
Exploring Potential and Feasibility of Binary
Code Sharing in Mobile Computing

Chao Wu ,Member, IEEE, Lan Zhang ,Member, IEEE, Zhenhua Li ,Member, IEEE,

Qiushi Li , and Yaoxue Zhang , Senior Member, IEEE

Abstract—While tremendous growing mobile apps offer users rich services and functionalities, they also bring significant performance

and energy issues. Code sharing is promising to address these issues, but existing application-level code sharing is rather restrictive.

This paper develops the a transparent machine code sharing for mobile devices, and presents its design, implementation, and

deployment. SnapCode enables machine code sharing across a wide variety of commercial off-the-shelf Android devices. By sharing

and running machine code, SnapCode can offer significant speed-ups: an average speed-up of 9.9X for one-time trial apps, and up to

120X in apps’ regular uses. In addition, it can save more than 80 percent energy consumption.

Index Terms—Mobile computing, binary code sharing, system performance

Ç

1 INTRODUCTION

MOTIVATION. The number of mobile apps has grown tre-
mendously since the launch of app markets. Till June

2016, more than 2 million apps are available on both Google
Play and Apple App Store. While the apps provide with rich
services and attractive functions, users suffer from onerous
system-on-chip (SoC) workloads and frequent data
exchanges, which may lead to unexpected battery drain,
undesirable data redundancy, and intolerable long service
latency [1]. Although the performance issues are well
known, there are only a few efforts to address it recently,
among which the most promising philosophy is called code
offloading. For example, Google Now and Nextbit Robin [2]
have been offloading the workloads from end-user devices
to their infrastructure servers. CloneCloud [3], COMET [4]
and OGSI.NET [5] report the effect of code offloading on
representative apps. Nevertheless, competition in today’s
mobile markets has led to numerous “walled-gardens”,
where developers build their own suites of applications that
keep users within their ecosystems. Specifically, let’s con-
sider the YouTube app on Android platform, it can on aver-
age cost as many as 38 seconds to finish an installation or
upgrade process on a Samsung S5 LTE-A smartphone
(see Fig. 4). This essentially hinders the wide adoption of the
state-of-the-art application-specific code offloading.

An alternative approach is to transparently intercept
and optimize mobile computing across heterogeneous
apps at the underlying OS layer, i.e., sharing machine codes.
Although some examples using machine codes for cross-
application optimization already exist over desktops [6],
[7], [8], little is known about their feasibility and perfor-
mance on mobile platforms as it is extremely challenging
to address issues in both Java and native code compila-
tion, i.e., runtime parameters passing and SoC’s instruc-
tion set compatibility [9].

Our Approach. In this paper, we explore the potential and
possibility of mobile machine code sharing, and present the
design, implementation, and deployment experiences with
SnapCode, a lightweight and flexible framework similar to
Contiki [10] for heterogeneous Android devices. Fig. 1
sketches the main idea of SnapCode, where the ecosyste-
matic issue and inefficient steps at application layer are
avoided or mitigated by shifting the code sharing to the OS
layer. In this way, we bridge machine codes on the cloud
with workload over SoC, and enable any peer to incremen-
tally download and run them directly. To maximize the
benefits of mobile code execution, we target at not only low
latency and minimum energy cost, but also efficient man-
agement of local user data [11], [12], [13], [14], [15]. By trans-
ferring user data to private cloud, SnapCode can achieve a
clean use, i.e., no residual user data. In practice, by using
SnapCode, mobile users can obtain up to 9.9X speed-up for
one-time trial apps and 120X in apps’ regular uses while
saving as much as 80 percent battery life. Thus, there brings
a significant and promising optimization, as Section 6
elaborates.

Through both experimental benchmarks and trace-
driven measurements (Table 2), we find that compiling
application codes into machine codes incurs 83 percent of
time and 69 percent of energy overheads, while 86.5 percent
of compilation are just for one-time trial app uses. In

� C. Wu, Q. Li, and Y. Zhang are with the Key Laboratory of Pervasive
Computing, Ministry of Education Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China.
E-mail: {chaowu, zyx}@tsinghua.edu.cn, lqs17@mails.tsinghua.edu.cn.

� L. Zhang is with the University of Science and Technology China, Hefei,
Anhui 230009, China. E-mail: zhanglan@ustc.edu.cn.

� Z. Li is with the School of Software, Tsinghua University, Beijing 100084,
China. E-mail: lizhenhua1983@tsinghua.edu.cn.

Manuscript received 10 Oct. 2018; revised 10 June 2019; accepted 28 July
2019. Date of publication 1 Aug. 2019; date of current version 8 Mar. 2022.
(Corresponding author: Chao Wu.)
Recommended for acceptance by B. Benatallah.
Digital Object Identifier no. 10.1109/TCC.2019.2932386

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022 411

2168-7161 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4542-8671
https://orcid.org/0000-0002-4542-8671
https://orcid.org/0000-0002-4542-8671
https://orcid.org/0000-0002-4542-8671
https://orcid.org/0000-0002-4542-8671
https://orcid.org/0000-0003-1004-8588
https://orcid.org/0000-0003-1004-8588
https://orcid.org/0000-0003-1004-8588
https://orcid.org/0000-0003-1004-8588
https://orcid.org/0000-0003-1004-8588
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0003-1449-0568
https://orcid.org/0000-0003-1449-0568
https://orcid.org/0000-0003-1449-0568
https://orcid.org/0000-0003-1449-0568
https://orcid.org/0000-0003-1449-0568
https://orcid.org/0000-0001-6717-461X
https://orcid.org/0000-0001-6717-461X
https://orcid.org/0000-0001-6717-461X
https://orcid.org/0000-0001-6717-461X
https://orcid.org/0000-0001-6717-461X
mailto:
mailto:
mailto:
mailto:


addition, more than 10 percent of mobile users are using the
same most popular 20 apps (see Fig. 3). These findings dem-
onstrate the great potential of sharing machine codes within
the mobile device community, and inspire us to let a small
number of Android devices generate input-to-execute bitco-
des (machine codes), which are further shared by most
peers and processed on their own SoC as native methods.

