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ABSTRACT 
Web performance optimization services, or web performance op-
timizers (WPOs), play a critical role in today’s web ecosystem by 
improving page load speed and saving network trafc. However, 
WPOs are known for introducing visual distortions that disrupt the
users’ web experience. Unfortunately, visual distortions are hard to 
analyze, test, and debug, due to their subjective measure, dynamic 
content, and sophisticated WPO implementations. 

This paper presents Vetter, a novel and efective system that 
automatically tests and debugs visual distortions. Its key idea is to 
reason about the morphology of web pages, which describes the
topological forms and scale-free geometrical structures of visual 
elements. Vetter efciently calculates morphology and compara-
tively analyzes the morphologies of web pages before and after 
a WPO, which acts as a diferential test oracle. Such morphology 
analysis enables Vetter to detect visual distortions accurately and 
reliably. Vetter further diagnoses the detected visual distortions to 
pinpoint the root causes in WPOs’ source code. This is achieved by 
morphological causal inference, which localizes the ofending visual
elements that trigger the distortion and maps them to the corre-
sponding code. We applied Vetter to four representative WPOs. 
Vetter discovers 21 unknown defects responsible for 98% visual 
distortions; 12 of them have been confrmed and 5 have been fxed. 
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1 INTRODUCTION 
The ever-growing demand for fast, reliable, and resource-efcient 
web browsing has been driving the active development of web 
performance optimization services [3, 23, 41, 47, 59], or web perfor-
mance optimizers (WPOs). Deployed as server/client-side plug-ins 
or WAN/LAN proxies by mobile ISPs, content providers, and corpo-
rations, WPOs automatically perform a wide range of optimizations 
(e.g., image transcoding, JavaScript/CSS minifcation, and HTML/-
text compression) to save the page load time (PLT) and/or network 
trafc. Many WPOs also ofer add-on services like caching, web 
security, and advertisement fltering. 

WPOs are highly efective and popular. Google AMP has speeded 
up the loading process of 5 billion web pages by 2.5× on average [23, 
45]. Google Flywheel [3] and Baidu TrafcGuard [47] save mobile 
trafc for tens of millions of users by over 1/2 and 1/3, respectively. 
New WPOs such as Fawkes [51], SipLoader [48], and Vroom [66] can 
further reduce user-perceived page load time signifcantly. Besides, 
selective trafc manipulation [49, 56] and symbolic execution [46] 
have been proposed to prevent privacy violations. 

Despite the many compelling features and measurable benefts, 
WPOs could induce visual distortions, which signifcantly impair
users’ web experience [17, 21, 22, 70, 71]. Figure 1 shows an exam-
ple of visual distortions. Compared to the original landing page of 
Bild.de (a popular German news media), the “optimized” version 
by Ziproxy [41] (a classic WPO for trafc compression) is severely 
distorted, leading to unacceptable user experience. In fact, many 
users choose to opt out of WPOs simply because of visual distor-
tions [18, 30, 36]. This is particularly common for non-technical 
users who cannot explain the distortions [8, 20]. In addition, our 
interviews with developers of both Google Flywheel and Baidu 
TrafcGuard confrm that visual distortions are a key challenge of 
their services and have created major obstacles to adoption. 

Unfortunately, visual distortions incurred by WPOs are under in-
vestigated. The knowledge gap hinders the development of practical 
solutions for detecting, debugging, and fxing visual distortions. To 
fll this gap, we conduct the frst in-depth study on visual distortions 
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Figure 1: A real-world example of web page distortion. 
introduced by WPOs. With informed consent and a well-established 
IRB, we recruit 18 users (from diferent age and gender groups) to 
help recognize visual distortions on the landing pages of the Alexa 
top and bottom 2,500 websites (among the top 1M) after being op-
timized by two widely used WPOs (i.e., Ziproxy and Compy [42]). 
The experiments reveal three major fndings. 
• Although visual distortions seem to be subjective, for most (93%) 
web pages, the inspectors have the same opinions. 

• Ziproxy and Compy incur visual distortions to 3.3% and 6.1% of 
the 5,000 landing pages respectively, which is signifcant enough 
to afect user experience and discourage WPO deployments. 

• Visual distortions are more severe (5.6% for Ziproxy and 9.0% 
for Compy) in landing pages of less popular (the bottom 2,500) 
websites, as these websites include more non-standard or even 
incorrect web contents that confuse WPOs’ optimizations. 
Driven by the prevalence and severity of distortions, we aim to 

develop an efective approach to systematically address the issue. 
However, our experience reveals signifcant challenges. First, auto-
matic detection of distortions is nontrivial. An intuitive approach 
is to directly compare the image snapshots of the original and opti-
mized pages, which however cannot address dynamic contents that 
vary signifcantly (exemplifed in Figure 2). An alternative is to com-
pare the key data structures (e.g., DOM, render, and CSSOM trees) 
of web pages, which also falls short for a lack of visual hints, miss-
ing layout information, and being over-general. Worse still, even 
when distortions are successfully detected, it is hard to locate their 
root causes in the source code, as WPOs typically have sophisti-
cated implementations for accommodating complex resources (e.g., 
images and videos), various protocols (e.g., HTTP/3 and HTTPS), 
and diverse languages (e.g., HTML5 and WebAssembly). 

In this paper, we present Vetter, a system for automatically test-
ing and debugging visual distortions from the perspective of how 
modern web pages are generated. Today, very few web pages are 
written from scratch in an ad-hoc manner; instead, most web pages 
are programmatically generated by several mainstream web frame-
works (e.g., Angular [25], React [35], and Vue [73]). These frame-
works follow the standard Model-View-ViewModel (MVVM) design 
pattern that decouples a web page’s layout (View) from the logic 
and data (Model). As a result, while the logic and data of a dynamic 
web page vary between diferent loads, only the scales or concrete 
contents of visual elements are changed accordingly; visual ele-
ments’ topological forms and scale-free geometrical structures do 
not. Such invariants are referred to as a web page’s morphology. 

Vetter is built based on a key insight that visual distortions on 
a web page (no matter how dynamic it is) are highly relevant to 
changes in its morphology. As shown in Figure 2, in two diferent 
loads of Pinterest’s landing page, pictures are both placed in rectan-
gles (topological form) and aligned vertically (scale-free geometrical 

Figure 2: The landing page of Pinterest.com varies signif-
cantly in two diferent loads due to the dynamic contents. 

structure) despite signifcant pixel-level changes, so the optimized 
page was never deemed as visually distorted by the users. 

However, comparing the morphologies of two web pages is 
costly—the time complexity is � (�!) for web pages containing � vi-
sual elements. To address this, we discover the intrinsic hierarchy in 
a web page’s morphology, which derives from the nested properties 
of the markup languages (e.g., HTML and XML) used by mainstream 
web frameworks to defne layouts. Vetter utilizes this to minify a 
web page’s morphology, thus greatly reducing the complexity to 
� (�3), which only takes tens of milliseconds in practice. 

