the mobile ecosystem and spans many
areas of interest including mobile app development [14] and
testing [55], malware detection [4], personal gaming [84],
and cloud gaming [52, 79]. Therefore, much effort from both
academia and industry has been put in to enable efficient
emulation of mobile systems.
An important line of work seeks to improve the I/O vir-

tualization efficiency of individual mobile hardware, includ-
ing CPU [15, 73], GPU [16, 18, 84, 85], NIC [46, 74], and
display [7, 12, 58]. In contrast, our work does not intend
to further improve the efficiency of individual devices, but
stands from the perspective of a system of virtual devices
and improves the efficiency of their interactions. That is par-
ticularly important for emerging mobile apps designed to
fully tap the performance potential of mobile SoCs.
Besides, there has been recent work running mobile sys-

tems in containers [11, 12, 52] or by pruning or multiplex-
ing mobile system services [79] to reduce the virtualization
overhead. Since they only enable the sharing of mobile sys-
tem components or the Linux kernel but not heterogeneous
PC/server hardware, our work is largely orthogonal to them.
Shared Virtual Memory. SVM systems are essential for
enabling seamless data sharing across different hardware
architectures. Current SVM research focuses on three main
aspects: operating systems support [3, 8, 9, 17, 39, 50, 62] that
designs robust memory management strategies for heteroge-
neous memory systems, compiler enhancements [75, 77] that
provide transparent SVM implementations for programs, and
hardware integration [45, 63, 82, 87] that provides low-level
support for SVM. Nevertheless, they are mainly designed for
scenarios like distributed storage or parallel computing, and
thus are not directly applicable to mobile emulation where

the architectural gap between mobile devices and PC/server
systems poses unique challenges (see §2.2).
More detailedly, regarding the choice of coherence pro-

tocols, many SVM implementations adopt classical write-
invalidate [38] or broadcast [44, 78] protocols, which are un-
suitable in mobile emulation because of high access latency
or bandwidth overhead. Some works explore software [10]
and hardware prefetching [3, 17] for coherence management,
but the proposed prefetch protocols typically face a tradeoff
of prefetch aggressiveness. Our work instead circumvents
the tradeoff by exploiting the usage characteristics of shared
memory in mobile systems.
Meanwhile, regarding the granularity of SVM memory

units, most SVM related work [3, 17, 51, 87] adopts a fixed
page-level unit size, whereas mainstream mobile emulators
often segment SVM into smaller memory units according to
the size of the dirty region provided by the shared memory
API (see Figure 3), because processing large numbers of page
faults across the virtualization boundary can bring signifi-
cant VM-Exit [18, 81] overhead that stalls the whole system.
vSoC also adopts the common practice of mainstreammobile
emulators, though our core mechanisms can apply to other
SVM unit granularities as well.

8 Conclusion
This paper presents vSoC, the first virtual mobile SoC that
enables efficient emulation of high-throughput SoC devices.
The key methodology of vSoC is to break away from the
traditional modular architecture of virtual devices by estab-
lishing a unified framework for shared virtual memory. Our
evaluation demonstrates that vSoC achieves significant per-
formance improvements for emerging mobile applications
that heavily rely on a variety of SoC devices. This perfor-
mance gain has led to the adoption of vSoC by amajor mobile
app IDE, showcasing its practical impact.
We hope that the experiences involved in this work can

shed light on the usage of shared memory in mobile systems,
contribute to the emulation of other platformswith hardware
disparities, and open up opportunities for future use cases
of mobile systems such as cloud-based AR/VR.

Acknowledgments
We are very grateful to our shepherd, Jason Nieh, for his
invaluable feedback. We thank the anonymous reviewers for
their insightful comments. This work is supported in part
by the National Key R&D Program of China under grant
2022YFB4500703, the National Natural Science Foundation
of China under grants 62332012 and 62472245, and the Ant
Group. Tianyin Xu is supported by NSF CNS-1956007.

References
[1] Adobe Systems. Adobe RTMP Specification, 2019. https://rtmp.ve

riskope.com/docs/spec/.

