
Xinlei Yang∗ Wei Liu∗ Hao Lin
Tsinghua University, China Tsinghua University, China Tsinghua University, China

Zhenhua Li Feng Qian Xianlong Wang
Tsinghua University, China University of Minnesota, USA Tsinghua University, China

Yunhao Liu Tianyin Xu
Tsinghua University, China UIUC, USA

ABSTRACT
Web performance optimization services, or web performance op-
timizers (WPOs), play a critical role in today’s web ecosystem by
improving page load speed and saving network trafc. However,
WPOs are known for introducing visual distortions that disrupt the
users’ web experience. Unfortunately, visual distortions are hard to
analyze, test, and debug, due to their subjective measure, dynamic
content, and sophisticated WPO implementations.

This paper presents Vetter, a novel and efective system that
automatically tests and debugs visual distortions. Its key idea is to
reason about the morphology of web pages, which describes the
topological forms and scale-free geometrical structures of visual
elements. Vetter efciently calculates morphology and compara-
tively analyzes the morphologies of web pages before and after
a WPO, which acts as a diferential test oracle. Such morphology
analysis enables Vetter to detect visual distortions accurately and
reliably. Vetter further diagnoses the detected visual distortions to
pinpoint the root causes in WPOs’ source code. This is achieved by
morphological causal inference, which localizes the ofending visual
elements that trigger the distortion and maps them to the corre-
sponding code. We applied Vetter to four representative WPOs.
Vetter discovers 21 unknown defects responsible for 98% visual
distortions; 12 of them have been confrmed and 5 have been fxed.

CCS CONCEPTS
• Information systems → Web interfaces; • Software and its
engineering → Software testing and debugging.

KEYWORDS
Web Performance Optimization; Web Page Distortion; Visual-Aware
Testing and Debugging

∗Co-primary authors. Zhenhua Li is the corresponding author.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583323

ACM Reference Format:
Xinlei Yang, Wei Liu, Hao Lin, Zhenhua Li, Feng Qian, Xianlong Wang,
Yunhao Liu, Tianyin Xu. 2023. Visual-Aware Testing and Debugging for
Web Performance Optimization. In Proceedings of the ACM Web Conference
2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3543507.3583323

1 INTRODUCTION
The ever-growing demand for fast, reliable, and resource-efcient
web browsing has been driving the active development of web
performance optimization services [3, 23, 41, 47, 59], or web perfor-
mance optimizers (WPOs). Deployed as server/client-side plug-ins
or WAN/LAN proxies by mobile ISPs, content providers, and corpo-
rations, WPOs automatically perform a wide range of optimizations
(e.g., image transcoding, JavaScript/CSS minifcation, and HTML/-
text compression) to save the page load time (PLT) and/or network
trafc. Many WPOs also ofer add-on services like caching, web
security, and advertisement fltering.

WPOs are highly efective and popular. Google AMP has speeded
up the loading process of 5 billion web pages by 2.5× on average [23,
45]. Google Flywheel [3] and Baidu TrafcGuard [47] save mobile
trafc for tens of millions of users by over 1/2 and 1/3, respectively.
New WPOs such as Fawkes [51], SipLoader [48], and Vroom [66] can
further reduce user-perceived page load time signifcantly. Besides,
selective trafc manipulation [49, 56] and symbolic execution [46]
have been proposed to prevent privacy violations.

Despite the many compelling features and measurable benefts,
WPOs could induce visual distortions, which signifcantly impair
users’ web experience [17, 21, 22, 70, 71]. Figure 1 shows an exam-
ple of visual distortions. Compared to the original landing page of
Bild.de (a popular German news media), the “optimized” version
by Ziproxy [41] (a classic WPO for trafc compression) is severely
distorted, leading to unacceptable user experience. In fact, many
users choose to opt out of WPOs simply because of visual distor-
tions [18, 30, 36]. This is particularly common for non-technical
users who cannot explain the distortions [8, 20]. In addition, our
interviews with developers of both Google Flywheel and Baidu
TrafcGuard confrm that visual distortions are a key challenge of
their services and have created major obstacles to adoption.

Unfortunately, visual distortions incurred by WPOs are under in-
vestigated. The knowledge gap hinders the development of practical
solutions for detecting, debugging, and fxing visual distortions. To
fll this gap, we conduct the frst in-depth study on visual distortions

Visual-Aware Testing and Debugging for
Web Performance Optimization

2948

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583323
https://doi.org/10.1145/3543507.3583323
https://www.bild.de/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583323&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Xinlei Yang, Wei Liu, Hao Lin, Zhenhua Li, Feng Qian, Xianlong Wang, Yunhao Liu, and Tianyin Xu

Figure 1: A real-world example of web page distortion.
introduced by WPOs. With informed consent and a well-established
IRB, we recruit 18 users (from diferent age and gender groups) to
help recognize visual distortions on the landing pages of the Alexa
top and bottom 2,500 websites (among the top 1M) after being op-
timized by two widely used WPOs (i.e., Ziproxy and Compy [42]).
The experiments reveal three major fndings.
• Although visual distortions seem to be subjective, for most (93%)
web pages, the inspectors have the same opinions.

• Ziproxy and Compy incur visual distortions to 3.3% and 6.1% of
the 5,000 landing pages respectively, which is signifcant enough
to afect user experience and discourage WPO deployments.

• Visual distortions are more severe (5.6% for Ziproxy and 9.0%
for Compy) in landing pages of less popular (the bottom 2,500)
websites, as these websites include more non-standard or even
incorrect web contents that confuse WPOs’ optimizations.
Driven by the prevalence and severity of distortions, we aim to

develop an efective approach to systematically address the issue.
However, our experience reveals signifcant challenges. First, auto-
matic detection of distortions is nontrivial. An intuitive approach
is to directly compare the image snapshots of the original and opti-
mized pages, which however cannot address dynamic contents that
vary signifcantly (exemplifed in Figure 2). An alternative is to com-
pare the key data structures (e.g., DOM, render, and CSSOM trees)
of web pages, which also falls short for a lack of visual hints, miss-
ing layout information, and being over-general. Worse still, even
when distortions are successfully detected, it is hard to locate their
root causes in the source code, as WPOs typically have sophisti-
cated implementations for accommodating complex resources (e.g.,
images and videos), various protocols (e.g., HTTP/3 and HTTPS),
and diverse languages (e.g., HTML5 and WebAssembly).

In this paper, we present Vetter, a system for automatically test-
ing and debugging visual distortions from the perspective of how
modern web pages are generated. Today, very few web pages are
written from scratch in an ad-hoc manner; instead, most web pages
are programmatically generated by several mainstream web frame-
works (e.g., Angular [25], React [35], and Vue [73]). These frame-
works follow the standard Model-View-ViewModel (MVVM) design
pattern that decouples a web page’s layout (View) from the logic
and data (Model). As a result, while the logic and data of a dynamic
web page vary between diferent loads, only the scales or concrete
contents of visual elements are changed accordingly; visual ele-
ments’ topological forms and scale-free geometrical structures do
not. Such invariants are referred to as a web page’s morphology.

Vetter is built based on a key insight that visual distortions on
a web page (no matter how dynamic it is) are highly relevant to
changes in its morphology. As shown in Figure 2, in two diferent
loads of Pinterest’s landing page, pictures are both placed in rectan-
gles (topological form) and aligned vertically (scale-free geometrical

Figure 2: The landing page of Pinterest.com varies signif-
cantly in two diferent loads due to the dynamic contents.

structure) despite signifcant pixel-level changes, so the optimized
page was never deemed as visually distorted by the users.

However, comparing the morphologies of two web pages is
costly—the time complexity is � (�!) for web pages containing � vi-
sual elements. To address this, we discover the intrinsic hierarchy in
a web page’s morphology, which derives from the nested properties
of the markup languages (e.g., HTML and XML) used by mainstream
web frameworks to defne layouts. Vetter utilizes this to minify a
web page’s morphology, thus greatly reducing the complexity to
� (�3), which only takes tens of milliseconds in practice.

Vetter further provides debugging support for visual distortions
that are automatically detected (or manually identifed). We fnd
that solely analyzing the visually distorted elements (detected dur-
ing testing) is inefective, because many of them are the results of
the “chain reactions” of neighboring visually distorted elements
instead of the defects in a WPO’s source code.

To debug visual distortions efectively, Vetter performs morpho-
logical causal inference that strategically manipulates the loading
process of these elements (e.g., replacing one visually distorted
element’s resource with its original one, or changing the loading
sequence) under the guidance of morphological hints (i.e., the graph-
ical and structural information of visually distorted elements), and
meanwhile checks whether the distortion can be resolved. Given
the results, Vetter can efciently infer the causal relationship be-
tween the WPO’s source code and visually distorted elements, thus
greatly and safely reducing the search space for debugging.

We apply Vetter to four representative WPOs (Ziproxy, Compy,
Fawkes, and SipLoader). When using the Alexa top 2,500 websites
as the training set and bottom 2,500 websites (among the top 1M) as
the test set, Vetter can efciently (costing 62 ms per page on average)
detect visual distortions with high precision (95%) and recall (91%).
Further, Vetter fnds a total of 21 previously unknown defects in the
four WPOs, most of which stem from 1) WPO developers’ undue
reliance on the correctness of the original web request/response
headers, 2) the WPO-amplifed dependency violations among web
contents, and 3) the lack of support for emerging web techniques.
We fx them through either source code correction or lightweight
middleware pre-parsing, and thus clear up almost all (98%) of the
visual distortions, which are more than detected (91%) as many
undetected ones have been automatically resolved by our fxes.

