
An Input-Agnostic Hierarchical Deep Learning Framework for

Traffic Fingerprinting

Jian Qu

Xi’an Jiaotong University

Xiaobo Ma

Xi’an Jiaotong University
Jianfeng Li

Xi’an Jiaotong University

Xiapu Luo

Hong Kong Polytechnnic University

Lei Xue

Sun Yat-sen University

Junjie Zhang

Wright State University

Zhenhua Li

Tsinghua University

Li Feng

Southwest Jiaotong University

Xiaohong Guan

Xi’an Jiaotong University

August 2023

Outline

 Background and Problem Description

 System Design

 Evaluation

 Conclusions

Background and Problem Description

Servers

Analyzer

Endpoints

Sniff

Traffic

Fingerprinting
Device/APP/

Website/...

Website Fingerprinting
Shen et al. [ACM ARES, 2019]

Di Martino et al. [IEEE ICC, 2019]

Application Fingerprinting
App-Net [INFOCOM WKSHPS, 2020]

FOAP [USENIX Security, 2022]

Internet of Things Fingerprinting
Ma et al. [IEEE INFOCOM, 2020]

IoTFinder [EuroS&P, 2020]

Related work

······

Motivation

Related work

Feature-based traffic fingerprinting
k-fingerprinting [USENIX Security, 2016]

Shafiq et al. [The Journal of

Supercomputing, 2019]

Deep learning-based traffic fingerprinting
Deep fingerprinting [ACM CCS, 2018]

Var-cnn [PETS, 2019]

SHAME [ACM WPES, 2021]

······

Outline

 Background and Problem Description

 System Design

 Evaluation

 Conclusions

System Design

System Design

System Design

System Design

System Design

NN Structure in Packet-to-flow (M1) Mapping and Flow-to-trace (M2) Mapping

(1) Chain-structured

(2) Tree-structured

(3) Attention-structured

(4) Hybrid (uses multiple neural network structures)

System Design

System Design

Use CNN Compression to Speed up Training

flow 1 PVPVPVPVPVPVPVPV PV

Packet-to-flow Mapping

flow vector

flow 1 PVPVPVPVPVPVPVPV PV

Packet-to-flow Mapping

flow vector

CNN Compression

PVPVPV

(a) Without CNN Compression (b) With CNN Compression

System Design

Techniques to Handle Overfitting

 Early Stopping

 Weight Decay

 Dropout

 Batch Normalization

 Auxiliary Loss

 Data Enhancement

System Design

 Early Stopping

 Weight Decay

 Dropout

 Batch Normalization

 Auxiliary Loss

 Data Enhancement

Trace Classification loss

Flow Classification loss

Techniques to Handle Overfitting

System Design

 Early Stopping

 Weight Decay

 Dropout

 Batch Normalization

 Auxiliary Loss

 Data Enhancement

Cropping

trace X

trace X

Dropping

Noising

trace X

trace X

trace X

trace X

Techniques to Handle Overfitting

System Design

 Early Stopping

 Weight Decay

 Dropout

 Batch Normalization

 Auxiliary Loss

 Data Enhancement

 Hybrid

Techniques to Handle Overfitting

Outline

 Background and Problem Description

 System Design

 Evaluation

 Conclusions

Evaluation

• User Activities (UAV)

• IoT Device Identification (IDI)

• Intrusion Detection (ISD)

• Keyword Searching (KWS)

• Shadowsocks Website

Fingerprinting (SWF)

◆Our method effectively fingerprint traffic across multiple tasks.

Performance comparison with the SOTA methods. Datasets

Evaluation

Macro F1-scores using different neural network structures

◆Hybrid structures should be adopted for stable Macro F1-scores.

Evaluation

Macro F1-scores using different solutions to handle overfitting.

H-* removes method * from the hybrid solution.

◆Hybrid solutions should be adopted for high Macro F1-scores.

Evaluation

Macro F1-scores when confronted with hierarchy unawareness deep learning methods

• HA-1.1: Treat a trace consisting of multiple flows as a sample, without distinguishing between flows.

• HA-1.2: Treat a trace consisting of multiple flows as a sample, with distinguishing between flows.

• HA-2: Treat each flow of a trace as a sample, and classifying it into different trace labels.

◆Hierarchy awareness is important.

Outline

 Background and Problem Description

 System Design

 Evaluation

 Conclusions

◆We take the first step to designing an input-agnostic hierarchical deep learning

framework to seamlessly land deep learning onto traffic fingerprinting.

◆Our framework successfully applies in various fingerprinting tasks where SOTA

methods rely on handcrafted features and deep learning is not easily applicable.

◆We proposed techniques to handle overfitting and analyzed real-world factors that affect

performance.

◆Code available at https://github.com/shashadehuajiang/trace_classifier

Conclusions

Thank you!

Feel free to contact with any questions:
qj904154277@stu.xjtu.edu.cn