While SnapCode can bring dramatic experience improve-
ments to Android community, its implementation may still
face the instruction compatibility issue across diverse SoCs.
Fortunately, ARM and Intel takes almost all market share in
mobile processors [16], [17]. We deploy SnapCode atop a
variety of mainstream Android devices including Samsung
S3, S4, S5; LG Nexus 5; Moto Nexus 6 and 360 smartwatch;
HUAWEI Nexus 6P and smartwatch to comprehensively
evaluate the feasibility of our proposed design. As expected,
via identifying the same instruction set with OS interface
(Section 3), machine codes can be shared across heteroge-
neous Android platforms (Section 6.2), thus indicating the
promising future of SnapCode. Moreover, we investigate
the possibility of integrating the SnapCode framework into
Android by partially re-compiling the AOSP project [18],
which frees the users from the requirements of super-user
(ROOT) privileges. In addition, a series of lightweight meth-
ods are leveraged to deal with other security vulnerabilities.

Specifically, in designing an efficient and compatible
framework for Android machine code sharing, SnapCode
targets four key goals:

1. We want to benefit users with significantly enhanced
experiences, including lower latency, less energy
overhead, and easy management of user data.

2. Machine code sharing could in principle address the
compatibility issues causedby heterogeneousAndroid
platforms, e.g., machine codes shared by a Sumsung
Galaxy S5 can directly run on aMoto 360watch.

3. We wish our design can be implemented within the
scope of existing infrastructure and techniques, thus
requiring minimum engineering efforts from
developers.

4. Our design must provide users with comprehensive
security protection by taking all potential vulnerabil-
ities into consideration.

By sharing machine codes over existing Android ART
mechanism, our evaluation shows that SnapCode can
achieve a speed-ups of 9:9X for app install on new devices
(i.e., do not have the app), 120X speed-ups comparing with

default app launch (i.e., with reusable objects), and reduce
over 80 percent battery life against with existing approaches.

Contributions and Roadmap:

� Identifying key challenges in building a machine code
sharing system for mobile community (Section 2).

� Design and implementation of SnapCode, built on key
goals to address the challenges (Sections 3, 4, and 5).

� Real-world and trace-driven evaluation that demon-
strates substantial improvement by SnapCode
(Section 6).

� Using practical features to shape potential perfor-
mance especially in vulnerable environments
(Section 7).

2 BACKGROUND AND CHALLENGES

This section analyzes common problems caused by today’s
mobile app uses (Section 2.1). We close this section by elabo-
rating on the challenges of our work (Section 2.2).

2.1 Background and Data Analysis

The past decade has witnessed a tremendous advance in
mobile computing. A lot of efforts have been devoted to
improve both mobile devices and the computing paradigm,
but we still face many challenges to satisfy users’ increasing
demands for ideal app use experience. To explore the nega-
tive aspects, we analyze app use data of app requests over
mobile HTTP traffic from 90,128 Baidu Security app [19]
users,1 which was recently collected from a major mobile
Internet service provider of China, i.e., Baidu Inc. (Table 1).
Indeed, Fig. 3 further demonstrates our statistics with the
collected data, and find only 37 apps are considered as pop-
ular for more than 10 percent users installed those apps.

By replaying (i.e., re-request) the 37 app from Baidu Secu-
rity server on a Samsung S5 LTE-A smartphone with all user
records,2 Fig. 2 summaries two key drawbacks requiring
urgent optimization for user experience: (1) as shown in
Fig. 2a, there is a prominently energy cost for experiencing
apps (up to 13 percent battery life on average); (2) as shown
in Fig. 2b, mobile OS, e.g., Android, can not remove all user-
related files, often leaving device with increasing user data
(up to 112 MB/day on average). In addition, Fig. 2c explores
users’ behavior characteristics as: on average, a user can
daily consume 10 MB cellular data for installing or updating
the 37 popular mobile apps. Such app uses account for more
than 86.5 percent traffic excluding multimedia contents,

Fig. 1. Main idea of SnapCode: shifting the code sharing from the appli-
cation layer to the OS layer to achieve a fast, clean and energy-saving
experience, which brings transparent architecture innovation to users.

TABLE 1
Data Collection from Baidu Inc.

Collection period 11/17/2014, 12/11-12/12 2014, 07/23-07/22/ 2015

Unique users 90128 Total requests 3000M

Total off-the-shelf apps 343 Common apps of the users 37

HTTP traffic record size 330.2 GB

1. We randomly invited volunteers from � 100M existing mobile
users of the company and obtained informed consent from them by
prominently informing them that full traces of their cellular traffic
would be collected and analyzed.

2. In practice, mobile users often hold diverse devices, which can
result in non-standard cellular data and energy measurements.

412 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



which means in most cases users often make one-time trial
decisions easily. These facts show that most energy, storage,
traffic and computation are inefficient, and thus leave us a
room to improve the mobile computing paradigm and opti-
mize on-the-go user experience.

2.2 Challenges

The demands for better user experience call for both aca-
demic and industrial studies on improving computing para-
digm, especially in mobile environment.

Root Cause. As analyzed, we reveal the root causes of
nowaday’s mobile apps’ poor performance as: 1) high
latency and huge energy overhead; 2) increasing user data
and non-trivial cost for either maintenance, namely installa-
tion and version updating, or secure protection.