All the 21 discovered defects along with our suggested fxes have
been reported to the developers of the four WPOs, among which
12 defects have been confrmed and 5 suggested fxes have been
ofcially adopted. The remaining ones are either under beta tests
or under code review.

In summary, this paper makes the following contributions.

2949

https://www.pinterest.com/

Visual-Aware Testing and Debugging for
Web Performance Optimization

• We conduct the frst study on visual distortions incurred by
WPOs and release a large open dataset involving 5,000 websites.

• We develop Vetter, a visual-aware testing and debugging sys-
tem that automatically and efectively detects and debugs visual
distortions based on the morphology of web pages.

• Vetter has detected 21 unknown defects in four widely used
WPOs; to date, 12 of them are confrmed and 5 are fxed.

• The code and data involved in this work are released at https:
//github.com/Web-Distortion/Vetter (detailed in Appendix A.5).

2 BACKGROUND AND MOTIVATION
2.1 The Dilemma of WPOs
In the web ecosystem, WPOs are extensively developed and de-
ployed as client-side plug-ins, server-side middleware, or stan-
dalone proxies, by mobile ISPs [32, 65] and content providers [3, 47],
to save page load time and network trafc, to provide versatile
add-on services like web content caching [3], encrypted network
communication [46], and advertisement fltering [63].

A WPO can help optimize the web browsing experience before
(ofine phase) and/or during (online phase) user access. In the ofine
phase, the WPO typically pre-loads the web page to analyze the
included resources, and then executes corresponding optimization
routines, e.g., transcoding/compressing images, re-organizing the re-
source loading sequence [48, 66], and rewriting HTML fles [48, 51].
Afterwards, the optimized page is usually cached on the web server
for serving later accesses. In addition, some WPOs also perform
online optimizations during web page loading. They typically run
on a standalone proxy for simpler or lighter tasks, e.g., resource
pre-fetching [66], TCP pre-connection [3], and advertisement block-
ing [47]. This is because “heavy” optimizations like analyzing and
rewriting HTML fles could induce non-negligible latency penalty.

Despite the benefts, WPOs have received plenty of user com-
plaints when working in the wild due to the side efects. By exten-
sively reviewing the negative comments posted on relevant online
communities [70, 71] and customer-support websites [10, 17, 22],
we fnd the side efects include latency penalties, bandwidth bot-
tleneck [75], functional anomalies, visual distortions, and so forth.
In particular, most users are concerned about visual distortions,
such as layout displacement and content loss on the optimized web
pages [21, 22, 70, 71]. Worse still, some users even doubt that the
WPO has incurred security/privacy threats such as unauthorized ad-
vertisement injection [8] and undesired web page redirection [20].

2.2 Understanding Visual Distortions
To quantify the realistic prevalence and severity of visual distor-
tions incurred by WPOs, we apply two typical WPOs, i.e., Ziproxy
(a classic HTTP forwarding proxy for trafc compression and ac-
celeration) and Compy (an open-source implementation of Google
Flywheel) to the Alexa top and bottom 2,500 (thus a total of 5,000)
websites (among the Alexa top 1M) on Dec. 9th, 2021. Specifcally,
we deploy the latest versions of Ziproxy and Compy on two sepa-
rate VM servers rented from AWS EC2, each with a dual-core CPU
@2.3 GHz, 2 GB of memory, and 100 Mbps access bandwidth. Also,
we develop an automated web browsing exerciser (or simply exer-
ciser) and let it work on a typical Windows-10 PC with a quad-core
CPU @3.4 GHz, 16 GB of memory, and 100 Mbps access bandwidth.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: Visual distortions occurring to the Alexa top 2,500
websites’ landing pages. “#” is the number of distorted pages.

Distortion Symptom # by Ziproxy # by Compy Total
Content Loss 0 63 63

Image Display Error 11 0 11
Text Confusion 13 16 29
Layout Disorder 0 3 3

All 24 82 106

For each of the 5,000 websites, the exerciser sequentially visits
its landing page with and without the two deployed WPOs using
Chrome v79 web browser, respectively. Once the page is fully loaded
(with cold browser cache every time), the exerciser takes a snapshot
of the screen display. As a result, we obtain three screenshots for
each website—one for the original landing page and the other two
for the optimized versions (produced by Ziproxy and Compy).

With the screenshots of the 5,000 websites’ landing pages, we
next determine whether these optimized pages are visually dis-
torted. Here a challenge is that there is subjectivity, to some extent,
in users’ perceptions of visual distortions. To deeply understand
visual distortions from real users’ perspectives, we conduct a crowd-
sourcing study by recruiting 18 users with diferent ages and gen-
ders. They help recognize and categorize visual distortions on the
5,000 optimized landing pages produced by the two WPOs. More
details of the crowdsourcing study are described in Appendix A.1.

Measurement Findings. Based on the collected dataset, we have
multi-fold fndings on WPO-incurred visual distortions in terms of
their prevalence, severity, and key characteristics.

First, although visual distortions seem to be subjective problems,
in most cases (93%) the recruited users can in fact reach a consen-
sus. For the remainder (7%), visual distortions are determined by
majority voting; if there is a tie, we would participate to break it.

Besides, both Ziproxy and Compy bring visual distortions to
a nontrivial portion (0.96% and 3.28%) of the top 2,500 websites’
landing pages. We list the specifc symptoms and their quantities in
Table 1 based on the opt-in users’ feedback. We fnd that Ziproxy
and Compy can vary greatly regarding the occurrence of a certain
symptom (we delay the detailed explanation to §4.2). While the
portions both look small (<10%), note that even a single visual
distortion can incur a direct, negative impact on the user experience,
making users unsatisfed or vigilant and thus stop using the WPO.
Also note that we only test the landing page of each website, which
typically contains quite a number of pages. That is, there might
well be much more distortions undiscovered for the 5,000 websites.

By contrast, the bottom 2,500 websites’ landing pages sufer even
more visual distortions: 5.64% for Ziproxy and 8.96% for Compy.
This is understandable: less popular websites usually include more
non-standard or even incorrect web contents that can more easily
trigger the side efects of WPOs’ optimization routines. Our detailed
analysis in §4.1 also confrms this.

The study was performed under a well-established IRB. No per-
sonally identifable information was collected.

2.3 Challenges
To combat visual distortions induced by WPOs, we have explored
several potential solutions to detecting and debugging them. Our

2950

https://github.com/Web-Distortion/Vetter
https://github.com/Web-Distortion/Vetter

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Xinlei Yang, Wei Liu, Hao Lin, Zhenhua Li, Feng Qian, Xianlong Wang, Yunhao Liu, and Tianyin Xu

Figure 3: Architectural overview of Vetter.

experience reveals signifcant technical challenges to automatically
detecting and debugging visual distortions using traditional metrics.

Specifcally, to detect visual distortions, an intuitive approach
is using computer vision (CV) metrics to compare the rendering
results of the original and optimized pages. Unfortunately, this
approach works poorly on dynamic pages whose rendering results
difer from one load to another (detailed in Appendix A.2).

Comparing the key data structures of web pages is also inefec-
tive. For example, a web page’s render tree which contains visible
web elements is inaccessible outside the browser. The CSS Object
Model (CSSOM) tree is over general as it only describes the presen-
tation or formatting style of web elements. The Document Object
Model (DOM) tree only represents the logic (rather than visual)
relations of web elements; it can be changed greatly by inserting
multiple empty inner elements (e.g., <div>) into the HTML fle, yet
the rendering result remains unchanged.

Worse still, even if we managed to detect visual distortions, it is
still challenging to debug them as WPOs often have sophisticated
implementations, e.g., Ziproxy has ∼20K lines of code and employs
40+ third-party modules and auto-generated functions. Meanwhile,
the available information for diagnosis is very limited. The runtime
logs of WPOs crucial to debugging are often hard to fetch, espe-
cially for those WPOs that only work in the ofine mode (as their
optimizations are performed ahead of the page loading process).

3 DESIGN AND IMPLEMENTATION
3.1 System Overview
To address the challenges in §2.3, we present Vetter, a system for
automatically testing and debugging visual distortions.

The main idea is to rethink about visual distortions from the
perspective of how modern web pages are generated. We observe
that most of the modern web pages are programmatically generated
by mainstream web frameworks (e.g., Angular [25], React [35], and
Vue [73]), rather than manually written from scratch in an ad-hoc
manner. All these frameworks adopt the standard Model-View-
ViewModel (MVVM) design pattern that separates a web page’s
layout (View) from its logic and data (Model), so as to make the
web page easy to develop, test, and maintain. Consequently, while
the logic and data of a dynamic web page vary between diferent
loads, only the scales or concrete contents of the visual elements
are changed accordingly. On the other hand, the visual elements’
topological forms and scale-free geometrical structures scarcely
ever change; such invariants are termed a web page’s morphology.

Morphology provides an efective vantage point to understand
visual distortions—visual distortions occurring to a web page (no
matter how dynamic it is) are highly relevant to changes in its
morphology. This conforms to our daily web browsing experience—
for a dynamic web page (like Pinterest.com), a user does not

expect or can even notice the changes of individual visual elements
between diferent page loads. However, if its morphology changes
drastically, the user would easily notice and feel uncomfortable. In
theory, it is possible for a web page to swap its own morphology
upon diferent loads, but such a behavior is rare in practice.