Vetter further provides debugging support for visual distortions 
that are automatically detected (or manually identifed). We fnd 
that solely analyzing the visually distorted elements (detected dur-
ing testing) is inefective, because many of them are the results of 
the “chain reactions” of neighboring visually distorted elements 
instead of the defects in a WPO’s source code. 

To debug visual distortions efectively, Vetter performs morpho-
logical causal inference that strategically manipulates the loading 
process of these elements (e.g., replacing one visually distorted 
element’s resource with its original one, or changing the loading 
sequence) under the guidance of morphological hints (i.e., the graph-
ical and structural information of visually distorted elements), and 
meanwhile checks whether the distortion can be resolved. Given 
the results, Vetter can efciently infer the causal relationship be-
tween the WPO’s source code and visually distorted elements, thus 
greatly and safely reducing the search space for debugging. 

We apply Vetter to four representative WPOs (Ziproxy, Compy, 
Fawkes, and SipLoader). When using the Alexa top 2,500 websites 
as the training set and bottom 2,500 websites (among the top 1M) as 
the test set, Vetter can efciently (costing 62 ms per page on average) 
detect visual distortions with high precision (95%) and recall (91%). 
Further, Vetter fnds a total of 21 previously unknown defects in the 
four WPOs, most of which stem from 1) WPO developers’ undue 
reliance on the correctness of the original web request/response 
headers, 2) the WPO-amplifed dependency violations among web 
contents, and 3) the lack of support for emerging web techniques. 
We fx them through either source code correction or lightweight 
middleware pre-parsing, and thus clear up almost all (98%) of the 
visual distortions, which are more than detected (91%) as many 
undetected ones have been automatically resolved by our fxes. 

All the 21 discovered defects along with our suggested fxes have 
been reported to the developers of the four WPOs, among which 
12 defects have been confrmed and 5 suggested fxes have been 
ofcially adopted. The remaining ones are either under beta tests 
or under code review. 

In summary, this paper makes the following contributions. 
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• We conduct the frst study on visual distortions incurred by 
WPOs and release a large open dataset involving 5,000 websites. 

• We develop Vetter, a visual-aware testing and debugging sys-
tem that automatically and efectively detects and debugs visual 
distortions based on the morphology of web pages. 

• Vetter has detected 21 unknown defects in four widely used 
WPOs; to date, 12 of them are confrmed and 5 are fxed. 

• The code and data involved in this work are released at https: 
//github.com/Web-Distortion/Vetter (detailed in Appendix A.5). 

2 BACKGROUND AND MOTIVATION 
2.1 The Dilemma of WPOs 
In the web ecosystem, WPOs are extensively developed and de-
ployed as client-side plug-ins, server-side middleware, or stan-
dalone proxies, by mobile ISPs [32, 65] and content providers [3, 47], 
to save page load time and network trafc, to provide versatile 
add-on services like web content caching [3], encrypted network 
communication [46], and advertisement fltering [63]. 

A WPO can help optimize the web browsing experience before 
(ofine phase) and/or during (online phase) user access. In the ofine 
phase, the WPO typically pre-loads the web page to analyze the 
included resources, and then executes corresponding optimization 
routines, e.g., transcoding/compressing images, re-organizing the re-
source loading sequence [48, 66], and rewriting HTML fles [48, 51]. 
Afterwards, the optimized page is usually cached on the web server 
for serving later accesses. In addition, some WPOs also perform 
online optimizations during web page loading. They typically run 
on a standalone proxy for simpler or lighter tasks, e.g., resource 
pre-fetching [66], TCP pre-connection [3], and advertisement block-
ing [47]. This is because “heavy” optimizations like analyzing and 
rewriting HTML fles could induce non-negligible latency penalty. 

Despite the benefts, WPOs have received plenty of user com-
plaints when working in the wild due to the side efects. By exten-
sively reviewing the negative comments posted on relevant online 
communities [70, 71] and customer-support websites [10, 17, 22], 
we fnd the side efects include latency penalties, bandwidth bot-
tleneck [75], functional anomalies, visual distortions, and so forth. 
In particular, most users are concerned about visual distortions, 
such as layout displacement and content loss on the optimized web 
pages [21, 22, 70, 71]. Worse still, some users even doubt that the 
WPO has incurred security/privacy threats such as unauthorized ad-
vertisement injection [8] and undesired web page redirection [20]. 

2.2 Understanding Visual Distortions 
To quantify the realistic prevalence and severity of visual distor-
tions incurred by WPOs, we apply two typical WPOs, i.e., Ziproxy 
(a classic HTTP forwarding proxy for trafc compression and ac-
celeration) and Compy (an open-source implementation of Google 
Flywheel) to the Alexa top and bottom 2,500 (thus a total of 5,000) 
websites (among the Alexa top 1M) on Dec. 9th, 2021. Specifcally, 
we deploy the latest versions of Ziproxy and Compy on two sepa-
rate VM servers rented from AWS EC2, each with a dual-core CPU 
@2.3 GHz, 2 GB of memory, and 100 Mbps access bandwidth. Also, 
we develop an automated web browsing exerciser (or simply exer-
ciser) and let it work on a typical Windows-10 PC with a quad-core 
CPU @3.4 GHz, 16 GB of memory, and 100 Mbps access bandwidth. 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Table 1: Visual distortions occurring to the Alexa top 2,500 
websites’ landing pages. “#” is the number of distorted pages. 

Distortion Symptom # by Ziproxy # by Compy Total 
Content Loss 0 63 63 

Image Display Error 11 0 11 
Text Confusion 13 16 29 
Layout Disorder 0 3 3 

All 24 82 106 

For each of the 5,000 websites, the exerciser sequentially visits 
its landing page with and without the two deployed WPOs using 
Chrome v79 web browser, respectively. Once the page is fully loaded 
(with cold browser cache every time), the exerciser takes a snapshot 
of the screen display. As a result, we obtain three screenshots for 
each website—one for the original landing page and the other two 
for the optimized versions (produced by Ziproxy and Compy). 

With the screenshots of the 5,000 websites’ landing pages, we 
next determine whether these optimized pages are visually dis-
torted. Here a challenge is that there is subjectivity, to some extent, 
in users’ perceptions of visual distortions. To deeply understand 
visual distortions from real users’ perspectives, we conduct a crowd-
sourcing study by recruiting 18 users with diferent ages and gen-
ders. They help recognize and categorize visual distortions on the 
5,000 optimized landing pages produced by the two WPOs. More 
details of the crowdsourcing study are described in Appendix A.1. 

Measurement Findings. Based on the collected dataset, we have 
multi-fold fndings on WPO-incurred visual distortions in terms of 
their prevalence, severity, and key characteristics. 

First, although visual distortions seem to be subjective problems, 
in most cases (93%) the recruited users can in fact reach a consen-
sus. For the remainder (7%), visual distortions are determined by 
majority voting; if there is a tie, we would participate to break it. 