Less Pain, But “Walled-Garden” in Ecosystem. Code offload-
ing has grown in popularity with the advent of cloud com-
puting, e.g., Nextbit Robin [2], where many low-powered,
well-connected computing elements could benefit from the
computation of nearby server-class machines [3], [4], [20],
[21]. We further explore the benefits of shifting from native
execution to code offloading paradigm by measuring ser-
vice latencies, including both loading and execution time,
and energy cost for trying three popular apps more than 50
runs on three models of Samsung smartphones. Fig. 4
shows the relative speed-up factor (latency improvement)
and energy cost of Cloud app and Off-loaded app thread
codes with WiFi.3 By offloading YouTube, the latency miti-
gates from 38s to 10s over a Google onHub with 802.11ac
channel, which brings significant reductions to both latency
and energy. Although promising to mitigate users’ pain, the
existing offloading methods are tailored for OS-specific
application layer where the heterogeneity severely hinders
the wide adoption of existing code offloading to commercial
off-the-shelf (COTS) mobile devices. For example, although
using the same OS kernel, the Samsung Pay app’s code can-
not be offloaded and processed to other Android platforms
on the application layer.

Towards Better User Data Managing, But Can be Exhausted.
Cloud app gives an insight to provide centralized mainte-
nancewhere user-related files are cached on cloud, which can
lead to no local user data. In practice, users subscribe to cloud
services, download applications from cloud server, and then
associated data with cloud storage, e.g., content servers [22].
Nevertheless, as code should be first compiled then can be
run, obtaining apps from cloud often incurs higher latency

and energy overheads than using code offloading. For exam-
ple, we see that with better hardware support, e.g., the You-
Tube cases of S5 and S3 in Fig. 4, cloud app costs more latency
(11 s) and energy (65 J). Thus, the overhead can be still
exhausted formobile users and urge for improvement.

Opportunity. Together, the above issues demonstrate the
insufficiency of today’s computing paradigm at the appli-
cation layer, and motivate us to dig deeper in the OS layer
for better solution, where the ecosystematic issues are
avoided or mitigated. We observe that, most Android
community can be powered by machine code program-
ming as they use the same SoC instructions [17]. Intui-
tively, this is the bottom level for program optimization
and also where the highest gains are possible [23]. Such
executable and “snap” code, i.e., powerful for execution
while free of “walled-garden”, drive us to explore whether
it is possible to share machine codes among COTS mobile
devices over existing infrastructure, e.g., content distribu-
tion network (CDN). In Fig. 4, we further evaluate how
exactly the “snap” code benefits users in contrast to either
cloud app or code offloading. We observe a dramatic bene-
fit of 19.07X speed-up relative to cloud app, also a more
than 4s latency reduction and over 9 percent energy saving
compared to off-loaded cases.

Guided by these findings, we provide SnapCode design
to achieve the computing paradigm at OS layer.

3 INTUITIONS BEHIND SNAPCODE

This section presents our domain specific insights which
help us achieve the aforementioned design. The first insight
is that running machine codes directly can bring significant
benefits. To maximize the optimization, we leverage the sec-
ond insight that it is possible to share most machine codes
with the same instruction set. We conclude this section by
highlighting two outstanding issues in translating these
insights into a practical system.

Insight 1. Using machine codes for optimization in frequent app
update behaviors.

Today’s mobile app demands frequent updates to catch
up with better user experience or address potential risks for

Fig. 3. Usage of traced apps within our dataset.

Fig. 2. Measurements of daily energy cost, local user data increment, and network traffic flow usage in experiencing the most popular 37 apps. While
in most cases, users tend to try app likely.

3. The experiment results are referred to apps’ downloading, com-
piling and launching. While the using of app is not counted here.

WU ET AL.: EXPLORING POTENTIAL AND FEASIBILITY OF BINARY CODE SHARING IN MOBILE COMPUTING 413

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



security [24], which results in heavy burden on user’s data or
battery life budget. For example, Chrome requests more than
70 MB in app update. In practice, SnapCode’s machine code
offloading could be superior in such scenarios as it respec-
tively tackles compilation data (i.e., machine code) and static
resource (e.g., images) to improve system overheads. If there
are frequent app installations/upgrades, SnapCode does
consume user more traffic flow. However, it only uses 520
bytes of data flow (61.7 MB as baseline) for the follow-up
running, i.e., 8:04� 10�4% for regular uses. For new mobile
devices, Table 2 demonstrates the superior of SnapCode
comparing to default Android ART approach and existing
code offloading approaches along energy cost (64 percent
saving), initialization latency (82 percent decrease) and app
launching time (99.4 percent decrease).

Insight 2. Using machine codes for longer battery life.

As Table 2 demonstrates, both time and energy over-
heads for app use are primarily incurred by compiling origi-
nal codes into machine codes. All a device can do is to
process machine language, including genetic program-
ming [25], and all operations we conduct will be executed
as machine code in the end. Thus, machine code program-
ming is often used when there is a need for very efficient
solutions, e.g., in applications with hard constraints on exe-
cution time or memory usage [26]. By now, the most effi-
cient optimization is still done at the machine code level.
The optimization could be for speed, space, or both. Genetic
programming could be used to evolve short machine code
subroutines with complex dependencies between registers,
stack and memory. This further enables the device to get rid
of any remained data.

On this basis, SnapCode intuitively seeks to enable users
to boost app efficiency of their smartphones on-the-fly. In
addition, it promises an energy-saving and clean experience
at the same time.

Insight 3. Sharing machine codes among Android community to
maximize the benefits.