Vetter is built on the morphology insight. In order to detect visual
distortions, Vetter extracts and compares the morphologies of web
pages; further, Vetter uses the morphological diferences between
the pages as important hints to pinpoint the root causes. Figure 3
depicts Vetter’s major components and workfow. Vetter takes the
original web page and its optimized version generated by a WPO as
the input, and performs the following testing and debugging steps:
• Morphology Instantiation and Minifcation (§3.2). To instantiate
a web page’s morphology, we employ scene graph, a classic
data structure in computer graphics for representing 2D/3D
scenes [19], to capture both the abstract graphical information
and spatial structures among the web page’s constituent ob-
jects. However, comparing the scene graphs of two web pages
incurs prohibitively high computational overhead. To address
this, Vetter leverages the intrinsic hierarchy in a web page’s mor-
phology to minify the scene graph into a morphological segment
tree (MST), so as to facilitate the remaining steps.

• Morphological Similarity Calculation (§3.3). Once two pages’
MSTs are constructed, Vetter calculates their morphological sim-
ilarity in two stages to determine visual distortions. First, Vetter
adopts hierarchy matching enhanced by memorization algorithms
to quickly perform coarse-grained, level-by-level matching be-
tween two MSTs. Second, it zooms in on each matched level
to perform fne-grained, node-by-node matching. In this way,
the morphological similarity between two pages can be calcu-
lated with � (�3) time complexity while retaining high accuracy.
Meanwhile, Vetter records the graphical and structural informa-
tion of visually distorted elements (marked red in Figure 3) as
morphological hints to inform debugging.

• Morphological Causal Inference (§3.4). When diagnosing a visual
distortion, we fnd that focusing on all the visually distorted
elements (detected in the above testing step) is expensive and
unnecessary, as many of them are just the “chain reaction” results
of neighbouring visually distorted elements. Therefore, Vetter
strategically manipulates the loading process of these elements
(e.g., changing the loading sequence as depicted in Figure 3) using
the morphological hints; meanwhile, it invokes the testing steps
again to check if the distortion still exists after the manipulation.
By repeating the above-described trials until the distortion is
resolved, Vetter can infer the causal relationship between the
distortion and the visually distorted elements, thus efectively
and safely ruling out the distractions.

2951

https://www.pinterest.com/

Visual-Aware Testing and Debugging for
Web Performance Optimization WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Figure 4: Two typical scenes and their scene graphs.

• Causality-Informed Code Analysis (§3.5). Having obtained a vi-
sual element (called a critical element) that directly causes the
distortion, Vetter then extracts specifc functions that have ever
modifed the parameters of the critical element at run time from
the function call stacks recorded in the previous step. These
functions are thus highly related to the distortion, but may still
not be the problematic ones. To help WPO developers efciently
locate the problematic functions, Vetter further picks out the
runtime parameters (and their values) of these functions from
the WPO-recorded running logs, and organizes them into a time-
line, from which developers can easily notice invalid parameters
and undesirable call paths, thereby quickly pinpointing the root
causes at the source code level.

3.2 Morphology Instantiation & Minifcation
Efectively instantiating the concept of morphology is vital to the
design of Vetter. Through extensive literature review, we notice that
scene graph [19], a widely-used data structure in computer graphics
for representing graphic elements in a scene and their spatial rela-
tions, is an ideal choice. Figures 4(a) and (c) depict two scenes which
both contain three elements—a monitor, a computer, and a desk.
Their corresponding scene graphs are shown in Figures 4(b) and
(d), where each node represents a certain element and each edge
denotes a kind of structural relations (e.g., “left of” and “vertical
support”). Since scene graph can well represent the 3D graphic
elements and their spatial relations, we believe that it is expressive
enough to describe (2D) web page elements’ topological forms and
scale-free geometrical structures, i.e., a web page’s morphology.

Scene Graph Construction for Web Pages. To construct scene
graphs for web pages, a critical problem is that the graphic elements
and their structural relations on a web page are not given by the web
server or client. Currently, there are mainly two types of solutions:
1) intuitive CV-based web page segmentation [9], and 2) underlying
data structure-based page segmentation [11]. Sadly, the former
is subject to the inaccuracy of pattern recognition, and the latter
involves highly complicated rules that are not actionable in practice.

Thankfully, we note that when rendering a web page, mainstream
web browsers such as Chrome, Firefox, and Safari all adopt the
SkPaint utility [68] to draw graphic elements on the web page’s
canvas. These graphic elements correspond to all the web objects,
and thus are ideal for scene graph construction. Besides, they are
fully accessible to outsiders rather than only the web browser.

Further, by carefully analyzing the browser’s SkPaint API in-
vocation logs of the Alexa top and bottom 2,500 websites, we
observe a highly skewed invocation pattern: nearly 99% of the
invocations merely relate to 12 SkPaint APIs, among which only
fve (i.e., drawTextBlob, drawRect, drawPath, drawImageRect and
drawRRect) will add a visible graphic element (i.e., text, image,
rectangle, rounded rectangle, line, and customized shape) to the
web page; the other seven (i.e., restore, save, saveLayer, concat,

Figure 5: A typical web page and its corresponding morpho-
logical segmentation tree (MST).

drawPaint, clipRect and clipRRect) do not involve actual ren-
dering operations and thus do not afect the web page’s appearance.

After fltering out useless SkPaint API invocations, we can use the
remainder to build the scene graph for a web page. Specifcally, we
extract graphic elements together with their major properties (i.e.,
topological form) from the really useful SkPaint API invocations.
Such graphic elements act as the nodes in the scene graph. Further,
we need to construct edges that represent the structural relations
between diferent nodes. In practice, there exist multiple structural
relations including 1) containment, 2) intersection, 3) contact, 4)
adjacency, 5) above/below, 6) left/right, 7) superposition, and so on.
Unfortunately, considering all these relations would make the scene
graph (i.e., the morphology of the web page) overly complicated
for efcient storage and subsequent processing.

Morphological Segmentation Tree (MST). To address this, we
carefully study the visual structures of the Alexa top and bottom
2,500 websites, and observe that almost all their landing pages
exhibit a certain form of hierarchy in their appearance. Take Fig-
ure 5(a) as an example, on the rendered web page lie a total of nine
graphic elements, where the largest element (Lightyellow Back-
ground) contains all the other eight elements. Further, Green Circle
contains Shovel Logo, and Yellowgreen Background contains PyPI
Version, Wheel Status, and Coverage Report. In fact, the hierarchy
among graphic elements is not an incidental phenomenon but a
matter of course, recalling the nested properties of the markup
languages (e.g., HTML and XML) for defning web pages’ layouts.

Guided by the above, we minify a page’s scene graph into a
morphological segmentation tree (MST) by focusing on the intrinsic
hierarchy among graphic elements, which can be fully captured by
the containment relation. By only considering this relation, we can
naturally simplify the original graph into a tree structure, which
is named as morphological segmentation tree (MST). For example,
Figure 5(b) depicts the MST for the web page shown in Figure 5(a),
where each node represents a graphic element and each edge de-
notes the containment relation between two elements.

Apparently, the above minifcation process has a caveat: if con-
tainment cannot fully represent the relations between web elements
(involving 1.6% web pages in our dataset), false negatives may be
induced in distortion detection. To address this, we also use the
other structural relations together with the containment relation
for fne-grained matching between web elements (cf. §3.3). In ad-
dition, there exist “infnite-scroll” web pages (e.g., social media
newsfeeds [2]) that seem to contain infnite contents and thus frus-
trate our constructing complete MSTs. Fortunately, we observe
that such pages are in fact never loaded in one shot. For a typical
infnite-scroll page, a small portion of contents are frst loaded (the
initial page load), and then more contents are continuously loaded
as users scroll down (subsequent content loads). Given this, we
construct the MST of a web page based on the contents of the initial

2952

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Xinlei Yang, Wei Liu, Hao Lin, Zhenhua Li, Feng Qian, Xianlong Wang, Yunhao Liu, and Tianyin Xu

page load. Note that according to our measurement study, almost
all (>98%) infnite-scroll pages have highly similar morphologies
among diferent loads. Thus, it is almost always sufcient to detect
distortions using MSTs constructed from the initial page load.

3.3 Morphological Similarity Calculation
With the constructed MSTs (denoted as ���� and ����) of a web
page � and the optimized page �, we next calculate their simi-
larity to compare the pages’ morphologies. Recall that a page’s
morphology refers to the visual elements’ topological forms and
scale-free geometrical structures. Thus, we should frst match the
visual elements in the two pages, i.e., the nodes in ���� and ���� .
Hierarchy Matching & Node Matching. Perfectly matching
the nodes in two MSTs is known to bear � (�!) time complexity
when there are � nodes in each MST, which is infeasible in practice.
To address this, we frst leverage MSTs’ hierarchical information to
perform coarse-grained, level-by-level hierarchy matching between
���� and ���� by comparing the structural relations among dif-
ferent nodes in the same level. Moreover, we use a memorization
algorithm to accelerate the matching process.