Besides, both Ziproxy and Compy bring visual distortions to 
a nontrivial portion (0.96% and 3.28%) of the top 2,500 websites’ 
landing pages. We list the specifc symptoms and their quantities in 
Table 1 based on the opt-in users’ feedback. We fnd that Ziproxy 
and Compy can vary greatly regarding the occurrence of a certain 
symptom (we delay the detailed explanation to §4.2). While the 
portions both look small (<10%), note that even a single visual 
distortion can incur a direct, negative impact on the user experience, 
making users unsatisfed or vigilant and thus stop using the WPO. 
Also note that we only test the landing page of each website, which 
typically contains quite a number of pages. That is, there might 
well be much more distortions undiscovered for the 5,000 websites. 

By contrast, the bottom 2,500 websites’ landing pages sufer even 
more visual distortions: 5.64% for Ziproxy and 8.96% for Compy. 
This is understandable: less popular websites usually include more 
non-standard or even incorrect web contents that can more easily 
trigger the side efects of WPOs’ optimization routines. Our detailed 
analysis in §4.1 also confrms this. 

The study was performed under a well-established IRB. No per-
sonally identifable information was collected. 

2.3 Challenges 
To combat visual distortions induced by WPOs, we have explored 
several potential solutions to detecting and debugging them. Our 
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Figure 3: Architectural overview of Vetter. 

experience reveals signifcant technical challenges to automatically 
detecting and debugging visual distortions using traditional metrics. 

Specifcally, to detect visual distortions, an intuitive approach 
is using computer vision (CV) metrics to compare the rendering 
results of the original and optimized pages. Unfortunately, this 
approach works poorly on dynamic pages whose rendering results 
difer from one load to another (detailed in Appendix A.2). 

Comparing the key data structures of web pages is also inefec-
tive. For example, a web page’s render tree which contains visible 
web elements is inaccessible outside the browser. The CSS Object 
Model (CSSOM) tree is over general as it only describes the presen-
tation or formatting style of web elements. The Document Object 
Model (DOM) tree only represents the logic (rather than visual) 
relations of web elements; it can be changed greatly by inserting 
multiple empty inner elements (e.g., <div>) into the HTML fle, yet 
the rendering result remains unchanged. 

Worse still, even if we managed to detect visual distortions, it is 
still challenging to debug them as WPOs often have sophisticated 
implementations, e.g., Ziproxy has ∼20K lines of code and employs 
40+ third-party modules and auto-generated functions. Meanwhile, 
the available information for diagnosis is very limited. The runtime 
logs of WPOs crucial to debugging are often hard to fetch, espe-
cially for those WPOs that only work in the ofine mode (as their 
optimizations are performed ahead of the page loading process). 

3 DESIGN AND IMPLEMENTATION 
3.1 System Overview 
To address the challenges in §2.3, we present Vetter, a system for 
automatically testing and debugging visual distortions. 

The main idea is to rethink about visual distortions from the 
perspective of how modern web pages are generated. We observe 
that most of the modern web pages are programmatically generated 
by mainstream web frameworks (e.g., Angular [25], React [35], and 
Vue [73]), rather than manually written from scratch in an ad-hoc 
manner. All these frameworks adopt the standard Model-View-
ViewModel (MVVM) design pattern that separates a web page’s 
layout (View) from its logic and data (Model), so as to make the 
web page easy to develop, test, and maintain. Consequently, while 
the logic and data of a dynamic web page vary between diferent 
loads, only the scales or concrete contents of the visual elements 
are changed accordingly. On the other hand, the visual elements’ 
topological forms and scale-free geometrical structures scarcely 
ever change; such invariants are termed a web page’s morphology. 

Morphology provides an efective vantage point to understand 
visual distortions—visual distortions occurring to a web page (no 
matter how dynamic it is) are highly relevant to changes in its 
morphology. This conforms to our daily web browsing experience— 
for a dynamic web page (like Pinterest.com ), a user does not 

expect or can even notice the changes of individual visual elements 
between diferent page loads. However, if its morphology changes 
drastically, the user would easily notice and feel uncomfortable. In 
theory, it is possible for a web page to swap its own morphology 
upon diferent loads, but such a behavior is rare in practice. 

Vetter is built on the morphology insight. In order to detect visual 
distortions, Vetter extracts and compares the morphologies of web 
pages; further, Vetter uses the morphological diferences between 
the pages as important hints to pinpoint the root causes. Figure 3 
depicts Vetter’s major components and workfow. Vetter takes the 
original web page and its optimized version generated by a WPO as 
the input, and performs the following testing and debugging steps: 
• Morphology Instantiation and Minifcation (§3.2). To instantiate 
a web page’s morphology, we employ scene graph, a classic 
data structure in computer graphics for representing 2D/3D 
scenes [19], to capture both the abstract graphical information 
and spatial structures among the web page’s constituent ob-
jects. However, comparing the scene graphs of two web pages 
incurs prohibitively high computational overhead. To address 
this, Vetter leverages the intrinsic hierarchy in a web page’s mor-
phology to minify the scene graph into a morphological segment 
tree (MST), so as to facilitate the remaining steps. 

• Morphological Similarity Calculation (§3.3). Once two pages’ 
MSTs are constructed, Vetter calculates their morphological sim-
ilarity in two stages to determine visual distortions. First, Vetter 
adopts hierarchy matching enhanced by memorization algorithms 
to quickly perform coarse-grained, level-by-level matching be-
tween two MSTs. Second, it zooms in on each matched level 
to perform fne-grained, node-by-node matching. In this way, 
the morphological similarity between two pages can be calcu-
lated with � (�3) time complexity while retaining high accuracy. 
Meanwhile, Vetter records the graphical and structural informa-
tion of visually distorted elements (marked red in Figure 3) as 
morphological hints to inform debugging. 

• Morphological Causal Inference (§3.4). When diagnosing a visual 
distortion, we fnd that focusing on all the visually distorted 
elements (detected in the above testing step) is expensive and 
unnecessary, as many of them are just the “chain reaction” results 
of neighbouring visually distorted elements. Therefore, Vetter 
strategically manipulates the loading process of these elements 
(e.g., changing the loading sequence as depicted in Figure 3) using 
the morphological hints; meanwhile, it invokes the testing steps 
again to check if the distortion still exists after the manipulation. 
By repeating the above-described trials until the distortion is 
resolved, Vetter can infer the causal relationship between the 
distortion and the visually distorted elements, thus efectively 
and safely ruling out the distractions. 
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Figure 4: Two typical scenes and their scene graphs. 

• Causality-Informed Code Analysis (§3.5). Having obtained a vi-
sual element (called a critical element) that directly causes the 
distortion, Vetter then extracts specifc functions that have ever 
modifed the parameters of the critical element at run time from 
the function call stacks recorded in the previous step. These 
functions are thus highly related to the distortion, but may still 
not be the problematic ones. To help WPO developers efciently 
locate the problematic functions, Vetter further picks out the 
runtime parameters (and their values) of these functions from 
the WPO-recorded running logs, and organizes them into a time-
line, from which developers can easily notice invalid parameters 
and undesirable call paths, thereby quickly pinpointing the root 
causes at the source code level. 