Fig. 3 demonstrates popular apps have over 10 percent
usage, i.e., more than 9,000 people own same apps. It also
gives an insight that the majority can be benefited if the
minority share their machine codes. In addition, as running
machine codes often requires additional static resources,
e.g., images and videos, to provide input-to-display compo-
nents. It asks for efficient latency when aiming at a native-
like experience [27], [28], [29]. Similar to [20], [30], Snap-
Code employs code caching strategy which generates
machine codes and static resources on cloud for future shar-
ing. Users can download them when requesting for services.

Practical issues and research questions.
There are two issues in implementing SnapCode.
RQ 1) How to extract machine codes from today’s OS?
Indeed, it is of great engineering challenge to extract

machine codes as it is strictly forbidden by modern OSes
from the application layer [31]. Fortunately, Android, the
open-source mobile operating system developed by Google,
helps us design and implement such specialized tools in the
underlying layers, e.g., userspace or OS kernel. Thus, we
demonstrate our design by taking a prototype system atop
Android as a running example, which integrates its source
code into the AOSP project (Section 5). In principle, our refer-
ence design is also applicable to other OSeswithmore indus-
trial support in the future.

RQ 2) How to identify a compatible Android device?
As aforementioned, it is crucial to verify the compatibil-

ity between machine codes and devices. To this end, Snap-
Code identifies target devices with the same runtime
parameters for a comprehensive compilation. In addition,
modern Android offer developers the System.getProp-

erty(“os.arch”) interface to verify the instruction set.
In practice, it usually returns “arch64” or “x86_64” to
identify a 64 bit ARM/Intel architecture. In very rare cases,
it either returns “mips” or “mips64” to report the MIPS

Fig. 4. Overheads of using three popular apps on Samsung Galaxy S3 (802.11n), S4 and S5 (802.11ac). Three computation mechanisms are using
“cloud app” (annotated with C), “off-loaded” codes (annotated with O) and “SnapCode” (annotated with S). The speed-up factor is compared with
native execution.

TABLE 2
Energy/Time Cost of 5 Consecutive Uses of

Chrome App on New Device

Init. 1st use 2nd use 3rd use 4th use

SnapCode 1.30J/4.3s 0.03J/0.2s 0.03J/0.2s 0.03J/0.2s 0.04J/0.2s
Android ART 3.64J/23.9s 4.39J/23.8s 4.89J/25.9s 4.20J/27.2s 4.19J/26.3s
Thread offload 2.93J/13.0s 2.92J/12.8s 3.27J/12.7s 3.57J/13.7s 3.56J/13.8s
Method offload 4.22J/28.6s 4.98J/28.6s 3.95J/29.1s 4.67J/28.0s 4.73J/28.3s

414 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



case. By doing these, we are able to correctly match machine
code with its compatible devices.

4 SNAPCODE DETAILED DESIGN

SnapCode benefits user with fast, clean and energy-saving
mobile app experience. In this section, we present our design
details within the scope of today’s available techniques.

4.1 Overview

Table 3 summarizes the perceived benefits contributed by
each feature of SnapCode at a high level. The quantitative
performance benefits—low latency, energy saving, and less
traffic flow— essentially arise as a result of running machine
code directly and leveraging CDN infrastructure. SnapCode
also has a set of qualitative features like no user data and
security for better experience.

In particular, Fig. 5 depicts SnapCode’s workflow which
works between userspace and OS kernel. Based on custom-
ized Android (Fig. 6) with SnapCode framework, e.g., par-
tially re-compiled AOSP project, it demands no super-user
(i.e., ROOT) privileges (Section 5). For a small number of
peers who generate and share machine code, app is loaded
from a source/server with original source codes and static
resources (e.g., icons) packed into an APK file. This operation
then invokes a native method (1) that interfaces with the
ART4 interpreter and then (2) a linking process is called for
(3) generating OAT file and further extracting machine
codes [33]. Note that, if machine codes were untrusted, a
WatchDog component would be invoked (4) for shielding
security. Moreover, (5) SnapCode migrates machine code
(static saved byART) to CDN server for comprehensive secu-
rity checks, thus (6) other devices can synchronize such exe-
cutable codes for direct uses. Once failed, (7) SnapCode turns
to a recovery step under configured limited times. Last, user
is able to cache the machine codes and static resource locally
for regular uses or clean them up without any user data left.
Either of the decision starts (8) garbage collection function.

Based on our design, the whole process of code sharing
from source to destination is enabled as shown in Fig. 7.
Implementing this workflow and sharing process requires
to address several challenges, including: a) machine code
extraction, b) OS binder for sharing executable codes in
streaming, c) secure shield for defending malicious attacks,

d) garbage mechanism for managing user data, and e) recov-
ering from failure. The remainder of this section presents
our detailed design.

4.2 Machine Code Extraction

Android runtime (ART) is the managed runtime used by
applications and some system services on OS. At install
time, ART compiles apps using the on-device dex2oat tool
that accepts DEX files as input and generates a compiled
app executable for the COTS device. As shown in Fig. 7,
ART uses ahead-of-time (AOT) compilation, which means
that, at installation, .DEX code is compiled to native code
(the executable codes) in OAT files.

Algorithm 1.Machine Code Extraction Algorithm

Input: App name.
Output: Executable codes
/* Get local runtime parameters in

compliation */

1: parameter getCompilingParameters();
/* Extract machines codes from OAT file */

2: File Oat getMachineCodeCache(app);
/* Offload to CDN via HTTPS/2 protocol */

3: HttpsSend(Oat, parameter, CDNserver);
/* Get machine codes with parameters */

4: return executable codes;

In modern Android, i.e., after Lollipop, the OAT files are
mapped to memory (and are thus page-able) directly. Thus,
through linking the image file contains pre-initialized clas-
ses and objects from the Android framework JARs, OAT

TABLE 3
Feature-Benefit Matrix for SnapCode: The @ Shows the Key
Features of SnapCode that Contribute to Each Perceived

Benefit While the • Conversely

Benefits

Features

Mach. (Section 4.2,
Section 4.3)

Shield
(Section 4.4)

CDN
(Section 5)

No user data @
Low latency @ • @
Energy saving @ •

Less data flow •

More secure • @
Fig. 5. Conceptual workflow of SnapCode.