Once a pair of levels in the two MSTs are matched, we then
conduct fne-grained, node-by-node matching within the two lev-
els. Specifcally, we fnd the best matching scheme between two
levels with the highest average similarity (calculated based on the
topological forms and structural relations of the nodes) among all
pairs of matched nodes. We use the classic Hungarian algorithm [6]
to solve this problem with � (�3) time complexity, where each level
contains � nodes. The algorithmic details are in Appendix A.3.
Morphological Similarity Calculation. Finally, after all the
nodes are matched, we calculate the similarity between the two
MSTs (termed as MorphSIM) as the average similarities between all
pairs of matched nodes. Ideally, we can directly determine the occur-
rence of visual distortions by using MorphSIM. However, in practice
we fnd that solely relying on MorphSIM brings a low (4.7%) false
positive (FP) rate yet a median (20.3%) false negative (FN) rate (cf.
§4.1), as the morphology-wise comparison is not sensitive to small
pixel-level changes. By contrast, making joint use of the widely
used CV metrics including SSIM [77], SIFT [50], and pHash [76]
(i.e., the CV-hybrid approach) often yields a median (16%) FP rate
and a low (10%) FN rate (also cf. §4.1). Thus, the two methods in
fact well complement each other. Given this, we make combinatory
use of MorphSIM-based and CV-based method to decide whether
there are distortions by using them as machine learning features
for training various machine learning classifers including Decision
Tree, Random Forest [43], Logistic Regression, Naive Bayes, SVM,
SGD-Classifer [14], and RBF Neural Network [5]. Finally, Random
Forest excels with the average F1 score >93.0%.

3.4 Morphological Causality Inference
To help WPO developers efectively analyze a visual distortion, our
idea is to leverage the extracted morphological information of the
optimized web page as critical hints for determining the causal
relationships [44] between a visually distorted element and the
distortion, so as to rule out distractions and reduce the search space
of problematic code. In general, since a WPO usually modifes a
web page’s resources and their loading sequences to achieve perfor-
mance optimizations, we gradually restore the modifed resources

and sequences to the original ones to see whether the distortion is
resolved. If so, the “real culprits” of the distortion are among the
most recently restored resources/sequences.

Specifcally, we frst extract the resources (including HTML/
JavaScript/CSS fles, fonts, images, and videos) related to the visual
distortion based on the browser execution logs we capture during
the page’s loading process. We track the CSS rules in the stylesheet
resources that correspond to all the visually distorted elements;
meanwhile, we record the call stack information of DOM-related
JavaScript API invocations (e.g., appendChild, removeChild, and
setAttribute) that process the visually distorted elements. Based
on the above information, we can fnd out all the suspicious re-
sources that potentially incur the visual distortion.

In practice, we typically extract tens of (41 on average in our
dataset) suspicious resources for a single visually-distorted web
page, while only a small portion (4%) of them are the real culprits. To
narrow down the search space, we gradually replace the optimized
resources with their original versions (one at a time), and invoke
the visual-aware testing steps (cf. §3.3) after each replacement to
check if the distortion has been resolved. If so, we infer that the
truly problematic resources that lead to the distortion are among
the recently restored ones, without manipulating the remaining
resources. Otherwise, we further resort to restoring the web page’s
resource loading sequence using the the classic sequence alignment
algorithm [52], which turns out to be pretty efcient in practice.

3.5 Causality-Informed Code Analysis
Having identifed the visually distorted elements and their corre-
sponding resources (termed critical elements/resources) that have
direct causal relationships with the distortion, Vetter quickly locates
the WPO’s functions that process the critical elements/resources
based on call stacks recorded at run time (using runtime proflers
like gdb). For example, when a JPEG image is missing from the
optimized page produced by Compy (and thus is identifed as a
critical element), Vetter uses the call stack information to pinpoint
that the image has been processed by 1) proxyResponse which
extracts the the image format from the Content-Type feld in the
response header, 2) AddTranscoder which informs the transcoder
of the image format, and 3) Transcode which transcodes the image
fle according to its format.

To help developers locate the root causes in a more fne-grained
manner, Vetter also records the runtime logs of the WPO function
calls (generated through automatic code instrumentation), which
include the functions’ runtime parameters and entry timestamps.
With these, Vetter further organizes this critical information along
with the call stacks as a timeline, so as to clearly depict the in-situ
situations of the WPO when processing the critical elements. For
the above example of Compy, Vetter organizes the call stacks of
the above three functions together with their runtime parameters.
Based on this diagnostic information, we easily discover that the
function AddTranscoder’s input parameter Content-Type is set
as “PNG”, which is apparently inconsistent with the actual image
format (JPEG), causing errors during the transcoding process and
thus the content loss (detailed in §4.2).

2953

Visual-Aware Testing and Debugging for
Web Performance Optimization WWW ’23, April 30–May 04, 2023, Austin, TX, USA

3.6 Implementation
Vetter contains three major components: WPO Runtime Logger,
Distortion Detector, and WPO Debugger. The three components
are implemented with a total of 2,400+ lines of code (LoC). WPO
Runtime Logger records the WPO’s function call stacks and runtime
logs. This component is built upon gdb, Go Execution Tracer [31],
and OpenTelemetry [33]. Distortion Detector records the page’s
resources and their loading sequence using Mahimahi [58]. It also
records the SkPaint API invocations with the Skia web_to_skp
tool [24] during page loading to construct the MSTs. Finally, WPO
Debugger uses the puppeteer library [34] to monitor and manip-
ulate the page loading process for debugging visual distortions.

4 EVALUATION
4.1 Visual-Aware Testing Performance
We evaluate Vetter’s efcacy and overhead of testing visual dis-
tortions with the dataset collected in §2 (i.e., the 5,000 web pages’
original version and two optimized versions produced by Ziproxy
and Compy). We compare Vetter with fve distortion detection ap-
proaches, which are based on three common CV metrics (i.e., SSIM,
SIFT, and pHash), MorphSIM (cf. §3.3), and the CV Hybrid metric.
Setup. For the three CV-based approaches and the MorphSIM-
based approach, if the similarity calculated using the corresponding
metrics between the optimized and the original web pages is below
a pre-determined threshold, an optimized web page will be deter-
mined as visually distorted. To fnd out appropriate thresholds, we
try diferent threshold values and examine the approaches’ detec-
tion performance (measured by F1 score) on Alexa top 2,500 web
pages (referred to as the training set). As a result, we respectively
set the threshold values for SSIM, SIFT, pHash, and MorphSIM as
0.95, 0.99, 0.91 and 0.46, which are able to maximize their F1 scores.

As solely relying on any of the CV metrics yields low F1 scores
(as shown in §2.3), we further use mainstream classifers to combine
the three CV metrics together, including Decision Tree, Random For-
est [43], Logistic Regression, Naive Bayes, SVM, SGD-Classifer [14],
and RBF Neural Network [5]. We fnd that the SGD-Classifer
achieves the best performance on the training set. Similarly, we
combine the MorphSIM and CV metrics (i.e., Vetter’s testing ap-
proach) using diferent classifers; this time, Random Forest excels.

With these preparations, we compare Vetter with other ap-
proaches on Alexa bottom 2,500 (among top 1M) web pages (re-
ferred to as the test set). Our rationale behind using top 2,500 (most
popular pages) for training and bottom 2,500 (less popular, often
non-standard) for testing is to evaluate the robustness of these
approaches with two very diferent sets of web pages. We use the
same testbed as that introduced in §2.2, and the crowdsourced re-
sults as the ground truth. We mainly focus on testing precision,
recall, F1 score and detected number of visually distorted pages
when evaluating diferent approaches’ performance in testing visual
distortions.
Testing Performance. Table 2 lists the testing performance of
Vetter and fve other comparative approaches on the test set. As
shown, CV-based approaches (i.e., the frst four rows in the table)
yield unsatisfactory performance, as they induce many FPs when
tackling dynamic pages that difer greatly between diferent loads.

Table 2: Testing performance of Vetter and the other detec-
tion approaches based on the three CV metrics, the combina-
tion of the CV metrics (CV Hybrid), and MorphSIM. “# Dist.”
denotes the detected number of distorted pages.

Metric Precision Recall F1 Score # Dist.
SSIM 45% 88% 0.59 713
SIFT 48% 70% 0.57 532
pHash 44% 89% 0.59 738

CV Hybrid 49% 90% 0.63 670
MorphSIM 82% 80% 0.81 356
Vetter 95% 91% 0.93 349

On the other hand, since MorphSIM is not sensitive to pixel-level
changes, some content loss and distortions cannot be detected, thus
leading to a lower recall. In comparison, Vetter makes combined
use of CV-based and MorphSIM-based approaches to avoid their
defects, achieving the best testing performance. Detailed analysis
is presented in Appendix A.4.

4.2 Visual-Aware Debugging Results
We apply Vetter to four representative WPOs: Ziproxy, Compy,
Fawkes, and SipLoader for pinpointing the root causes of the vi-
sual distortions they incur when optimizing the 5,000 pages in
our dataset. As a result, Vetter successfully unravels a total of 21
previously-unknown defects: 4 in Ziproxy, 4 in Compy, 2 in Fawkes,
and 11 in SipLoader. Moreover, the debugging eforts are signif-
cantly reduced by Vetter. In detail, for Ziproxy Vetter reduces the
search space from ∼20K LoC to 560 LoC for each defect on average.
Similarly, for Compy, Fawkes, and SipLoader, the search space is
reduced to only 16%, 3%, and 6%, respectively.