3.2 Morphology Instantiation & Minifcation 
Efectively instantiating the concept of morphology is vital to the 
design of Vetter. Through extensive literature review, we notice that 
scene graph [19], a widely-used data structure in computer graphics 
for representing graphic elements in a scene and their spatial rela-
tions, is an ideal choice. Figures 4(a) and (c) depict two scenes which 
both contain three elements—a monitor, a computer, and a desk. 
Their corresponding scene graphs are shown in Figures 4(b) and 
(d), where each node represents a certain element and each edge 
denotes a kind of structural relations (e.g., “left of” and “vertical 
support”). Since scene graph can well represent the 3D graphic 
elements and their spatial relations, we believe that it is expressive 
enough to describe (2D) web page elements’ topological forms and 
scale-free geometrical structures, i.e., a web page’s morphology. 

Scene Graph Construction for Web Pages. To construct scene 
graphs for web pages, a critical problem is that the graphic elements 
and their structural relations on a web page are not given by the web 
server or client. Currently, there are mainly two types of solutions: 
1) intuitive CV-based web page segmentation [9], and 2) underlying 
data structure-based page segmentation [11]. Sadly, the former 
is subject to the inaccuracy of pattern recognition, and the latter 
involves highly complicated rules that are not actionable in practice. 

Thankfully, we note that when rendering a web page, mainstream 
web browsers such as Chrome, Firefox, and Safari all adopt the 
SkPaint utility [68] to draw graphic elements on the web page’s 
canvas. These graphic elements correspond to all the web objects, 
and thus are ideal for scene graph construction. Besides, they are 
fully accessible to outsiders rather than only the web browser. 

Further, by carefully analyzing the browser’s SkPaint API in-
vocation logs of the Alexa top and bottom 2,500 websites, we 
observe a highly skewed invocation pattern: nearly 99% of the 
invocations merely relate to 12 SkPaint APIs, among which only 
fve (i.e., drawTextBlob, drawRect, drawPath, drawImageRect and 
drawRRect) will add a visible graphic element (i.e., text, image, 
rectangle, rounded rectangle, line, and customized shape) to the 
web page; the other seven (i.e., restore, save, saveLayer, concat, 

Figure 5: A typical web page and its corresponding morpho-
logical segmentation tree (MST). 

drawPaint, clipRect and clipRRect) do not involve actual ren-
dering operations and thus do not afect the web page’s appearance. 

After fltering out useless SkPaint API invocations, we can use the 
remainder to build the scene graph for a web page. Specifcally, we 
extract graphic elements together with their major properties (i.e., 
topological form) from the really useful SkPaint API invocations. 
Such graphic elements act as the nodes in the scene graph. Further, 
we need to construct edges that represent the structural relations 
between diferent nodes. In practice, there exist multiple structural 
relations including 1) containment, 2) intersection, 3) contact, 4) 
adjacency, 5) above/below, 6) left/right, 7) superposition, and so on. 
Unfortunately, considering all these relations would make the scene 
graph (i.e., the morphology of the web page) overly complicated 
for efcient storage and subsequent processing. 

Morphological Segmentation Tree (MST). To address this, we 
carefully study the visual structures of the Alexa top and bottom 
2,500 websites, and observe that almost all their landing pages 
exhibit a certain form of hierarchy in their appearance. Take Fig-
ure 5(a) as an example, on the rendered web page lie a total of nine 
graphic elements, where the largest element (Lightyellow Back-
ground) contains all the other eight elements. Further, Green Circle 
contains Shovel Logo, and Yellowgreen Background contains PyPI 
Version, Wheel Status, and Coverage Report. In fact, the hierarchy 
among graphic elements is not an incidental phenomenon but a 
matter of course, recalling the nested properties of the markup 
languages (e.g., HTML and XML) for defning web pages’ layouts. 

Guided by the above, we minify a page’s scene graph into a 
morphological segmentation tree (MST) by focusing on the intrinsic 
hierarchy among graphic elements, which can be fully captured by 
the containment relation. By only considering this relation, we can 
naturally simplify the original graph into a tree structure, which 
is named as morphological segmentation tree (MST). For example, 
Figure 5(b) depicts the MST for the web page shown in Figure 5(a), 
where each node represents a graphic element and each edge de-
notes the containment relation between two elements. 

Apparently, the above minifcation process has a caveat: if con-
tainment cannot fully represent the relations between web elements 
(involving 1.6% web pages in our dataset), false negatives may be 
induced in distortion detection. To address this, we also use the 
other structural relations together with the containment relation 
for fne-grained matching between web elements (cf. §3.3). In ad-
dition, there exist “infnite-scroll” web pages (e.g., social media 
newsfeeds [2]) that seem to contain infnite contents and thus frus-
trate our constructing complete MSTs. Fortunately, we observe 
that such pages are in fact never loaded in one shot. For a typical 
infnite-scroll page, a small portion of contents are frst loaded (the 
initial page load), and then more contents are continuously loaded 
as users scroll down (subsequent content loads). Given this, we 
construct the MST of a web page based on the contents of the initial 
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page load. Note that according to our measurement study, almost 
all (>98%) infnite-scroll pages have highly similar morphologies 
among diferent loads. Thus, it is almost always sufcient to detect 
distortions using MSTs constructed from the initial page load. 

3.3 Morphological Similarity Calculation 
With the constructed MSTs (denoted as ���� and ���� ) of a web 
page � and the optimized page �, we next calculate their simi-
larity to compare the pages’ morphologies. Recall that a page’s 
morphology refers to the visual elements’ topological forms and 
scale-free geometrical structures. Thus, we should frst match the 
visual elements in the two pages, i.e., the nodes in ���� and ���� . 
Hierarchy Matching & Node Matching. Perfectly matching 
the nodes in two MSTs is known to bear � (�!) time complexity 
when there are � nodes in each MST, which is infeasible in practice. 
To address this, we frst leverage MSTs’ hierarchical information to 
perform coarse-grained, level-by-level hierarchy matching between 
���� and ���� by comparing the structural relations among dif-
ferent nodes in the same level. Moreover, we use a memorization 
algorithm to accelerate the matching process. 