Fig. 6. Customized ROM.
4. Andorid introduces ART instead of Dalvik VM since Lollipop

(5.0) [32]. Thus, we primarily design SnapCode to work with ART.

WU ET AL.: EXPLORING POTENTIAL AND FEASIBILITY OF BINARY CODE SHARING IN MOBILE COMPUTING 415

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



files can call methods in Android framework or access pre-
initialized objects directly. In particular, Algorithm 1 illus-
trates the methodology of SnapCode whereby listening
such process, we delegate parameter passing to the frame-
work and then extract executable codes, i.e., machine codes,
from OAT files for achieving the code sharing intention.

4.3 OS Binder for Codes Sharing

As aforementioned, SnapCode shifts code sharing from the
application layer to the OS layer, where demands connec-
tion of upper apps and underlying hardware. To this end,
we design the OS binder component to synchronize
machine codes from CDN and incrementally delivers data
flow atop Rsync protocol. In practice, when sharing
machine codes from CDN (step (6) in Fig. 5), SnapCode
invokes an OS binder to patch objects, i.e., machine codes,
static resources and environmental parameters, to Android
DEX2OAT interfaces. The following pseudocode presents
the principle of our OS binder whenever calling for the
machine code execution.

class OSBinder extend Installer {

public void onInstallingApp(app) {

//Delegate parameter passing to SnapCode

Parameter parameter = get_Parameters();

File Oat = getOatTarget(parameters);

GetMachCode(Oat, parameters, “Rsync”);

//Bind DEX2OAT to run executable codes

_SnapCodeBinder();

}

}

Afterwards, any instruction set compatible devices, e.g.,
ARM- or Intel- based, can carry out the machine codes
directly via calling the _SnapCodeBinder(). Moreover,
to guarantee a secure OS binder, SnapCode uses ADBI
toolkit [34] to hook the functions of CallNonVir-

tual<Type>Method family. By doing this, all calls to these
functions are checked by SnapCode to block calls to an
hooked virtual-method if these calls do not come from Snap-
Code framework.

Update Process with Rsync. In our current implementation,
we synchronize each pair of versions with rsync protocol
for local cached machine codes. To this end, SnapCode
sends the “COPY” commands to the target in topologically
sorted order. Upon sending a COPY command, it deallocates

the corresponding repository along with its remaining
edges. After sending all COPY commands, SnapCode sends
“ADD” commands according to the add list, including the
ADD commands that correspond to deleted COPY com-
mands. If necessary, the target truncates the machine code
files to the new size and the machine code update synchro-
nization is complete.

4.4 Security Shield

Running the migrated machine code directly can raise con-
cerns about system security. To provide adequate protection
for users as well as keeping the efficiency, we take all poten-
tial vulnerabilities into consideration for the Watchdog mod-
ule design, including: (1) Untrusted server: an untrusted
server could take arbitrary action (e.g., altering and replacing)
on the migrated machine code; (2) Malicious clients: a mali-
cious client can upload altered/arbitrary machine code to the
server, which greatly harm other valid users. (3) Insecure
communication channel: machine code transmission over the
networks especially the wireless networks is highly vulnera-
ble to network security threats. (4) Untrusted third-party
applications: among billions of applications in the market,
many of them aremal-wares, which could cause system crash
or data leakage. Our framework leverages a whole set of
light-weight mechanisms to deal with these vulnerabilities.

First of all, a valid SnapCode server is authenticated by a
certificate, which is authorized by a trusted “certificate of
authority” and can be examined by any client.We assume the
authenticated server is trustworthy and will conduct the
legitimate operations faithfully. Each APK has its unique
digest which is recorded by the server. Then, we need to
make sure all clients execute valid SnapCode application, all
generated and uploaded machine codes are correct. To vali-
date a client, when a user installs the SnapCode client from
an authorized server, she will be provided a unique pair of
keys (a public key and a private key) associated to her account
and device identity using an highly efficient signature
scheme, e.g., HORS [35], [36]. Before uploading a piece of
machine code produced by a SnapCode client, a digest of this
code will also be generated and signed with the client’s pri-
vate key. Then the code as well as the signature will be
uploaded to an authorized server. The server maintains
detailed tables of valid users and applications, and exams the
uploaded signature first and then the digest of the machine
code to guarantee the validity of the client and correctness of
the machine code (i.e., the digest is consistent with those of
the same application from other valid users). A pair of digests
of an APK and its correct machine code is recorded by the
server. In this way, untrusted clients who have uploaded
incorrect machine codes can also be detected and tracked by
their private keys, and the incorrect codes and all subsequent
codes from untrusted clients will be abandoned. We adopt
the HTTPS/2 encryption protocol to ensure the integrity and
confidentiality of all the traffic of SnapCode, which is resis-
tant to eavesdropping, tampering and man-in-the-middle
attacks. Integrating encrypted communication with access
control mechanisms [37], [38], the user data uploaded to the
cloud can be protected from unauthorized parties. To further
improve the whole system security and user experience, we
employ the untrusted third-party application analysis meth-
ods as a building block of our system, such as DroidScope

Fig. 7. Machine code sharing.

416 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



[39], TaintDroid [40], and FlowDroid [41], to identify and
label misbehaving applications. Since, the application analy-
sis could be burdensome, it will be executed on the server in
an asynchronized manner. For each version of each applica-
tion, the detection only need to be executed once for all. The
server will mark both digests of each APK and its machine
codewith the detection result.