571

https://rtmp.veriskope.com/docs/spec/
https://rtmp.veriskope.com/docs/spec/

[2] Jasmin Ajanovic. PCI Express 3.0 Overview. In Proc. of IEEE HCS,
pages 1–61, 2009.

[3] Tyler Allen and Rong Ge. In-Depth Analyses of Unified Virtual Mem-
ory System for GPU Accelerated Computing. In Proc. of ACM/IEEE SC,
pages 1–15, 2021.

[4] Mohammed K. Alzaylaee, Suleiman Y. Yerima, and Sakir Sezer. EMU-
LATOR vs REAL PHONE: Android Malware Detection Using Machine
Learning. In Proc. of ACM IWSPA, pages 65–72, 2017.

[5] Android Open Source Project. YuvConverter.Java Android Open
Source Project, 2024. https://chromium.googlesource.com/external/
webrtc/+/HEAD/sdk/android/api/org/webrtc/YuvConverter.java.

[6] AUTOBOOM. Arcfox Alpha T - Generations, Types of Execution and
Years of Manufacture, 2024. https://autoboom.co.il/en/catalog/cars/
arcfox/alpha-t.

[7] Ricardo A. Baratto, Shaya Potter, Gong Su, and Jason Nieh. MobiDesk:
Mobile Virtual Desktop Computing. In Proc. of ACM MobiCom, pages
1–15, 2004.

[8] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Dis-
tributed Shared Memory Based on Type-Specific Memory Coherence.
In Proc. of ACM PPoPP, pages 168–176, 1990.

[9] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. Rethinking Software Run-
times for Disaggregated Memory. In Proc. of ACM ASPLOS, pages
79–92, 2021.

[10] David Callahan, Ken Kennedy, andAllan Porterfield. Software Prefetch-
ing. ACM SIGARCH Computer Architecture News, 19:40–52, 1991.

[11] Canonical. Anbox Cloud Official Website, 2024. https://anbox-cloud.io.
[12] Wenzhi Chen, Lei Xu, Guoxi Li, and Yang Xiang. A Lightweight

Virtualization Solution for Android Devices. IEEE Transactions on
Computers, 64:2741–2751, 2015.

[13] Chi-Wei Huang. Android-X86 Release 9.0-R2, 2024. https://www.an
droid-x86.org/releases/releasenote-9-0-r2.html.

[14] Jaewon Choi, Seungchan Jeong, and JeongGil Ko. Emulating Your
eXtendedWorld: An Emulation Environment for XRAppDevelopment.
In Proc. of IEEE MASS, pages 131–139, 2022.

[15] Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján.
Low Overhead Dynamic Binary Translation on ARM. In Proc. of ACM
PLDI, pages 333–346, 2017.

[16] Micah Dowty and Jeremy Sugerman. GPU Virtualization on VMware’s
Hosted I/O Architecture. ACM SIGOPS Operating Systems Review,
43:73–82, 2009.

[17] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. Interplay
between Hardware Prefetcher and Page Eviction Policy in CPU-GPU
Unified Virtual Memory. In Proc. of ACM/IEEE ISCA, pages 224–235,
2019.

[18] Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, Yunhao Liu, Feng Qian,
Liangyi Gong, and Tianyin Xu. Trinity: High-Performance Mobile
Emulation through Graphics Projection. In Proc. of USENIX OSDI,
pages 285–301, 2022.

[19] Everette S. Gardner Jr. Exponential Smoothing: The State of the Art.
Journal of Forecasting, 4:1–28, 1985.

[20] GLFW Developers. GLFW: An OpenGL Library, 2024. https://www.g
lfw.org/.

[21] Google. Android Application-Not-Responding, 2024. https://develope
r.android.com/topic/performance/vitals/anr.

[22] Google. Android Camera HAL, 2024. https://source.android.com/
docs/core/camera/camera3.

[23] Google. Android Debug Bridge, 2024. https://developer.android.com/
tools/adb.