Concretely, we classify the defects into 11 types as shown in
Table 3. In particular, we note that most of the defects root in several
misconceptions or wrong assumptions of WPO developers.

Undue Reliance on HTTP Headers. HTTP headers can be
improperly confgured by web developers. Some WPO develop-
ers do not realize the possible misconfgurations, and directly use
the headers to decide the optimization logic, thus inducing dis-
tortions. For example, Compy checks an image’s format solely
with the Content-Type feld in HTTP headers, which can be in-
consistent with the actual format and lead to incorrect image
transcoding. Also, when compressing text fles, Ziproxy adds a new
Content-Encoding: gzip feld to the response header, without
deleting the original Content-Encoding feld, causing text confu-
sion.

Amplifed Dependency Violations. The loading sequence of
web page resources should obey the complex dependencies among
them, so as to assure that the page is loaded properly. For instance,
before a JavaScript fle’s execution, the resources (e.g., images and
CSS fles) it depends on must be fully loaded. However, some mech-
anisms of WPOs like resource pre-fetching and script pre-execution
manipulate the resources’ loading sequence, and thus could cause
or amplify dependency violations. In practice, we observe that
SipLoader cannot capture all the dependencies during its optimiza-
tion phase (mainly performed ofine), since some dependencies are
dynamically generated online during the page loading process. Such

2954

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Xinlei Yang, Wei Liu, Hao Lin, Zhenhua Li, Feng Qian, Xianlong Wang, Yunhao Liu, and Tianyin Xu

Table 3: Defect types, symptoms and ratios of four WPOs.
Proxy Defect Type Symptom Ratio

Ziproxy
Imprudent image Image transcoding error 47.9%
Conficting felds in HTTP header Text confusion 43.7%
Disorder of async JavaScript Layout disorder 5.4%

Compy

Object header-body inconsistency Content loss 90.1%
Insufcient support for new web
protocols Content loss 6.7%

Incomplete request forwarding Undesirable typesetting 3.2%

Fawkes

Lack of analysis of JavaScript de-
pendencies

Incorrect DOM manipu-
lations 82.7%

Insufcient support for control
characters Web page freezing 17.3%

SipLoader

Insufcient support for compres-
sion algorithms Resource fle corruption 15.4%

Incomplete dependency tracking
during rewriting

Content loss/layout dis-
order 52.3%

URL conversion error Content loss 32.3%

limitation results in over a half of the visual distortions induced by
SipLoader. Similar issues also exist in Ziproxy.

Lacking Support for Emerging Web Techniques. Compy, Faw-
kes, and SipLoader do not well adapt to today’s emerging web
techniques, thus causing visual distortions on optimized pages. For
instance, SipLoader cannot recognize the resources compressed
by Brotli [1], so it directly treats the resources as uncompressed.
Besides, Compy cannot handle WebSocket requests, thus impairing
some websites’ interactive functions like online chat room.

4.3 Defect Fixing
To fx the defects, we provide either source code corrections or
auxiliary middleware pre-parsing for the WPOs.
• Consistency Checking for HTTP Headers. Given that HTTP head-
ers can often be misleading, we provide consistency checking
between the headers and the related resources. In detail, for
Compy we identify an image’s actual format by snifng its byte
pattern rather than simply believing the headers. For Ziproxy, if
there already exists a Content-Encoding:none feld, we replace
its value rather than adding a conficting new feld.

• Runtime Dependency Tracking. To prevent the optimized loading
sequence from violating resources’ dependencies, we build a
lightweight middleware to pre-parse the HTML fles using a
headless Chrome browser [64]. Similar to Prophecy [57], the
middleware leverages JavaScript Proxy objects to collect the
write logs of JavaScript variables during the pre-parsing phase.
With the write logs, the middleware merges all JavaScript fles
into a single inline script where all the JavaScript variables are
properly generated based on dependencies, and then sends the
rewritten HTML fle to the WPO.

• Adapting to New Web Techniques. For Compy, we have
integrated supports for WebSocket. Also, we check the
Transfer-Encoding feld in SipLoader to recognize Brotli-
compressed fles, and perform the corresponding compres-
sion/decompression on demand.

Impacts on Real-World WPOs. After applying the above fxes to
the four WPOs, we fnd that nearly all (98%) of the visual distortions
occurred on the 5,000 web pages in our dataset disappear. Further,
to realistically improve the four mentioned real-world WPOs, we
have reported our uncovered defects and the suggested fxes to

all of them. Although Ziproxy’s and Fawkes’ developers have not
replied yet, Compy’s and SipLoader’s developers have confrmed
a total of 12 GitHub issues [15, 37] reported by us through an
anonymous GitHub account named Web-Distortion. More impor-
tantly, nearly half of the fxing patches have been upstreamed to
the master branch of their code base [16, 38], leading to the frst
major update of Compy in 2021 and a major upgrade of SipLoader
in 2022. For the remaining half, they are under improvement for
compatibility/security concerns.

5 RELATED WORK
Visual Distortion Testing for Web Systems. Testing visual
distortions of web pages is crucial to the QoE of many web systems.
Prior work has proposed several tools [12, 13, 53] towards detecting
incorrect rendering of web pages for both web browsers and web
applications. Specifcally, for browsers, R2Z2 [69] diferentiates the
same HTML fle’s rendering results on two browsers to detect and
debug incorrect rendering caused by a browser’s buggy rendering
pipeline. It identifes incorrect rendering using pHash, a CV metric
we have extensively discussed in §2.3. Besides, a number of formal
methods [54, 60–62] have been devised for verifying the layout
algorithm of browsers. For web applications, existing studies [27–
29, 40, 74] mainly focus on their cross-browser visual consistency
by comparing the page’s DOM trees on diferent browsers.

Diferently, Vetter adopts the novel concept of morphology of
web pages to address the challenges of complex dynamic web pages,
which results in accurate and efective detection.

Web Problem Debugging. To debug web problems, existing tools
focus on recording and replaying web pages. Two popular examples
are Google’s web-page-replay [26] and Telerik’s Fiddler [72], which
intercept HTTP trafc through DNS redirection or intermediate
data forwarding to record and replay web requests/responses. Some
other tools [4, 7, 67] record the detailed information of JavaScript
executions and replay them for diagnosis purposes. While these
debugging tools can help WPO developers uncover common pro-
gram defects, they cannot well diagnose those related to web pages’
visual distortions. Vetter addresses this by strategically inferring
the causal relationships between visual elements and distortions
with the crucial morphological hints extracted from web pages.

6 CONCLUSION
This paper presents Vetter, an automatic testing and debugging
system for the visual distortion problem induced by web perfor-
mance optimizers (WPOs). The problem has long been frustrating
the industry by rendering WPOs unreliable or even unusable, but is
never addressed due to its elusiveness and difculty. Based on a spe-
cial notion of morphology, an inherent and stable visual property
of modern web pages, Vetter efectively and efciently identifes
visual distortions on even complex dynamic pages. The morpho-
logical insights, coupled with strategical distortion-element causal
inference, further help pinpoint the root causes at the WPO source
code level. By applying Vetter to four representative WPOs, Vet-
ter locates crucial defects and resolves almost all distortions. In a
broader sense, our ideas proposed and lessons learned root in the
fundamental design patterns of modern web pages, and thus should
also be useful in strengthening the reliability of other web systems
like web browsers, web applications, and beyond.

2955

Visual-Aware Testing and Debugging for
Web Performance Optimization

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments.
We thank Zifan Zhang, Tingjun Piao, and Jinlong E for their help
in data collection and analysis in the early stage of this research.
This work was supported in part by the National Key Research and
Development Program of China under Grant 2022YFB4500703, by
NSFC under Grant 62202266, and by Microsoft Research Asia.

REFERENCES
[1] 2016. RFC 7932: Brotli Compressed Data Format. Technical Report. RFC Group.
[2] 2023. Twitter. https://twitter.com. (2023). (Accessed on Feb. 8, 2023).
[3] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-

stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian Yin.
2015. Flywheel: Google’s Data Compression Proxy for the Mobile Web. In Proc.
of USENIX NSDI. 367–380.

[4] Silviu Andrica and George Candea. 2011. WaRR: A Tool for High-Fidelity Web
Application Record and Replay. In Proc. of IEEE DSN. 403–410.

[5] David S Broomhead and David Lowe. 1988. Multi-Variable Functional Interpola-
tion and Adaptive Networks. Complex Systems 2, 3 (1988), 321–355.

[6] Derek Bruf. 2005. The Assignment Problem and the Hungarian Method. Notes
for Math 20, 5 (2005), 29–47.

[7] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive
Record/Replay for Web Application Debugging. In Proc. of ACM UIST. 473–484.

[8] Chris Burns. 2015. Android Data Saver Mode for Chrome Might Also Block
Ad Images. https://www.slashgear.com/android-data-saver-mode-for-chrome-
might-also-block-ad-images-01416563/. (2015). (Accessed on Jan. 20, 2022).

[9] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. VIPS: A Vision-based
Page Segmentation Algorithm. Technical Report. Microsoft.

[10] Christian Cantrell. 2016. Everything You Need to Know about Google’s Acceler-
ated Mobile Pages. https://www.smashingmagazine.com/2016/02/everything-
about-google-accelerated-mobile-pages/. (2016). (Accessed on Feb. 11, 2022).