For other common system security problems, e.g., DDOS
attack [42] and Chosen-ciphertext attack, SnapCode lever-
ages existing proper schemes to prevent them since they are
not the focus of this study.

4.5 Garbage Collection

The executable codes and static resources as described so far
will keep growing indefinitely. Intuitively, some of the
shared apps (in machine codes) will no longer be needed if a
user wants a clean experience and it can be removed. To
resolve this issue we design a garbage collectionmechanism.
It can be either manually triggered or automatically invoked
when a normal garbage collection has failed to free enough
memory and the ART is about to signal it is out of memory.

To conduct the garbage collection, as Fig. 8 demonstrates,
for a specific app, SnapCode marks every object reachable
locally for addressing, i.e., file path, then terminates all pro-
cesses of this app fromART. Once done, the app’s executable
codes and static resources would be moved to the Trash tem-
porally. Note that such design can benefit user of either OS
or user-related data free. In addition, objects in the Trash can
be recovered in case there is an accidental gesturing.We shall
emphasis that objects in Trash would be cleaned up auto-
matically if no further access during a period. On the other
hand, such objects can also be cached locally in SnapCode’s
own partition for regular uses until been removed as
aforementioned.

4.6 Failure Recovery

From the design of SnapCode, failure recovery comes almost
for free. To properly implement failure recovery, i.e., the cli-
ent can enter a state that it could recover from, every single
operation that can be executed must either be suspended for
all remote acknowledgements to arrive before removing any
machine codes (as data is buffered locally); or be killed
before a regular synchronization completes. To recover from
a failure the client needs only resume all threads locally and
reset themachine code synchronization.

Specifically, in the case of resuming data downloading
from CDN, for each synchronization the server is required to
send an acknowledgement of all thread stacks. In this way,
once connection lost, the server has the necessary stack infor-
mation to resume execution. Reversely, the client, however,
needs only to check whether the migrated machine codes

have been cached on the server. In addition, the detection of
server loss is as simple as the HTTPS/2 connection to the
server is closed or the server has not responded to a heartbeat
soon enough.

5 IMPLEMENTATION AND DEPLOYMENT

This section presents our implementation of SnapCode
framework and highlights engineering solutions to address
practical challenges (e.g., avoiding Android ROOT permis-
sions and speeding up deployment with CDN).

Android Prototype Implementation. We have implemented
SnapCode prototype framework on the basis of Android
5.0+ with our customized ROM, which requires no further
super-user (i.e., ROOT) permission from users. Specifically,
in this paper, we explore SnapCode by running it over het-
erogeneous COTS Android devices, i.e., Samsung Galaxy S5
(LTE-A), S4 (i9500), S3 (i9300), LG Nexus 5 and Moto Nexus
6, HUAWEI Nexus 6P smartphones; Moto 360 watch and
HUAWEI smartwatch.

In Android ecosystems, e.g., Samsung, LG and HUA-
WEI, such OSes and underlying libraries are not fully
accessable without the privilege of ROOT, which, however,
often leads to vulnerable security or privacy issues. To
avoid such problem and protect the entire OS from mali-
cious attacks, by partially re-building the AOSP [18] codes,
we integrate SnapCode framework into the original ROM
(as aforementioned in Fig. 6), and employ such a ROM to
the experimental devices.

Since running SnapCode framework requires client to
synchronize machine codes from the CDN server, mean-
while it incurs additional traffic flow for loading input-to-
use static resource, e.g., images and audios, it raises critical
demand for a low and stable service latency. Considering
today’s commercial network and prior studies such as [3],
[4], we adopt the 802.11, e.g., b/g/n (2.4 GHz) or ac (5 GHz),
LTE and 3G communication techniques in our prototype, as
presented in Section 6.3.

Network Testbed Deployment. To demonstrate the feasibil-
ity of SnapCode within the scope of today’s available techni-
ques, we deployed a CDN-based testbed (Fig. 9) to carry out
the relevant experiments. The testbed was composed of
Amazon Inc’s cloud server (using AWS t2.micro case), self-
built CDN servers, campus WiFi and commercial cellular
network (FDD-LTE and HSPA+). Table 4 summarizes the
detailed configuration and link speed of our testbed. Specifi-
cally, there are two categories of cloud servers providing
SnapCode networked services, i.e., 1) AWS-based CDN
edge node for redirecting the service request, and 2) CDN
servers for caching extracted machine codes as well as

Fig. 8. Process of machine codes and static resource caching locally or
cleaning to the Trash.

Fig. 9. Android-based testbed for SnapCode framework.

WU ET AL.: EXPLORING POTENTIAL AND FEASIBILITY OF BINARY CODE SHARING IN MOBILE COMPUTING 417

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



detecting malicious objects with the WatchDog component
we designed in Section 4.4. Moreover, we carry out experi-
ments with any mobile devices that generate and migrate
machine codes to the cloud, and then other devices share
the available codes via HTTPS/2 and Rsync protocols.

Power Meter Setup. As our goal is to benefit on-the-go
users with clean (no user data) and high efficiency experi-
ence but charge little cost, the energy consumption metric is
extremely significant. However, today’s mobile devices
often provide no way to obtain fine-grained energy meas-
urements of any apps [43]. Instead, they simply present
users a message like “how much battery (in %) is left”, which
is very coarse-grained and usually unreliable [44]. In this
paper, to precisely measure devices’ energy cost, we attach
a hardware power meter [45] to Samsung Galaxy S3, S4 and
S5 smartphones with hijacked batteries (Fig. 10) that pro-
vide the same performance as the normal battery to ensure
valid evaluations in our work. Note that this power meter
provides fine-grained measurements: it samples the current
drawn from the battery with a frequency of 5 KHz and a
mean error of less than 3 percent [43], [45].

