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Background and Problem Description
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Website Fingerprinting
Shen et al. [ACM ARES, 2019]

Di Martino et al. [IEEE ICC, 2019]

Application Fingerprinting
App-Net [INFOCOM WKSHPS, 2020]

FOAP [USENIX Security, 2022]

Internet of Things Fingerprinting
Ma et al. [IEEE INFOCOM, 2020]

IoTFinder [EuroS&P, 2020]

Related work
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Motivation

Related work

Feature-based traffic fingerprinting
k-fingerprinting [USENIX Security, 2016]

Shafiq et al. [The Journal of 

Supercomputing, 2019]

Deep learning-based traffic fingerprinting
Deep fingerprinting [ACM CCS, 2018]

Var-cnn [PETS, 2019]

SHAME [ACM WPES, 2021]

······



Outline

 Background and Problem Description

 System Design

 Evaluation

 Conclusions



System Design



System Design



System Design



System Design



System Design



NN Structure in Packet-to-flow (M1) Mapping and Flow-to-trace (M2) Mapping 

(1) Chain-structured

(2) Tree-structured

(3) Attention-structured

(4) Hybrid (uses multiple neural network structures)

System Design



System Design

Use CNN Compression to Speed up Training
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System Design

Techniques to Handle Overfitting 

 Early Stopping

 Weight Decay

 Dropout

 Batch Normalization

 Auxiliary Loss 

 Data Enhancement 
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System Design

 Early Stopping

 Weight Decay

 Dropout

 Batch Normalization

 Auxiliary Loss 

 Data Enhancement

 Hybrid

Techniques to Handle Overfitting 
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Evaluation

• User Activities (UAV)

• IoT Device Identification (IDI)

• Intrusion Detection (ISD)

• Keyword Searching (KWS)

• Shadowsocks Website 

Fingerprinting (SWF)

◆Our method effectively fingerprint traffic across multiple tasks. 

Performance comparison with the SOTA methods. Datasets



Evaluation

Macro F1-scores using different neural network structures

◆Hybrid structures should be adopted for stable Macro F1-scores.



Evaluation

Macro F1-scores using different solutions to handle overfitting. 

H-* removes method * from the hybrid solution.

◆Hybrid solutions should be adopted for high Macro F1-scores.



Evaluation

Macro F1-scores when confronted with hierarchy unawareness deep learning methods

• HA-1.1: Treat a trace consisting of multiple flows as a sample, without distinguishing between flows.

• HA-1.2: Treat a trace consisting of multiple flows as a sample, with distinguishing between flows.

• HA-2: Treat each flow of a trace as a sample, and classifying it into different trace labels.

◆Hierarchy awareness is important.
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◆We take the first step to designing an input-agnostic hierarchical deep learning

framework to seamlessly land deep learning onto traffic fingerprinting.

◆Our framework successfully applies in various fingerprinting tasks where SOTA

methods rely on handcrafted features and deep learning is not easily applicable.

◆We proposed techniques to handle overfitting and analyzed real-world factors that affect

performance.

◆Code available at https://github.com/shashadehuajiang/trace_classifier

Conclusions



Thank you!

Feel free to contact with any questions:
qj904154277@stu.xjtu.edu.cn 