[11] Jinlin Chen, Baoyao Zhou, Jin Shi, Hongjiang Zhang, and Qiu Fengwu. 2001.
Function-Based Object Model towards Website Adaptation. In Proc. of ACM
WWW. 587–596.

[12] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2012. Cross-
Check: Combining Crawling and Diferencing to Better Detect Cross-Browser
Incompatibilities in Web Applications. In Proc. of IEEE ICST. 171–180.

[13] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBDIFF:
Automated Identifcation of Cross-Browser Issues in Web Applications. In Proc.
of IEEE ICSM. 1–10.

[14] David Cournapeau. 2021. Sklearn LinearModel SGDClassifer. https://scikit-learn.
org/stable/modules/generated/sklearn.linear_model.SGDClassifer.html. (2021).
(Accessed on Mar. 10, 2022).

[15] Barna Csorogi. 2021. Issues of Compy. https://github.com/barnacs/compy/issues.
(2021). (Accessed on Mar. 15, 2022).

[16] Barna Csorogi. 2021. Merged Fixes of Compy. https://github.com/barnacs/compy/
pull/68. (2021). (Accessed on Mar. 10, 2022).

[17] Drupal. 2020. AMP Display Is Activated for Webform, but Fields Are Not Present
in the Generated AMP Page. https://www.drupal.org/project/amp/issues/2825270.
(2020). (Accessed on Mar. 13, 2022).

[18] Facebook. 2018. How Do I Turn Data Saver Of If There Is No Option in the
Help and Settings? https://www.facebook.com/help/community/question/?id=
10154771843914157. (2018). (Accessed on Mar. 9, 2022).

[19] Matthew Fisher, Manolis Savva, and Pat Hanrahan. 2011. Characterizing Struc-
tural Relationships in Scenes Using Graph Kernels. In Proc. of ACM SIGGRAPH.
1–12.

[20] Google. 2015. Data Saver Causes Erroneus Redirect of www.changiairport.com
to Diferent Site. https://support.google.com/chrome/forum/
AAAAP1KN0B0Sf855UX0cy8/. (2015). (Accessed on Mar. 10, 2022).

[21] Google. 2017. Critical AMP Error-Content Mismatch between AMP
and Canonical Pages. https://support.google.com/webmasters/forum/
AAAA2Jdx3sUp10PgfhYxUI. (2017). (Accessed on Feb. 3, 2022).

[22] Google. 2019. Content Problem with Data Saver On. https://support.google.com/
chrome/thread/2303283?hl=en. (2019). (Accessed on Mar. 10, 2022).

[23] Google. 2020. AMP Is a Web Component Framework to Easily Create User-First
Websites. https://amp.dev/. (2020). (Accessed on Feb. 12, 2022).

[24] Google. 2022. Skia web_to_skp Tool. https://github.com/google/skia/blob/main/
experimental/tools/web_to_skp. (2022). (Accessed on Mar. 24, 2022).

[25] Angular Group. 2022. Angular Platform. https://angular.io/. (2022). (Accessed
on Mar. 24, 2022).

[26] Chromium Group. 2017. Web Page Replay. https://github.com/chromium/web-
page-replay. (2017). (Accessed on Mar. 11, 2022).

[27] Dharma Group. 2018. Dharma. https://github.com/MozillaSecurity/dharma.
(2018). (Accessed on Mar. 21, 2022).

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[28] Domato Group. 2018. Domato. https://github.com/googleprojectzero/domato.
(2018). (Accessed on Mar. 20, 2022).

[29] DOMFuzz Group. 2018. DOMFuzz. https://github.com/MozillaSecurity/domfuzz/
tree/master/dom. (2018). (Accessed on Mar. 20, 2022).

[30] Digital Photography Review Group. 2014. Help! Problems Watching Live TV.
https://www.dpreview.com/forums/post/53027375. (2014). (Accessed on Feb. 27,
2022).

[31] Go Group. 2017. Go Execution Tracer. https://blog.gopheracademy.com/advent-
2017/go-execution-tracer/. (2017). (Accessed on Mar. 21, 2022).

[32] Juniper Group. 2022. Juniper Networks. https://www.juniper.net/. (2022). (Ac-
cessed on Mar. 24, 2022).

[33] Open Telemetry Group. 2022. Open Telemetry. https://opentelemetry.io/. (2022).
(Accessed on May 21, 2022).

[34] Puppeteer Group. 2022. Puppeteer. https://pptr.dev/. (2022). (Accessed on May
21, 2022).

[35] React Group. 2022. React. https://reactjs.org/. (2022). (Accessed on Mar. 24,
2022).

[36] Superuser Group. 2016. Where to Turn Of Data Server in Chrome for Desk-
top. https://superuser.com/questions/1016592/where-to-turn-of-data-server-in-
chrome-for-desktop. (2016). (Accessed on Jan. 9, 2022).

[37] SipLoader Group. 2022. Issues of SipLoader. https://github.com/SipLoader/
SipLoader.github.io/issues. (2022). (Accessed on Apr. 10, 2022).

[38] SipLoader Group. 2022. Merged Fixes of SipLoader. https://github.com/SipLoader/
SipLoader.github.io/pulls?q=is%3Apr+is%3Aclosed. (2022). (Accessed on Apr. 10,
2022).

[39] TestIn Group. 2021. Landing Page of TestIn. https://www.testin.net/. (2021).
(Accessed on Feb. 24, 2022).

[40] Wadi Group. 2017. Wadi. https://github.com/sensepost/wadi. (2017). (Accessed
on Mar. 20, 2022).

[41] Ziproxy Group. 2021. Ziproxy: HTTP Trafc Compressor. http://ziproxy.
sourceforge.net/. (2021). (Accessed on Mar. 10, 2022).

[42] Compy Groups. 2021. HTTP/HTTPS Compression Proxy. https://github.com/
barnacs/compy. (2021). (Accessed on Mar. 18, 2022).

[43] Tin Kam Ho. 1995. Random Decision Forests. In Proc. of IEEE ICDAR. 278–232.
[44] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal Testing:

Understanding Defects’ Root Causes. In Proc. of ACM/IEEE ICSE. 87–99.
[45] Byungjin Jun, Fabián E. Bustamante, Sung Yoon Whang, and Zachary S. Bischof.

2019. AMP up Your Mobile Web Experience: Characterizing the Impact of
Google’s Accelerated Mobile Project. In Proc. of ACM MobiCom. 1–14.

[46] Ronny Ko, James Mickens, Blake Loring, and Ravi Netravali. 2021. Oblique:
Accelerating Page Loads Using Symbolic Execution. In Proc. of USENIX NSDI.
289–302.

[47] Zhenhua Li, Weiwei Wang, Tianyin Xu, Xin Zhong, Xiang-Yang Li, Yunhao Liu,
Christo Wilson, and Ben Y Zhao. 2016. Exploring Cross-Application Cellular
Trafc Optimization with Baidu TrafcGuard. In Proc. of USENIX NSDI. 61–76.

[48] Wei Liu, Xinlei Yang, Hao Lin, Zhenhua Li, and Feng Qian. 2022. Fusing Speed
Index during Web Page Loading. In Proc. of ACM SIGMETRICS. 1–23.

[49] Xing Liu, Feng Qian, and Zhiyun Qian. 2017. Selective HTTPS Trafc Manipula-
tion at Middleboxes for BYOD Devices. In Proc. of IEEE ICNP. 1–10.

[50] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision 60, 2 (2004), 91–110.

[51] Shaghayegh Mardani, Mayank Singh, and Ravi Netravali. 2020. Fawkes: Faster
Mobile Page Loads via App-Inspired Static Templating. In Proc. of USENIX NSDI.
879–894.

[52] William J. Masek and Michael S. Paterson. 1980. A Faster Algorithm Computing
String Edit Distances. J. Comput. System Sci. 20, 1 (1980), 18–31.

[53] Ali Mesbah and Mukul R Prasad. 2011. Automated Cross-Browser Compatibility
Testing. In Proc. of ACM/IEEE ICSE. 561–570.

[54] Leo A Meyerovich and Rastislav Bodik. 2010. Fast and Parallel Webpage Layout.
In Proc. of ACM WWW. 711–720.

[55] Donald Michie. 1968. “Memo” Functions and Machine Learning. Nature 218,
5136 (1968), 306–306.

[56] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter
Steenkiste. 2015. Multi-Context TLS (mcTLS): Enabling Secure In-Network
Functionality in TLS. In Proc. of ACM SIGCOMM. 199–212.

[57] Ravi Netravali and James Mickens. 2018. Prophecy: Accelerating Mobile Page
Loads Using Final-State Write Logs. In Proc. of USENIX NSDI. 249–266.

[58] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proc. of USENIX ATC. 417–429.

[59] Opera. 2021. Opera Turbo Mobile Web Proxy. https://www.opera.com/turbo.
(2021). (Accessed on Jan. 7, 2022).

[60] Pavel Panchekha, Michael D Ernst, Zachary Tatlock, and Shoaib Kamil. 2019.
Modular Verifcation of Web Page Layout. In Proc. of ACM OOPSLA. 1–26.

[61] Pavel Panchekha, Adam T Geller, Michael D Ernst, Zachary Tatlock, and Shoaib
Kamil. 2018. Verifying that Web Pages Have Accessible Layout. In Proc. of ACM
PLDI. 1–14.