6 EVALUATION

This section evaluates the performance of SnapCode and its
benefits. Specifically, to conduct comprehensively explora-
tion, we begin by breaking down the potential benefits
according to Section 4.1. The first class of qualitative but
subjective features are measured by user studies (Section
6.1), i.e., experience rating, whose results are need to be cou-
pled with on-the-go users. The second class of quantitative
and objective features stem from the ability to optimize
latency and overheads for app compilation, i.e., installation
or upgrade (Section 6.2) as well as regular use (Section 6.3),
measured by trace-driven experiments against benchmarks.

6.1 Case Study

We first investigate the qualitative benefits of SnapCode
with real-life uses.

Study Design and Instrument. To better understand how
machine codes sharing promotes users’ daily experience,
during August 10th to 17th 2016 and within the range of
our campus, we conducted a user study in which 40 volun-
teer participants (12 females and 28 males) were asked to
comprehensively experience (install/update and regular
use) the most popular 20 Android apps from Google Play
(Table 7) including Chrome, Uber, Maps and YouTube. Each
participant was invited to use those apps provided by Snap-
Code method and default method for at least 15 minutes
respectively. For this study, two Samsung Galaxy S5 LTE-A
smartphones had been flashed with the aforementioned
customized ROM (Section 5). The first S5 smartphone
loaded apps using SnapCode solution (without caching
codes), the other employed default Android app mecha-
nism (i.e., fetching from app market) as baseline. Both devi-
ces were connected to either 802.11n/ac campus WiFi or
LTE. We asked all participants to complete a survey after
using both two solutions. In all user trials, we capture each
of app response time, size of remaining files on the device,5

and battery life reduction to validate the effectiveness of
their evaluations. The survey contained a consent form, and
asked for the following information: basic demographic
information, their concerns for daily mobile app use, as well
as their monthly data budgets and daily WiFi uses condi-
tion, which is summarized in Table 5 to further validate the
commercial feasibility of SnapCode.

Specifically, participants were asked to rate their experi-
ence, given five rating levels, i.e., one (“Poor”), two (“Fair”),
three (“Good”), four (“Excellent”), and five (“Perfect”)
according to questions like: “I consider it has a faster response
(launch quickly) experience when I install/update/use apps?”, “I
consider it has fewer energy cost after a long time use?” and “I
think it won’t leave any user data on my smartphone?” etc. Fur-
thermore, we used these ratings to evaluate how SnapCode
benefits users with qualitative experience improvement.

Result and Analysis. Of the 40 participants, 18 are with
0.82/29.30 Mbps (802.11ac) uplink/downlink speed, 12 are
with 0.54/12.87 Mbps (802.11n), while the rest are with
0.35/9.40 Mbps (FDD-LTE). Based on our survey, the aver-
age cellular data budget per month is 1.36 GB while over 70
percent users would be WiFi available for at least 11.8 hours
everyday. Note that, in the heaviest use, people spend no
more than 5.6 hours on using mobile devices [46], which
indicates that SnapCode can significantly improve their
experience with little cellular flow cost in most cases. In
addition, our statistics (Table 6) show that all participants
voted for an excellent or perfect performance in speeding
up app with SnapCode. More than 87.5 and 92.3 percent
participants evaluated SnapCode to be excellent in saving

TABLE 4
Testbed Setup for Benchmark Evaluations

Local area network (LAN) Wide area network (WAN)

Access pattern Uplink/downlink Access pattern Uplink/downlink

802.11ac 0.82/29.30 MBps FDD-LTE 0.35/9.40 MBps
802.11bgn 0.54/12.87 MBps HSPA+ 0.08/2.08 MBps

AWS EC2 (t2.micro) configuration

1 vCPU, 2.5 GHz, Intel Xeon Family, 1 GiB Memory, 100 Mbps bandwidth

Fig. 10. The hardware power meter used for energy measurements with
Android smartphone.

TABLE 5
Information of Participants in Our Case Study

Access pattern Avg. usage/day Avg. data budget

WiFi 11.8 hours
1.36 GB/month

Cellular 6.3 hours

5. Participants are introduced to look at the storage usage of apps for
evaluating the local data usage.

418 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



their battery life cost and good enough in achieving no data
remaining after uses, comparing to the default Android
approach, respectively.

In summary, our user study indicates that SnapCode can
benefit users with perceivable faster and cleaner experience
with little energy cost, which demonstrates the significance
of our system.

Public Deployment. We deployed SnapCode testbed with
smartphones and smartwatches publicly on Tsinghua and
CSU campuses. Around 500 participants used our system
and we have received many oral ranking from them where
more than four in five reviews are positive.

6.2 Macrobenchmarks

Our case study demonstrates that SnapCode’s machine
codes sharing solution can provide significant improvement
of use experience. In this section, we measure our Android
prototype in a trace-driven manner to quantify optimization
of latency, energy cost and throughput for app installation/
upgrade where compilation on SoC makes significant
sense [47]. For every single experiment, at least 100 tests are
conducted with persistent process. Furthermore, we con-
sider the state-of-the-art work as marcobenchmarks, and 20
most popular apps on Google Play (Table 7) are adopted as
input metrics. The benchmarks and our solution are enu-
merated as follows.

� Cloud app (CA) solution natively runs app from a
cloud store, which work as Chrome OS [48] and Goo-
gle web store [49].

� Process offload (PO) approach offloads app’s every
threads to a cloud VM (i.e., the thread code offload-
ing) to achieve the CloneCloud-like [3] effect.

� Execution offload (EO) approach offloads app’s every
method or class to achieve aCOMET-like [4] execution
migration (i.e., themethod/class code offloading).