[24] Google. Android MediaCodec, 2024. https://developer.android.com/
reference/android/media/MediaCodec.

[25] Google. Android On-Device Developer Options, 2024. https://deve
loper.android.com/studio/debug/dev-options.

[26] Google. Android Telephony Android Developers Documents,
2024. https://developer.android.com/reference/android/telephony/

package-summary.
[27] Google. ARCore Official Website, 2024. https://developers.google

.com/ar.
[28] Google. Google Android Emulator, 2024. https://developer.an

droid.com/studio/run/emulator.
[29] Google. Hardware Abstraction Layer Overview, 2024. https://source

.android.com/docs/core/architecture/hal.
[30] Google. RIL Refactoring, 2024. https://source.android.com/docs/core

/connect/ril.
[31] Google. Skia Official Website, 2024. https://skia.org/.
[32] Google. The VSync Mechanism, 2024. https://source.android.com/

docs/core/graphics/implement-vsync.
[33] HUAWEI. HUAWEI DevEco Studio, 2024. https://devecostudio.huawe

i.com/en/.
[34] Intel.com. Houdini: Translate The ARM Binary Code into the X86

Instruction Set, 2021. https://www.intel.com/content/www/us/en
/products/systems-devices/workstations.html.

[35] Michael Jarschel, Daniel Schlosser, Sven Scheuring, and Tobias Hoßfeld.
An Evaluation of QoE in Cloud Gaming Based on Subjective Tests. In
Proc. of Springer IMIS, pages 330–335, 2011.

[36] Norman P. Jouppi. Cache Write Policies and Performance. ACM
SIGARCH Computer Architecture News, 21:191–201, 1993.

[37] Asim Kadav and Michael M. Swift. Understanding Modern Device
Drivers. ACM SIGPLAN Notices, 47:87–98, 2012.

[38] Abdullah Kayi, Olivier Serres, and Tarek El-Ghazawi. Adaptive Cache
Coherence Mechanisms with Producer–Consumer Sharing Optimiza-
tion for Chip Multiprocessors. IEEE Transactions on Computers, 64:316–
328, 2015.

[39] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, andWilly Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems. In Proceedings of the USENIX Winter 1994
Technical Conference on USENIX Winter 1994 Technical Conference,
page 10, 1994.

[40] Kernel Developers. Virtio on Linux — The Linux Kernel Documenta-
tion, 2024. https://docs.kernel.org/driver-api/virtio/virtio.html.

[41] Khronos. OpenGL ES Official Website, 2011. https://www.khronos.org
/opengles/.

[42] Khronos. OpenMAX Official Website, 2011. https://www.khronos.org
/openmax/.

[43] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal Verification of an OS Kernel. In Proc. of ACM
SOSP, pages 207–220, 2009.

[44] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry Dennison. An
In-Network Architecture for Accelerating Shared-Memory Multipro-
cessor Collectives. In Proc. of ACM/IEEE ISCA, pages 996–1009, 2020.

[45] Leonidas Kontothanassis, Galen Hunt, Robert Stets, Nikolaos Har-
davellas, Michał Cierniak, Srinivasan Parthasarathy, Wagner Meira,
Sandhya Dwarkadas, and Michael Scott. VM-Based Shared Memory
on Low-Latency, Remote-Memory-Access Networks. ACM SIGARCH
Computer Architecture News, 25:157–169, 1997.

[46] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, Yaogong
Wang, Chonggang Li, Valas Valancius, Jake Adriaens, Steve Gribble,
Nate Foster, and Amin Vahdat. PicNIC: Predictable Virtualized NIC.
In Proc. of ACM SIGCOMM, pages 351–366, 2019.

[47] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. Fu-
rion: Engineering High-Quality Immersive Virtual Reality on Today’s
Mobile Devices. In Proc. of ACM MobiCom, pages 409–421, 2017.

[48] ldplayer.net. LDPlayer Android Emulator for PC, 2024. https:
//www.ldplayer.net.