2956

https://twitter.com
https://www.slashgear.com/android-data-saver-mode-for-chrome-might-also-block-ad-images-01416563/
https://www.slashgear.com/android-data-saver-mode-for-chrome-might-also-block-ad-images-01416563/
https://www.smashingmagazine.com/2016/02/everything-about-google-accelerated-mobile-pages/
https://www.smashingmagazine.com/2016/02/everything-about-google-accelerated-mobile-pages/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://github.com/barnacs/compy/issues
https://github.com/barnacs/compy/pull/68
https://github.com/barnacs/compy/pull/68
https://www.drupal.org/project/amp/issues/2825270
https://www.facebook.com/help/community/question/?id=10154771843914157
https://www.facebook.com/help/community/question/?id=10154771843914157
https://support.google.com/chrome/forum/AAAAP1KN0B0Sf855UX0cy8/
https://support.google.com/chrome/forum/AAAAP1KN0B0Sf855UX0cy8/
https://support.google.com/webmasters/forum/AAAA2Jdx3sUp10PgfhYxUI
https://support.google.com/webmasters/forum/AAAA2Jdx3sUp10PgfhYxUI
https://support.google.com/chrome/thread/2303283?hl=en
https://support.google.com/chrome/thread/2303283?hl=en
https://amp.dev/
https://github.com/google/skia/blob/main/experimental/tools/web_to_skp
https://github.com/google/skia/blob/main/experimental/tools/web_to_skp
https://angular.io/
https://github.com/chromium/web-page-replay
https://github.com/chromium/web-page-replay
https://github.com/MozillaSecurity/dharma
https://github.com/googleprojectzero/domato
https://github.com/MozillaSecurity/domfuzz/tree/master/dom
https://github.com/MozillaSecurity/domfuzz/tree/master/dom
https://www.dpreview.com/forums/post/53027375
https://blog.gopheracademy.com/advent-2017/go-execution-tracer/
https://blog.gopheracademy.com/advent-2017/go-execution-tracer/
https://www.juniper.net/
https://opentelemetry.io/
https://pptr.dev/
https://reactjs.org/
https://superuser.com/questions/1016592/where-to-turn-off-data-server-in-chrome-for-desktop
https://superuser.com/questions/1016592/where-to-turn-off-data-server-in-chrome-for-desktop
https://github.com/SipLoader/SipLoader.github.io/issues
https://github.com/SipLoader/SipLoader.github.io/issues
https://github.com/SipLoader/SipLoader.github.io/pulls?q=is%3Apr+is%3Aclosed
https://github.com/SipLoader/SipLoader.github.io/pulls?q=is%3Apr+is%3Aclosed
https://www.testin.net/
https://github.com/sensepost/wadi
http://ziproxy.sourceforge.net/
http://ziproxy.sourceforge.net/
https://github.com/barnacs/compy
https://github.com/barnacs/compy
https://www.opera.com/turbo
www.changiairport.com

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Xinlei Yang, Wei Liu, Hao Lin, Zhenhua Li, Feng Qian, Xianlong Wang, Yunhao Liu, and Tianyin Xu

[62] Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning for Web Page
Layout. In Proc. of ACM OOPSLA. 181–194.

[63] Behnam Pourghassemi, Jordan Bonecutter, Zhou Li, and Aparna Chan-
dramowlishwaran. 2021. adPerf: Characterizing the Performance of Third-Party
Ads. In Proc. of ACM SIGMETRICS. 37–38.

[64] Puppeteer. 2020. Headless Chrome Node.js API. https://pptr.dev/. (2020). (Ac-
cessed on Feb. 12, 2022).

[65] Riverbed. 2022. Riverbed Networks. https://www.riverbed.com/. (2022). (Ac-
cessed on Mar. 24, 2022).

[66] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V. Mad-
hyastha. 2017. Vroom: Accelerating the Mobile Web with Server-Aided Depen-
dency Resolution. In Proc. of ACM SIGCOMM. 390–403.

[67] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In Proc. of ACM FSE/ESEC. 488–498.

[68] Skia. 2020. SkPaint Overview. https://skia.org/user/api/skpaint_overview. (2020).
(Accessed on Mar. 12, 2022).

[69] Suhwan Song, Jaewon Hur, Sunwoo Kim, Philip Rogers, and Byoungyoung Lee.
2022. R2Z2: Detecting Rendering Regressions in Web Browsers through Difer-
ential Fuzz Testing. In Proc. of ACM/IEEE ICSE.

[70] Stackoverfow. 2017. Google Chrome Issue with Data Saver: WebApp Not Load-
ing. https://stackoverfow.com/questions/43736942/force-android-chrome-to-
not-downsample-images/43742876#43742876. (2017). (Accessed on Jan. 13, 2022).

[71] Stackoverfow. 2018. Disable Chrome’s Data Saver Optimization.
https://stackoverfow.com/questions/31314119/disable-chrome-s-data-saver-
optimization. (2018). (Accessed on Jan. 15, 2022).

[72] Telerik. 2020. Fiddler: The Free Web Debugging Proxy for Any Browser, System
or Platform. http://www.telerik.com/fddler. (2020). (Accessed on Mar. 1, 2022).

[73] Vue. 2022. Vue.Js. https://vuejs.org/. (2022). (Accessed on Mar. 24, 2022).
[74] Wen Xu, Soyeon Park, and Taesoo Kim. 2020. FREEDOM: Engineering a State-

of-the-Art DOM Fuzzer. In Proc. of ACM CCS. 971–986.
[75] Xinlei Yang, Hao Lin, Zhenhua Li, Feng Qian, Xingyao Li, Zhiming He, Xudong

Wu, Xianlong Wang, Yunhao Liu, Zhi Liao, Daqiang Hu, and Tianyin Xu. 2022.
Mobile Access Bandwidth in Practice: Measurement, Analysis, and Implications.
In Proc. of ACM SIGCOMM. 114–128.

[76] Christoph Zauner. 2010. Implementation and Benchmarking of Perceptual Image
Hash Functions. Ph.D. Dissertation. University of Applied Sciences, Hagenberg.

[77] Wang Zhou, Bovik Alan, Hamid Rahim Sheikh, et al. 2004. Image Quality Assess-
ment: From Error Visibility to Structural Similarity. IEEE Transactions on Image
Processing 13, 4 (2004), 600–612.

2957

https://pptr.dev/
https://www.riverbed.com/
https://skia.org/user/api/skpaint_overview
https://stackoverflow.com/questions/43736942/force-android-chrome-to-not-downsample-images/43742876#43742876
https://stackoverflow.com/questions/43736942/force-android-chrome-to-not-downsample-images/43742876#43742876
https://stackoverflow.com/questions/31314119/disable-chrome-s-data-saver-optimization
https://stackoverflow.com/questions/31314119/disable-chrome-s-data-saver-optimization
http://www.telerik.com/fiddler
https://vuejs.org/

Visual-Aware Testing and Debugging for
Web Performance Optimization

A APPENDIX
A.1 Crowdsourcing Study on Visual Distortions
We distribute our volunteer recruitment requests on a popular
crowdsourcing platform [39], where opt-in users need to recognize
whether there are visual distortions incurred by Ziproxy/Compy,
using the screenshots of the optimized and original landing pages.
If the user believes that there is a visual distortion, s/he is further
asked to list the specifc symptom (e.g., content loss). Eventually,
18 users opted in during Dec. 11–21, 2021. Among them, 7 are male
and 11 are female, with ages ranging from 20 to 53. Each user can
take any number of tasks and receive the corresponding rewards.
The only constraint is that each task should be fnished by at least
three users, so that majority voting is possible for each task.

A.2 Challenges of Detecting Visual Distortions
with CV Metrics

In order to understand the performance of detecting visual distor-
tions using CV metrics, we treat the entire web page as a static
snapshot image, and directly compare the original and optimized
pages’ fnal rendering results using three widely-used CV metrics,
including 1) structural similarity (SSIM) [77], 2) scale-invariant fea-
ture transform (SIFT) [50], and 3) perceptual hash (pHash) [76]. Our
evaluation results (cf. Table 2) show that making both separate
and combined use of the three CV metrics yield poor detection
results (precision <50%). A deeper analysis shows that such un-
satisfactory performance is owing to dynamic web pages whose
rendering results difer from one load to another. Specifcally, the
dynamic visual elements include rotating banners, randomly se-
lected texts/images, visitor counters, and so on. These dynamics can
easily disrupt the above-described pixel-by-pixel CV comparisons
between two pages’ snapshots, incurring many false positives.

A.3 Matching Strategies between MSTs
This part frst details the algorithm design of the level-by-level
hierarchy matching between two MSTs at the granularity of node
groups. Here a node group refers to a set of nodes that share the
same parent node. Then, we discuss the node matching among the
already matched groups’ inner nodes.

Hierarchy Matching. To begin with, we are at the root level
(Level-0) of both ���� and ���� . Here by level we refer to nodes
that have the same number of edges along their paths to the root
node, e.g., node �5, �6, �7, and �8 in Figure 6(a) are of the same level.
Therefore, a level may contain several node groups (e.g., ����’s
Level-2 contains three groups).