Once a pair of levels in the two MSTs are matched, we then 
conduct fne-grained, node-by-node matching within the two lev-
els. Specifcally, we fnd the best matching scheme between two 
levels with the highest average similarity (calculated based on the 
topological forms and structural relations of the nodes) among all 
pairs of matched nodes. We use the classic Hungarian algorithm [6] 
to solve this problem with � (�3) time complexity, where each level 
contains � nodes. The algorithmic details are in Appendix A.3. 
Morphological Similarity Calculation. Finally, after all the 
nodes are matched, we calculate the similarity between the two 
MSTs (termed as MorphSIM) as the average similarities between all 
pairs of matched nodes. Ideally, we can directly determine the occur-
rence of visual distortions by using MorphSIM. However, in practice 
we fnd that solely relying on MorphSIM brings a low (4.7%) false 
positive (FP) rate yet a median (20.3%) false negative (FN) rate (cf. 
§4.1), as the morphology-wise comparison is not sensitive to small 
pixel-level changes. By contrast, making joint use of the widely 
used CV metrics including SSIM [77], SIFT [50], and pHash [76] 
(i.e., the CV-hybrid approach) often yields a median (16%) FP rate 
and a low (10%) FN rate (also cf. §4.1). Thus, the two methods in 
fact well complement each other. Given this, we make combinatory 
use of MorphSIM-based and CV-based method to decide whether 
there are distortions by using them as machine learning features 
for training various machine learning classifers including Decision 
Tree, Random Forest [43], Logistic Regression, Naive Bayes, SVM, 
SGD-Classifer [14], and RBF Neural Network [5]. Finally, Random 
Forest excels with the average F1 score >93.0%. 

3.4 Morphological Causality Inference 
To help WPO developers efectively analyze a visual distortion, our 
idea is to leverage the extracted morphological information of the 
optimized web page as critical hints for determining the causal 
relationships [44] between a visually distorted element and the 
distortion, so as to rule out distractions and reduce the search space 
of problematic code. In general, since a WPO usually modifes a 
web page’s resources and their loading sequences to achieve perfor-
mance optimizations, we gradually restore the modifed resources 

and sequences to the original ones to see whether the distortion is 
resolved. If so, the “real culprits” of the distortion are among the 
most recently restored resources/sequences. 

Specifcally, we frst extract the resources (including HTML/ 
JavaScript/CSS fles, fonts, images, and videos) related to the visual 
distortion based on the browser execution logs we capture during 
the page’s loading process. We track the CSS rules in the stylesheet 
resources that correspond to all the visually distorted elements; 
meanwhile, we record the call stack information of DOM-related 
JavaScript API invocations (e.g., appendChild, removeChild, and 
setAttribute) that process the visually distorted elements. Based 
on the above information, we can fnd out all the suspicious re-
sources that potentially incur the visual distortion. 

In practice, we typically extract tens of (41 on average in our 
dataset) suspicious resources for a single visually-distorted web 
page, while only a small portion (4%) of them are the real culprits. To 
narrow down the search space, we gradually replace the optimized 
resources with their original versions (one at a time), and invoke 
the visual-aware testing steps (cf. §3.3) after each replacement to 
check if the distortion has been resolved. If so, we infer that the 
truly problematic resources that lead to the distortion are among 
the recently restored ones, without manipulating the remaining 
resources. Otherwise, we further resort to restoring the web page’s 
resource loading sequence using the the classic sequence alignment 
algorithm [52], which turns out to be pretty efcient in practice. 

3.5 Causality-Informed Code Analysis 
Having identifed the visually distorted elements and their corre-
sponding resources (termed critical elements/resources) that have 
direct causal relationships with the distortion, Vetter quickly locates 
the WPO’s functions that process the critical elements/resources 
based on call stacks recorded at run time (using runtime proflers 
like gdb). For example, when a JPEG image is missing from the 
optimized page produced by Compy (and thus is identifed as a 
critical element), Vetter uses the call stack information to pinpoint 
that the image has been processed by 1) proxyResponse which 
extracts the the image format from the Content-Type feld in the 
response header, 2) AddTranscoder which informs the transcoder 
of the image format, and 3) Transcode which transcodes the image 
fle according to its format. 

To help developers locate the root causes in a more fne-grained 
manner, Vetter also records the runtime logs of the WPO function 
calls (generated through automatic code instrumentation), which 
include the functions’ runtime parameters and entry timestamps. 
With these, Vetter further organizes this critical information along 
with the call stacks as a timeline, so as to clearly depict the in-situ 
situations of the WPO when processing the critical elements. For 
the above example of Compy, Vetter organizes the call stacks of 
the above three functions together with their runtime parameters. 
Based on this diagnostic information, we easily discover that the 
function AddTranscoder’s input parameter Content-Type is set 
as “PNG”, which is apparently inconsistent with the actual image 
format (JPEG), causing errors during the transcoding process and 
thus the content loss (detailed in §4.2). 

2953



Visual-Aware Testing and Debugging for 
Web Performance Optimization WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

3.6 Implementation 
Vetter contains three major components: WPO Runtime Logger, 
Distortion Detector, and WPO Debugger. The three components 
are implemented with a total of 2,400+ lines of code (LoC). WPO 
Runtime Logger records the WPO’s function call stacks and runtime 
logs. This component is built upon gdb, Go Execution Tracer [31], 
and OpenTelemetry [33]. Distortion Detector records the page’s 
resources and their loading sequence using Mahimahi [58]. It also 
records the SkPaint API invocations with the Skia web_to_skp 
tool [24] during page loading to construct the MSTs. Finally, WPO 
Debugger uses the puppeteer library [34] to monitor and manip-
ulate the page loading process for debugging visual distortions. 

4 EVALUATION 
4.1 Visual-Aware Testing Performance 
We evaluate Vetter’s efcacy and overhead of testing visual dis-
tortions with the dataset collected in §2 (i.e., the 5,000 web pages’ 
original version and two optimized versions produced by Ziproxy 
and Compy). We compare Vetter with fve distortion detection ap-
proaches, which are based on three common CV metrics (i.e., SSIM, 
SIFT, and pHash), MorphSIM (cf. §3.3), and the CV Hybrid metric. 
Setup. For the three CV-based approaches and the MorphSIM-
based approach, if the similarity calculated using the corresponding 
metrics between the optimized and the original web pages is below 
a pre-determined threshold, an optimized web page will be deter-
mined as visually distorted. To fnd out appropriate thresholds, we 
try diferent threshold values and examine the approaches’ detec-
tion performance (measured by F1 score) on Alexa top 2,500 web 
pages (referred to as the training set). As a result, we respectively 
set the threshold values for SSIM, SIFT, pHash, and MorphSIM as 
0.95, 0.99, 0.91 and 0.46, which are able to maximize their F1 scores. 

As solely relying on any of the CV metrics yields low F1 scores 
(as shown in §2.3), we further use mainstream classifers to combine 
the three CV metrics together, including Decision Tree, Random For-
est [43], Logistic Regression, Naive Bayes, SVM, SGD-Classifer [14], 
and RBF Neural Network [5]. We fnd that the SGD-Classifer 
achieves the best performance on the training set. Similarly, we 
combine the MorphSIM and CV metrics (i.e., Vetter’s testing ap-
proach) using diferent classifers; this time, Random Forest excels. 