[49] LG Electronics. What Is 4K TV Resolution & Why It’s The Best,
2024. https://www.lg.com/ae/lg-story/helpful-guide/what-is-4k-re
solution.

572

https://chromium.googlesource.com/external/webrtc/+/HEAD/sdk/android/api/org/webrtc/YuvConverter.java
https://chromium.googlesource.com/external/webrtc/+/HEAD/sdk/android/api/org/webrtc/YuvConverter.java
https://autoboom.co.il/en/catalog/cars/arcfox/alpha-t
https://autoboom.co.il/en/catalog/cars/arcfox/alpha-t
https://anbox-cloud.io
https://www.android-x86.org/releases/releasenote-9-0-r2.html
https://www.android-x86.org/releases/releasenote-9-0-r2.html
https://www.glfw.org/
https://www.glfw.org/
https://developer.android.com/topic/performance/vitals/anr
https://developer.android.com/topic/performance/vitals/anr
https://source.android.com/docs/core/camera/camera3
https://source.android.com/docs/core/camera/camera3
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://developer.android.com/reference/android/media/MediaCodec
https://developer.android.com/reference/android/media/MediaCodec
https://developer.android.com/studio/debug/dev-options
https://developer.android.com/studio/debug/dev-options
https://developer.android.com/reference/android/telephony/package-summary
https://developer.android.com/reference/android/telephony/package-summary
https://developers.google.com/ar
https://developers.google.com/ar
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://source.android.com/docs/core/architecture/hal
https://source.android.com/docs/core/architecture/hal
https://source.android.com/docs/core/connect/ril
https://source.android.com/docs/core/connect/ril
https://skia.org/
https://source.android.com/docs/core/graphics/implement-vsync
https://source.android.com/docs/core/graphics/implement-vsync
https://devecostudio.huawei.com/en/
https://devecostudio.huawei.com/en/
https://www.intel.com/content/www/us/en/products/systems-devices/workstations.html
https://www.intel.com/content/www/us/en/products/systems-devices/workstations.html
https://docs.kernel.org/driver-api/virtio/virtio.html
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/openmax/
https://www.khronos.org/openmax/
https://www.ldplayer.net
https://www.ldplayer.net
https://www.lg.com/ae/lg-story/helpful-guide/what-is-4k-resolution
https://www.lg.com/ae/lg-story/helpful-guide/what-is-4k-resolution

[50] Kai Li. IVY: A Shared Virtual Memory System for Parallel Computing.
In Proc. of ICPP, 1988.

[51] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory
Systems. ACM Transactions on Computer Systems, 7:321–359, 1989.

[52] Linsheng Li, Bin Yang, Cathy Bao, Shuo Liu, Randy Xu, Yong Yao,
Mohammad R. Haghighat, Jerry W. Hu, Shoumeng Yan, and Zhengwei
Qi. DroidCloud: Scalable High Density AndroidTM Cloud Rendering.
In Proc. of ACM MM, pages 3348–3356, 2020.

[53] Libavcodec Developers. Libavcodec Documentation, 2024. https:
//www.ffmpeg.org/libavcodec.html.

[54] Libswscale Developers. Libswscale Documentation, 2024. https://
ffmpeg.org/libswscale.html.

[55] Hao Lin, Jiaxing Qiu, HongyiWang, Zhenhua Li, Liangyi Gong, Di Gao,
Yunhao Liu, Feng Qian, Zhao Zhang, Ping Yang, and Tianyin Xu.
Virtual Device Farms for Mobile App Testing at Scale: A Pursuit for
Fidelity, Efficiency, and Accessibility. In Proc. of ACM MobiCom, pages
1–17, 2023.

[56] Linux Developers. Linux Manual Page of Mmap, 2023. https://man
7.org/linux/man-pages/man2/mmap.2.html.

[57] Linux Developers. Linux Kernel Memory Allocation Guide, 2024. https:
//www.kernel.org/doc/html/v6.0/core-api/memory-allocation.html.

[58] Yan Lu, Shipeng Li, and Huifeng Shen. Virtualized Screen: A Third
Element for Cloud–Mobile Convergence. IEEE MultiMedia, 18:4–11,
2011.