For each group in ����’s root level (obviously there is only one
group in the root level), we examine whether it exactly matches
���� ’s any group in the root level in terms of their nodes’ number
and inner structure, i.e., the groups have the same number of nodes
and inner structure. Note that the specifc process for structure
matching between two groups of counterpart nodes will soon be
detailed in Node Matching. Naturally, there are two outcomes—we
either fnd two groups that match each other, or we do not. If it is
the former case, we can mark them as matched and move to the
next group in the current level in ����; if all groups at the level
have been traversed, we go down to the lower level. Otherwise, we
say a hierarchy mismatch occurs.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

MSTB
b1

b3 b4 b5

b2

b7 b8

b6

MSTA' MSTB'

b1

b3 b4 b5

b2

b7 b8

b6

a1

a2 a3 a4

a9

a6 a7

a10a5

MSTA
a1

a2 a3 a4

a6 a7a5 a8

a8 b9 b10

(b) (c) (d)(a)

Figure 6: Hierarchy matching between two MSTs by adding
virtual nodes to realign them.

Upon a hierarchy mismatch, we try to fnd a matched group in
���� no matter which level the group lies at. To this end, we exam-
ine groups in ���� also in a top-down manner. If we cannot fnd
any matches, we will go back to the specifc level in ���� where
the hierarchy mismatch occurs, and directly use a group at the level
that best matches the mismatched group in ���� . Else, if we fnd a
matched group at ���� ’s Level-K, we then mark them as matched
as well, and realign the counterpart matched group in ���� to
Level-K by adding virtual nodes (as shown in Figures 6(c)(d)). By
traversing all the groups in ���� following the above procedure,
we can eventually accomplish hierarchy matching.

During the above process, we recursively compare and realign
the MSTs’ node structures (from top to bottom) to mitigate the
negative infuence of their diferent hierarchies. In the worst case,
there exists no group of nodes in ���� that matches any group
of nodes in ���� ; assuming ���� and ���� both contain � (�)
nodes, our hierarchy matching procedure would incur � (�2) time
complexity, which would be pretty high for a large yet realistic �,
especially when each operation of hierarchy matching is accom-
panied by multiple node matching operations (as detailed soon)
whose complexity is not included here. To reduce the required
comparisons, we further adopt a memorization algorithm [55] to
accelerate hierarchy matching as follows.

Our idea of memorization algorithm is motivated by a key obser-
vation: when we go down to lower levels in the two MSTs, identical
comparisons may appear many times. To avoid such repetitive com-
parisons, when we compare two groups, we insert the comparison
results to a hash table. If two groups are identical, they are stored
under a same key as an array: (� , [�1,�2]); here � is the inner
structure of either group, while �1 and �2 respectively include the
two groups of nodes’ labels. Otherwise, they are stored under dif-
ferent keys. Thereby, all the repetitive comparisons can be avoided,
and we only need to make � (�) comparisons to fulfll hierarchy
matching, rather than the original � (�2) comparisons.

Node Matching between Groups. We now detail the process
of node-by-node structure matching between two groups of nodes
from two MSTs. This process acts as the basic operation unit in-
voked by hierarchy matching as described above.

Given two groups of nodes from two MSTs, the frst thing is to
extract a set of properties for each node, based on which we can
measure the similarity among diferent nodes for structure match-
ing. When constructing the set of properties, we ignore a node’s

2958

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Xinlei Yang, Wei Liu, Hao Lin, Zhenhua Li, Feng Qian, Xianlong Wang, Yunhao Liu, and Tianyin Xu

non-morphological properties such as size and position; instead, we
focus on the node’s topological form and structural relations to the
other nodes within the same group. The two kinds of information
are both obtained from the logs of the SkPaint APIs (as discussed in
§3.2). Recall that we take seven major structural relations between
the graphic elements of a web page into consideration. All in all,
we make integrated use of all the eight properties (one from the
topological form and seven from the structural relations), which
together constitute the node’s property set (PS).

Based on the above, we defne the similarity of diferent nodesÑ |��� ��� |through an intuitive similarity function: ����,� = Ð |��� ��� | ,
where ��� and ��� are the property sets of nodes � and �.

Hence, we conduct structure matching as follows. First, nodes in
two groups with identical property sets are matched preferentially,
which can be accomplished with � (�2) time complexity, where
each group contains � (�) nodes. Further, to generate the (best)
matching with the highest average similarity among the remaining
nodes, we convert the two groups of nodes to a bipartite graph—
the two groups of nodes constitute two vertex subsets, and each
edge between the two vertex subsets is given a weight as specifed
in the similarity function above. Thereby, fnding the matching
scheme with the highest average similarity between the two groups
of nodes is equivalent to fnding the maximum matching in the
derived bipartite graph; for the latter, we can leverage the classic
Hungarian algorithm [6] to solve it with � (�3) time complexity,
where each group contains � nodes.

A.4 Evaluations of Detecting Visual Distortions
Testing Performance of Diferent Approaches. As shown in
Table 2, the performance of all the CV-based approaches are unsat-
isfactory, with F1 score <0.65, and precision <50%. By analyzing
the results, we fnd that CV-based approaches induce many false
positives (FPs), most of which are related to dynamic pages that
difer greatly between diferent loads. On the other side, the testing
recalls of CV-based approaches are reasonable (≤90%), inducing a
few false negatives (FNs), which mostly are content loss that causes
obvious layout changes but only slight pixel-level diferences.

Compared with CV-based approaches, the MorphSIM-based ap-
proach substantially improves the testing precision from <50% to
82%, but slightly decreases the recall from 90% to 80%. The results
indicate that the MorphSIM-based approach can well distinguish
dynamic pages from visually distorted ones, thus bringing remark-
able precision improvements compared with CV-based approaches.
On the other hand, as MorphSIM is not sensitive to pixel-level
changes, some content loss/distortions cannot be detected, thus
leading to a lower testing recall.

Given that the CV metrics and MorphSIM well complement
each other, Vetter makes a combined utilization of them, and thus
achieves the highest testing F1 score (0.93), precision (95%) and
recall (91%). Of course, Vetter also incurs false positives and nega-
tives in practice. On the test set, Vetter’s FP rate is 1% and FN rate
is 9%. By manually examining the false positives, we fnd that all
of them are highly dynamic in terms of not only concrete content
but also visual structure. For example, the visual structure of an

HTML5 gaming page optimized by Ziproxy changes signifcantly
compared with that of the original page. In this case, MorphSIM
between the original and optimized pages falls below the threshold
(0.46), leading to a wrong decision.

As to the false negatives, we observe that all of them sufer a
small-size content loss. In particular, on the optimized page, the
absence of a small visual element leads to a leaf node’s missing in its
MST, which usually brings little impact on the calculation of both
MorphSIM and the CV metrics. Thus, this small content loss can
hardly be captured by Vetter. However, when these elements are
semantically or functionally important, e.g., a login button, users
could easily notice such distortions, thus leading to FNs. Note that
such FNs are strongly related to the page-specifc semantics, and
thus are really hard to detect.

Testing Efciency of Vetter. We next evaluate the time overhead
of Vetter for testing visual distortions. In general, the overhead
mainly involves: (1) the page loading process of the original and
optimized pages, (2) calculation of the CV metrics and MorphSIM
for each page, and (3) delays incurred by machine learning models.
We then measure the time overhead of Vetter when testing visual
distortions on the test set. When running on a budget VM server
with a dual-core CPU @2.3 GHz, Vetter’s average testing time of a
web page ranges from 1.7 s to 5.2 s, averaging at 3.2 s. In particular,
we observe that the time overhead is mainly incurred by the page
loading process, which takes 3.1 s on average, while the other two
factors together take only 62 ms on average. That is to say, almost
all (98%) the time overhead comes from the loading process or op-
timization routines of WPO, rather than the Vetter’s testing logic.
Such performance of Vetter is largely owing to Vetter’s minifca-
tion of a page’s morphology (§3.2) and its efcient morphological
similarity calculation (§3.3).

A.5 Artifact Appendix
Abstract
The artifacts of Vetter are publicly available at GitHub. To facilitate
a better understanding of Vetter, we provide detailed instructions
on how to build, deploy, and use Vetter. Please refer to our README
fle at https://github.com/Web-Distortion/Vetter/ for details.

Scope
The artifacts can be used to reproduce the major results of Vetter.

Contents
The artifacts include the source code of Vetter, the detailed defects
of four widely used WPOs (Ziproxy, Compy, Fawkes, and SipLoader)
we have found using Vetter, and the crowdsourcing datasets involv-
ing 5,000 websites regarding the WPO-incurred visual distortions.

Hosting
Code and data are hosted in the main branch of Vetter repository.

GitHub Repo. https://github.com/Web-Distortion/Vetter

DOI for the Artifacts. https://doi.org/10.5281/zenodo.7601984

2959

https://github.com/Web-Distortion/Vetter/
https://github.com/Web-Distortion/Vetter
https://doi.org/10.5281/zenodo.7601984

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Dilemma of WPOs
	2.2 Understanding Visual Distortions
	2.3 Challenges

	3 Design and Implementation
	3.1 System Overview
	3.2 Morphology Instantiation & Minification
	3.3 Morphological Similarity Calculation
	3.4 Morphological Causality Inference
	3.5 Causality-Informed Code Analysis
	3.6 Implementation

	4 Evaluation
	4.1 Visual-Aware Testing Performance
	4.2 Visual-Aware Debugging Results
	4.3 Defect Fixing

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Crowdsourcing Study on Visual Distortions
	A.2 Challenges of Detecting Visual Distortions with CV Metrics
	A.3 Matching Strategies between MSTs
	A.4 Evaluations of Detecting Visual Distortions
	A.5 Artifact Appendix