With these preparations, we compare Vetter with other ap-
proaches on Alexa bottom 2,500 (among top 1M) web pages (re-
ferred to as the test set). Our rationale behind using top 2,500 (most 
popular pages) for training and bottom 2,500 (less popular, often 
non-standard) for testing is to evaluate the robustness of these 
approaches with two very diferent sets of web pages. We use the 
same testbed as that introduced in §2.2, and the crowdsourced re-
sults as the ground truth. We mainly focus on testing precision, 
recall, F1 score and detected number of visually distorted pages 
when evaluating diferent approaches’ performance in testing visual 
distortions. 
Testing Performance. Table 2 lists the testing performance of 
Vetter and fve other comparative approaches on the test set. As 
shown, CV-based approaches (i.e., the frst four rows in the table) 
yield unsatisfactory performance, as they induce many FPs when 
tackling dynamic pages that difer greatly between diferent loads. 

Table 2: Testing performance of Vetter and the other detec-
tion approaches based on the three CV metrics, the combina-
tion of the CV metrics (CV Hybrid), and MorphSIM. “# Dist.” 
denotes the detected number of distorted pages. 

Metric Precision Recall F1 Score # Dist. 
SSIM 45% 88% 0.59 713 
SIFT 48% 70% 0.57 532 
pHash 44% 89% 0.59 738 

CV Hybrid 49% 90% 0.63 670 
MorphSIM 82% 80% 0.81 356 
Vetter 95% 91% 0.93 349 

On the other hand, since MorphSIM is not sensitive to pixel-level 
changes, some content loss and distortions cannot be detected, thus 
leading to a lower recall. In comparison, Vetter makes combined 
use of CV-based and MorphSIM-based approaches to avoid their 
defects, achieving the best testing performance. Detailed analysis 
is presented in Appendix A.4. 

4.2 Visual-Aware Debugging Results 
We apply Vetter to four representative WPOs: Ziproxy, Compy, 
Fawkes, and SipLoader for pinpointing the root causes of the vi-
sual distortions they incur when optimizing the 5,000 pages in 
our dataset. As a result, Vetter successfully unravels a total of 21 
previously-unknown defects: 4 in Ziproxy, 4 in Compy, 2 in Fawkes, 
and 11 in SipLoader. Moreover, the debugging eforts are signif-
cantly reduced by Vetter. In detail, for Ziproxy Vetter reduces the 
search space from ∼20K LoC to 560 LoC for each defect on average. 
Similarly, for Compy, Fawkes, and SipLoader, the search space is 
reduced to only 16%, 3%, and 6%, respectively. 

Concretely, we classify the defects into 11 types as shown in 
Table 3. In particular, we note that most of the defects root in several 
misconceptions or wrong assumptions of WPO developers. 

Undue Reliance on HTTP Headers. HTTP headers can be 
improperly confgured by web developers. Some WPO develop-
ers do not realize the possible misconfgurations, and directly use 
the headers to decide the optimization logic, thus inducing dis-
tortions. For example, Compy checks an image’s format solely 
with the Content-Type feld in HTTP headers, which can be in-
consistent with the actual format and lead to incorrect image 
transcoding. Also, when compressing text fles, Ziproxy adds a new 
Content-Encoding: gzip feld to the response header, without 
deleting the original Content-Encoding feld, causing text confu-
sion. 

Amplifed Dependency Violations. The loading sequence of 
web page resources should obey the complex dependencies among 
them, so as to assure that the page is loaded properly. For instance, 
before a JavaScript fle’s execution, the resources (e.g., images and 
CSS fles) it depends on must be fully loaded. However, some mech-
anisms of WPOs like resource pre-fetching and script pre-execution 
manipulate the resources’ loading sequence, and thus could cause 
or amplify dependency violations. In practice, we observe that 
SipLoader cannot capture all the dependencies during its optimiza-
tion phase (mainly performed ofine), since some dependencies are 
dynamically generated online during the page loading process. Such 
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Table 3: Defect types, symptoms and ratios of four WPOs. 
Proxy Defect Type Symptom Ratio 

Ziproxy 
Imprudent image Image transcoding error 47.9% 
Conficting felds in HTTP header Text confusion 43.7% 
Disorder of async JavaScript Layout disorder 5.4% 

Compy 

Object header-body inconsistency Content loss 90.1% 
Insufcient support for new web 
protocols Content loss 6.7% 

Incomplete request forwarding Undesirable typesetting 3.2% 

Fawkes 

Lack of analysis of JavaScript de-
pendencies 

Incorrect DOM manipu-
lations 82.7% 

Insufcient support for control 
characters Web page freezing 17.3% 

SipLoader 

Insufcient support for compres-
sion algorithms Resource fle corruption 15.4% 

Incomplete dependency tracking 
during rewriting 

Content loss/layout dis-
order 52.3% 

URL conversion error Content loss 32.3% 

limitation results in over a half of the visual distortions induced by 
SipLoader. Similar issues also exist in Ziproxy. 

Lacking Support for Emerging Web Techniques. Compy, Faw-
kes, and SipLoader do not well adapt to today’s emerging web 
techniques, thus causing visual distortions on optimized pages. For 
instance, SipLoader cannot recognize the resources compressed 
by Brotli [1], so it directly treats the resources as uncompressed. 
Besides, Compy cannot handle WebSocket requests, thus impairing 
some websites’ interactive functions like online chat room. 

4.3 Defect Fixing 
To fx the defects, we provide either source code corrections or 
auxiliary middleware pre-parsing for the WPOs. 
• Consistency Checking for HTTP Headers. Given that HTTP head-
ers can often be misleading, we provide consistency checking 
between the headers and the related resources. In detail, for 
Compy we identify an image’s actual format by snifng its byte 
pattern rather than simply believing the headers. For Ziproxy, if 
there already exists a Content-Encoding:none feld, we replace 
its value rather than adding a conficting new feld. 

• Runtime Dependency Tracking. To prevent the optimized loading 
sequence from violating resources’ dependencies, we build a 
lightweight middleware to pre-parse the HTML fles using a 
headless Chrome browser [64]. Similar to Prophecy [57], the 
middleware leverages JavaScript Proxy objects to collect the 
write logs of JavaScript variables during the pre-parsing phase. 
With the write logs, the middleware merges all JavaScript fles 
into a single inline script where all the JavaScript variables are 
properly generated based on dependencies, and then sends the 
rewritten HTML fle to the WPO. 

• Adapting to New Web Techniques. For Compy, we have 
integrated supports for WebSocket. Also, we check the 
Transfer-Encoding feld in SipLoader to recognize Brotli-
compressed fles, and perform the corresponding compres-
sion/decompression on demand. 

Impacts on Real-World WPOs. After applying the above fxes to 
the four WPOs, we fnd that nearly all (98%) of the visual distortions 
occurred on the 5,000 web pages in our dataset disappear. Further, 
to realistically improve the four mentioned real-world WPOs, we 
have reported our uncovered defects and the suggested fxes to 

all of them. Although Ziproxy’s and Fawkes’ developers have not 
replied yet, Compy’s and SipLoader’s developers have confrmed 
a total of 12 GitHub issues [15, 37] reported by us through an 
anonymous GitHub account named Web-Distortion. More impor-
tantly, nearly half of the fxing patches have been upstreamed to 
the master branch of their code base [16, 38], leading to the frst 
major update of Compy in 2021 and a major upgrade of SipLoader 
in 2022. For the remaining half, they are under improvement for 
compatibility/security concerns. 