[59] Stephen F. Lundstrom. Controllable Multiple-Instruction, Multiple-
Data Stream (MIMD) Architecture. In Real-Time Signal Processing V,
pages 333–338, 1982.

[60] Pallavi Maiya and Aditya Kanade. Efficient Computation of Happens-
before Relation for Event-Driven Programs. In Proc. of ACM ISSTA,
pages 102–112, 2017.

[61] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race Detection
for Android Applications. ACM SIGPLAN Notices, 49:316–325, 2014.

[62] Seung Won Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun
Xiong, Eiman Ebrahimi, andWen-mei Hwu. EMOGI: EfficientMemory-
Access for out-of-Memory Graph-Traversal in GPUs. Proceedings of
the VLDB Endowment, 14:114–127, 2020.

[63] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike
Litzkow, Mark D. Hill, David A. Wood, Steven Huss-Lederman, and
James R. Larus. Wisconsin Wind Tunnel II: A Fast, Portable Parallel
Architecture Simulator. IEEE Concurrency, 8:12–20, 2000.

[64] Michael Nebeling, Shwetha Rajaram, LiweiWu, Yifei Cheng, and Jaylin
Herskovitz. XRStudio: A Virtual Production and Live Streaming Sys-
tem for Immersive Instructional Experiences. In Proc. of ACM CHI,
pages 1–12, 2021.

[65] now.gg. BlueStacks Gaming Platform for PC, 2024. https://www.blue
stacks.com/.

[66] NVIDIA. CUDA OpenGL Interoperability, 2024. https://docs.n
vidia.com/cuda/cuda-driver-api/index.html.

[67] OpenHarmony. OpenHarmony Official Website, 2024. https://gite
e.com/openharmony.

[68] OpenHarmony. OpenHarmony OH_NativeBuffer Interface, 2024.
https://gitee.com/openharmony/graphic_graphic_surface.

[69] OpenHarmony. OpenHarmony telephony_ril_adapter Repository,
2024. https://gitee.com/openharmony/telephony_ril_adapter?_from=

gitee_search.
[70] Mahendra PratapSingh and Manoj Kumar Jain. Evolution of Processor

Architecture in Mobile Phones. International Journal of Computer

Applications, 90:34–39, 2014.
[71] Project ACRN™ documentation. Device Passthrough, 2024.

https://projectacrn.github.io/latest/developer-guides/hld/hv-dev-
passthrough.html.

[72] QEMU Developers. QEMU Version 7.1.0, 2022. https://www.qemu.org
/2022/08/30/qemu-7-1-0/.

[73] QEMU Developers. QEMU Official Website, 2024. https://www.qe
mu.org/.

[74] Himanshu Raj and Karsten Schwan. High Performance and Scalable
I/O Virtualization via Self-Virtualized Devices. In Proc. of ACM HPDC,
pages 179–188, 2007.

[75] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A.
Thekkath. Shasta: A Low Overhead, Software-Only Approach for
Supporting Fine-Grain Shared Memory. In Proc. of ACM ASPLOS,
pages 174–185, 1996.

[76] stevewhims. DirectShow - Win32 Apps, 2023. https://learn
.microsoft.com/en-us/windows/win32/directshow/directshow.

[77] Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda.
CARAT: A Case for Virtual Memory through Compiler- and Runtime-
Based Address Translation. In Proc. of ACM PLDI, pages 329–345,
2020.

[78] Weiyi Sun, Zhaoshi Li, Shouyi Yin, Shaojun Wei, and Leibo Liu. ABC-
DIMM: Alleviating the Bottleneck of Communication in DIMM-Based
Near-Memory Processing with Inter-DIMM Broadcast. In Proc. of
ACM/IEEE ISCA, pages 237–250, 2021.

[79] Dongjie Tang, Cathy Bao, Yong Yao, Chao Xie, Qiming Shi, Marc
Mao, Randy Xu, Linsheng Li, Mohammad R. Haghighat, Zhengwei
Qi, and Haibing Guan. CARE: Cloudified Android OSes on the Cloud
Rendering. In Proc. of ACM MM, pages 4582–4590, 2021.