5 RELATED WORK 
Visual Distortion Testing for Web Systems. Testing visual 
distortions of web pages is crucial to the QoE of many web systems. 
Prior work has proposed several tools [12, 13, 53] towards detecting 
incorrect rendering of web pages for both web browsers and web 
applications. Specifcally, for browsers, R2Z2 [69] diferentiates the 
same HTML fle’s rendering results on two browsers to detect and 
debug incorrect rendering caused by a browser’s buggy rendering 
pipeline. It identifes incorrect rendering using pHash, a CV metric 
we have extensively discussed in §2.3. Besides, a number of formal 
methods [54, 60–62] have been devised for verifying the layout 
algorithm of browsers. For web applications, existing studies [27– 
29, 40, 74] mainly focus on their cross-browser visual consistency 
by comparing the page’s DOM trees on diferent browsers. 

Diferently, Vetter adopts the novel concept of morphology of 
web pages to address the challenges of complex dynamic web pages, 
which results in accurate and efective detection. 

Web Problem Debugging. To debug web problems, existing tools 
focus on recording and replaying web pages. Two popular examples 
are Google’s web-page-replay [26] and Telerik’s Fiddler [72], which 
intercept HTTP trafc through DNS redirection or intermediate 
data forwarding to record and replay web requests/responses. Some 
other tools [4, 7, 67] record the detailed information of JavaScript 
executions and replay them for diagnosis purposes. While these 
debugging tools can help WPO developers uncover common pro-
gram defects, they cannot well diagnose those related to web pages’ 
visual distortions. Vetter addresses this by strategically inferring 
the causal relationships between visual elements and distortions 
with the crucial morphological hints extracted from web pages. 

6 CONCLUSION 
This paper presents Vetter, an automatic testing and debugging 
system for the visual distortion problem induced by web perfor-
mance optimizers (WPOs). The problem has long been frustrating 
the industry by rendering WPOs unreliable or even unusable, but is 
never addressed due to its elusiveness and difculty. Based on a spe-
cial notion of morphology, an inherent and stable visual property 
of modern web pages, Vetter efectively and efciently identifes 
visual distortions on even complex dynamic pages. The morpho-
logical insights, coupled with strategical distortion-element causal 
inference, further help pinpoint the root causes at the WPO source 
code level. By applying Vetter to four representative WPOs, Vet-
ter locates crucial defects and resolves almost all distortions. In a 
broader sense, our ideas proposed and lessons learned root in the 
fundamental design patterns of modern web pages, and thus should 
also be useful in strengthening the reliability of other web systems 
like web browsers, web applications, and beyond. 
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A APPENDIX 
A.1 Crowdsourcing Study on Visual Distortions 
We distribute our volunteer recruitment requests on a popular 
crowdsourcing platform [39], where opt-in users need to recognize 
whether there are visual distortions incurred by Ziproxy/Compy, 
using the screenshots of the optimized and original landing pages. 
If the user believes that there is a visual distortion, s/he is further 
asked to list the specifc symptom (e.g., content loss). Eventually, 
18 users opted in during Dec. 11–21, 2021. Among them, 7 are male 
and 11 are female, with ages ranging from 20 to 53. Each user can 
take any number of tasks and receive the corresponding rewards. 
The only constraint is that each task should be fnished by at least 
three users, so that majority voting is possible for each task. 

A.2 Challenges of Detecting Visual Distortions 
with CV Metrics 

In order to understand the performance of detecting visual distor-
tions using CV metrics, we treat the entire web page as a static 
snapshot image, and directly compare the original and optimized 
pages’ fnal rendering results using three widely-used CV metrics, 
including 1) structural similarity (SSIM) [77], 2) scale-invariant fea-
ture transform (SIFT) [50], and 3) perceptual hash (pHash) [76]. Our 
evaluation results (cf. Table 2) show that making both separate 
and combined use of the three CV metrics yield poor detection 
results (precision <50%). A deeper analysis shows that such un-
satisfactory performance is owing to dynamic web pages whose 
rendering results difer from one load to another. Specifcally, the 
dynamic visual elements include rotating banners, randomly se-
lected texts/images, visitor counters, and so on. These dynamics can 
easily disrupt the above-described pixel-by-pixel CV comparisons 
between two pages’ snapshots, incurring many false positives. 

A.3 Matching Strategies between MSTs 
This part frst details the algorithm design of the level-by-level 
hierarchy matching between two MSTs at the granularity of node 
groups. Here a node group refers to a set of nodes that share the 
same parent node. Then, we discuss the node matching among the 
already matched groups’ inner nodes. 

Hierarchy Matching. To begin with, we are at the root level 
(Level-0) of both ���� and ���� . Here by level we refer to nodes 
that have the same number of edges along their paths to the root 
node, e.g., node �5, �6, �7, and �8 in Figure 6(a) are of the same level. 
Therefore, a level may contain several node groups (e.g., ����’s 
Level-2 contains three groups). 

For each group in ����’s root level (obviously there is only one 
group in the root level), we examine whether it exactly matches 
���� ’s any group in the root level in terms of their nodes’ number 
and inner structure, i.e., the groups have the same number of nodes 
and inner structure. Note that the specifc process for structure 
matching between two groups of counterpart nodes will soon be 
detailed in Node Matching. Naturally, there are two outcomes—we 
either fnd two groups that match each other, or we do not. If it is 
the former case, we can mark them as matched and move to the 
next group in the current level in ����; if all groups at the level
have been traversed, we go down to the lower level. Otherwise, we 
say a hierarchy mismatch occurs. 
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Figure 6: Hierarchy matching between two MSTs by adding 
virtual nodes to realign them. 

Upon a hierarchy mismatch, we try to fnd a matched group in 
���� no matter which level the group lies at. To this end, we exam-
ine groups in ���� also in a top-down manner. If we cannot fnd 
any matches, we will go back to the specifc level in ���� where 
the hierarchy mismatch occurs, and directly use a group at the level 
that best matches the mismatched group in ���� . Else, if we fnd a 
matched group at ���� ’s Level-K, we then mark them as matched 
as well, and realign the counterpart matched group in ���� to 
Level-K by adding virtual nodes (as shown in Figures 6(c)(d)). By 
traversing all the groups in ���� following the above procedure, 
we can eventually accomplish hierarchy matching. 

During the above process, we recursively compare and realign 
the MSTs’ node structures (from top to bottom) to mitigate the 
negative infuence of their diferent hierarchies. In the worst case, 
there exists no group of nodes in ���� that matches any group 
of nodes in ���� ; assuming ���� and ���� both contain � (�)
nodes, our hierarchy matching procedure would incur � (�2) time 
complexity, which would be pretty high for a large yet realistic �, 
especially when each operation of hierarchy matching is accom-
panied by multiple node matching operations (as detailed soon) 
whose complexity is not included here. To reduce the required 
comparisons, we further adopt a memorization algorithm [55] to 
accelerate hierarchy matching as follows. 

Our idea of memorization algorithm is motivated by a key obser-
vation: when we go down to lower levels in the two MSTs, identical 
comparisons may appear many times. To avoid such repetitive com-
parisons, when we compare two groups, we insert the comparison 
results to a hash table. If two groups are identical, they are stored 
under a same key as an array: (� , [�1,�2]); here � is the inner 
structure of either group, while �1 and �2 respectively include the 
two groups of nodes’ labels. Otherwise, they are stored under dif-
ferent keys. Thereby, all the repetitive comparisons can be avoided, 
and we only need to make � (�) comparisons to fulfll hierarchy 
matching, rather than the original � (�2) comparisons. 

Node Matching between Groups. We now detail the process 
of node-by-node structure matching between two groups of nodes 
from two MSTs. This process acts as the basic operation unit in-
voked by hierarchy matching as described above. 

Given two groups of nodes from two MSTs, the frst thing is to 
extract a set of properties for each node, based on which we can 
measure the similarity among diferent nodes for structure match-
ing. When constructing the set of properties, we ignore a node’s 
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non-morphological properties such as size and position; instead, we 
focus on the node’s topological form and structural relations to the 
other nodes within the same group. The two kinds of information 
are both obtained from the logs of the SkPaint APIs (as discussed in 
§3.2). Recall that we take seven major structural relations between 
the graphic elements of a web page into consideration. All in all, 
we make integrated use of all the eight properties (one from the 
topological form and seven from the structural relations), which 
together constitute the node’s property set (PS). 

Based on the above, we defne the similarity of diferent nodesÑ |��� ��� |through an intuitive similarity function: ����,� = Ð |��� ��� | , 
where ��� and ��� are the property sets of nodes � and �. 

Hence, we conduct structure matching as follows. First, nodes in 
two groups with identical property sets are matched preferentially, 
which can be accomplished with � (�2) time complexity, where 
each group contains � (�) nodes. Further, to generate the (best) 
matching with the highest average similarity among the remaining 
nodes, we convert the two groups of nodes to a bipartite graph— 
the two groups of nodes constitute two vertex subsets, and each 
edge between the two vertex subsets is given a weight as specifed 
in the similarity function above. Thereby, fnding the matching 
scheme with the highest average similarity between the two groups 
of nodes is equivalent to fnding the maximum matching in the 
derived bipartite graph; for the latter, we can leverage the classic 
Hungarian algorithm [6] to solve it with � (�3) time complexity, 
where each group contains � nodes. 

A.4 Evaluations of Detecting Visual Distortions 
Testing Performance of Diferent Approaches. As shown in 
Table 2, the performance of all the CV-based approaches are unsat-
isfactory, with F1 score <0.65, and precision <50%. By analyzing 
the results, we fnd that CV-based approaches induce many false 
positives (FPs), most of which are related to dynamic pages that 
difer greatly between diferent loads. On the other side, the testing 
recalls of CV-based approaches are reasonable (≤90%), inducing a 
few false negatives (FNs), which mostly are content loss that causes 
obvious layout changes but only slight pixel-level diferences. 

Compared with CV-based approaches, the MorphSIM-based ap-
proach substantially improves the testing precision from <50% to 
82%, but slightly decreases the recall from 90% to 80%. The results 
indicate that the MorphSIM-based approach can well distinguish 
dynamic pages from visually distorted ones, thus bringing remark-
able precision improvements compared with CV-based approaches. 
On the other hand, as MorphSIM is not sensitive to pixel-level 
changes, some content loss/distortions cannot be detected, thus 
leading to a lower testing recall. 

Given that the CV metrics and MorphSIM well complement 
each other, Vetter makes a combined utilization of them, and thus 
achieves the highest testing F1 score (0.93), precision (95%) and 
recall (91%). Of course, Vetter also incurs false positives and nega-
tives in practice. On the test set, Vetter’s FP rate is 1% and FN rate 
is 9%. By manually examining the false positives, we fnd that all 
of them are highly dynamic in terms of not only concrete content 
but also visual structure. For example, the visual structure of an 

HTML5 gaming page optimized by Ziproxy changes signifcantly 
compared with that of the original page. In this case, MorphSIM
between the original and optimized pages falls below the threshold 
(0.46), leading to a wrong decision. 

As to the false negatives, we observe that all of them sufer a 
small-size content loss. In particular, on the optimized page, the 
absence of a small visual element leads to a leaf node’s missing in its 
MST, which usually brings little impact on the calculation of both 
MorphSIM and the CV metrics. Thus, this small content loss can 
hardly be captured by Vetter. However, when these elements are 
semantically or functionally important, e.g., a login button, users 
could easily notice such distortions, thus leading to FNs. Note that 
such FNs are strongly related to the page-specifc semantics, and 
thus are really hard to detect. 

Testing Efciency of Vetter. We next evaluate the time overhead 
of Vetter for testing visual distortions. In general, the overhead 
mainly involves: (1) the page loading process of the original and 
optimized pages, (2) calculation of the CV metrics and MorphSIM 
for each page, and (3) delays incurred by machine learning models. 
We then measure the time overhead of Vetter when testing visual 
distortions on the test set. When running on a budget VM server 
with a dual-core CPU @2.3 GHz, Vetter’s average testing time of a 
web page ranges from 1.7 s to 5.2 s, averaging at 3.2 s. In particular, 
we observe that the time overhead is mainly incurred by the page 
loading process, which takes 3.1 s on average, while the other two 
factors together take only 62 ms on average. That is to say, almost 
all (98%) the time overhead comes from the loading process or op-
timization routines of WPO, rather than the Vetter’s testing logic. 
Such performance of Vetter is largely owing to Vetter’s minifca-
tion of a page’s morphology (§3.2) and its efcient morphological 
similarity calculation (§3.3). 

A.5 Artifact Appendix 
Abstract 
The artifacts of Vetter are publicly available at GitHub. To facilitate 
a better understanding of Vetter, we provide detailed instructions 
on how to build, deploy, and use Vetter. Please refer to our README 
fle at https://github.com/Web-Distortion/Vetter/ for details. 

Scope 
The artifacts can be used to reproduce the major results of Vetter. 

Contents 
The artifacts include the source code of Vetter, the detailed defects 
of four widely used WPOs (Ziproxy, Compy, Fawkes, and SipLoader) 
we have found using Vetter, and the crowdsourcing datasets involv-
ing 5,000 websites regarding the WPO-incurred visual distortions. 

Hosting 
Code and data are hosted in the main branch of Vetter repository. 

GitHub Repo. https://github.com/Web-Distortion/Vetter 

DOI for the Artifacts. https://doi.org/10.5281/zenodo.7601984 
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