[80] Sean J. Taylor and Benjamin Letham. Forecasting at Scale. The Ameri-
can Statistician, 72:37–45, 2018.

[81] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C.M.
Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H.
Leung, and Larry Smith. Intel Virtualization Technology. Computer,
38:48–56, 2005.

[82] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu
Shu. Concordia: Distributed Shared Memory with In-Network Cache
Coherence. In Proc. of USENIX FAST, pages 277–292, 2021.

[83] Will Reese. Nginx: The High-Performance Web Server and
Reverse Proxy, 2008. https://dl.acm.org/doi/fullHtml/10.5555/
1412202.1412204.

[84] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuanchao Huang,
Jiaming He, Tianyin Xu, and Ennan Zhai. Mobile Gaming on Personal
Computers with Direct Android Emulation. In Proc. of ACM MobiCom,
pages 1–15, 2019.

[85] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and
Christopher J. Rossbach. AvA: Accelerated Virtualization of Accelera-
tors. In Proc. of ACM ASPLOS, pages 807–825, 2020.

[86] Wenxiao Zhang, Bo Han, and Pan Hui. SEAR: Scaling Experiences in
Multi-User Augmented Reality. IEEE Transactions on Visualization and
Computer Graphics, 28:1982–1992, 2022.

[87] Amir Kavyan Ziabari, Yifan Sun, Yenai Ma, Dana Schaa, José L. Abel-
lán, Rafael Ubal, John Kim, Ajay Joshi, and David Kaeli. UMH: A
Hardware-Based Unified Memory Hierarchy for Systems with Multi-
ple Discrete GPUs. ACM Transactions on Architecture and Code Opti-
mization, 13:35:1–35:25, 2016.

573

https://www.ffmpeg.org/libavcodec.html
https://www.ffmpeg.org/libavcodec.html
https://ffmpeg.org/libswscale.html
https://ffmpeg.org/libswscale.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://www.kernel.org/doc/html/v6.0/core-api/memory-allocation.html
https://www.kernel.org/doc/html/v6.0/core-api/memory-allocation.html
https://www.bluestacks.com/
https://www.bluestacks.com/
https://docs.nvidia.com/cuda/cuda-driver-api/index.html
https://docs.nvidia.com/cuda/cuda-driver-api/index.html
https://gitee.com/openharmony
https://gitee.com/openharmony
https://gitee.com/openharmony/graphic_graphic_surface
https://gitee.com/openharmony/telephony_ril_adapter?_from=gitee_search
https://gitee.com/openharmony/telephony_ril_adapter?_from=gitee_search
https://projectacrn.github.io/latest/developer-guides/hld/hv-dev-passthrough.html
https://projectacrn.github.io/latest/developer-guides/hld/hv-dev-passthrough.html
https://www.qemu.org/2022/08/30/qemu-7-1-0/
https://www.qemu.org/2022/08/30/qemu-7-1-0/
https://www.qemu.org/
https://www.qemu.org/
https://learn.microsoft.com/en-us/windows/win32/directshow/directshow
https://learn.microsoft.com/en-us/windows/win32/directshow/directshow
https://dl.acm.org/doi/fullHtml/10.5555/1412202.1412204
https://dl.acm.org/doi/fullHtml/10.5555/1412202.1412204

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Mobile SoC and Shared Memory
	2.2 Shared Virtual Memory in Mobile Emulation
	2.3 Real-World Usage of Shared Memory
	2.4 Implications for vSoC

	3 System Design
	3.1 Overview
	3.2 The SVM Manager
	3.3 The Prefetch Engine
	3.4 Virtual Command Fence

	4 System Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Microbenchmarks
	5.3 Application Benchmarks
	5.4 Performance Breakdown
	5.5 Impact on Top Popular Apps

	6 Porting to vSoC
	7 Related Work
	8 Conclusion
	References