� SnapCode (SC) solution uses SnapCode (i.e., the
machine code offloading) to run machine codes
directly and bypass any preliminary steps.

Speeding Up. We first measure the latency by using 4 pop-
ular apps as input metrics to the benchmarks on Samsung S5
LTE-A phone under 802.11ac environment. The geometric
mean results are shown in Fig. 11 and annotatedwith numer-
ical factors which indicate the relative latency improvement
(speed-up factors) compared to CA solution.We see a signifi-
cant speed-up powered by SnapCode for all four metrics.
Specifically, SnapCode averagely benefits users with more
than 24 s latency reduction in contrast to the cloud app solu-
tion. In addition, there appears a performance gap among
different metrics (apps) within a specific benchmark. For
instance, SnapCode can speed up Uber by a factor of 12.3x
while only 7.3x for Google Chrome. We reveal the measure-
ment results for 20 most popular apps in Table 7. By running
shared machine codes on smartphone, SnapCode can speed
up an app’s (around 110 MB) installation (or upgrade) with
an averaged factor of 9.90X, a peak factor of 13.98x and a val-
ley of 6.79x.6 Note that, the latencies when using SnapCode
are usually less than 5:1 s, while the same operations cost
users more than 59:2 s through CA solution. As benchmarks,
the PO approach provides users with only 2x speed-up,
while the EO approach increases the processing time when
using low precision computational apps, e.g., YouTube. The
result shows that SnapCode solution significantly outper-
forms existing solutions in efficiency. We shall further pres-
ent that, by using Rsync technique, SnapCode can bring
more than 120x speed-up for most apps’ regular use as dem-
onstrated in Table 2.

Energy Saving. As aforementioned, the major energy over-
heads in app trial lies in compiling source codes into
machine codes. To explore the energy saving by using Snap-
Code which avoids the compilation steps for optimization,
we employ above four apps as metrics again and observe
that more fine-grained computation would be significantly
more energy-consuming (Fig. 12). For instance, to install
Chrome, SnapCode costs user a balanced energy of 0:94 J,
which achieve 82 percent energy reduction of CA usage (as
baseline). Meanwhile, it climbs to 1:77 J (85 percent reduc-
tion of baseline) for installing Google Maps. Upon

TABLE 7
Traffic Flows (MB) and Speedup Factors of 24 Popular

Apps Powered by SnapCode

App Size Speedup App Size Speedup

WPS Office 111 13.98x Skype 64 9.86x
Uber 69 12.34x Wechat 103 9.52x
Instagram 35 11.76x Dropbox 62 9.11x
Tumblr 65 11.14x Maps 104 8.92x
Facebook 236 10.94x Pok�emon Go 72 8.90x
Twitter 75 10.77x Spotify Music 57 8.74x
YouTube 51 10.70x NBA Live 71 8.08x
Amazon 68 10.63x Snapchat 106 7.58x
WhatsApp 45 10.57x Chrome 74 7.37x
Gmail 35 10.26x Clash Royale 102 6.79x
Need for Speed 696 25.43x NBA 2K16 1890 10.56x
Final Fantasy 1815 17.09x FIFA 16 1123 16.97x

TABLE 6
Comparison between Mean Opinion Scores and Values of

SnapCode Against Phone-Alone Solution

Mean Opinion Score Speedup Energy saving Clean

1 (Poor) - - 3.85%
2 (Fair) - 10% 3.85%
3 (Good) - 2.5% 42.31%
4 (Excellent) 40% 52.5% 30.77%
5 (Perfect) 60% 35% 19.23%

Fig. 11. Comparison of latency with four most popular apps as the input.

6. Note that most apps’ traffic flow from Google Play for the compil-
ing process are less than 110 MB, as we explore on Table 9 in Section 7.

WU ET AL.: EXPLORING POTENTIAL AND FEASIBILITY OF BINARY CODE SHARING IN MOBILE COMPUTING 419

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



comparison, the PO approach respectively consumes user an
energy of 2:8 J (48 percent reduction of baseline) and 3.4 J
(70 percent reduction of baseline) due to its additional com-
pilation. EO approach is even more energy-consuming as it
costs 5:5 J and 13:3 J (4 and 16 percent increase than baseline)
on Samsung S5 LTE-A smartphone. The result demonstrates
that our work achieve significant energy cost reduction.
Moreover, with better hardware (SoC and link speed) sup-
port, SnapCode can further reduce over 80 percent energy
cost and achieve a greater speed-up factor for app installa-
tion, which has been illustrated in Fig. 4 compared to the
performance of Samsung S3 and S4 smartphones. By com-
pressing static resources such as icons, the performance of
SnapCode can still be improved.

Throughput Requirement. We thenmeasure the adaptability
of SnapCode to dynamic channel conditions by installing
and using Chrome app under 802.11ac environment. For
app’s compilation, Fig. 13measures that the peak throughput
of SnapCode reaches 28.5 Mbps. In most cases, SnapCode
consumes 22.1 Mbps on average. For comparison, CA (EO,
PO) requires a balanced throughput of 21.6Mbps (16.6Mbps,
22.3 Mbps). During compilation, SnapCode consumes more
traffic flow than CA, while EO requires fewest traffic. This is
because SnapCode loads additional static resources than CA.
In contrast, EO only offloads the computation data to cloud
and holds on to execution with additional time consumption.
However, for regular uses, SnapCode demands far less
throughput than other approaches as shown in Fig. 14, where
the throughput cost of SnapCode reduces dramatically since
the second use of app.

6.3 Mircobenchmarks

The above evaluations demonstrate the superior perfor-
mance of SnapCode on new devices. This section looks at
mircobenchmarks that conduct user actions of sharing
machine codes. Specifically, we measure how SnapCode

performs with comparing to default Android ART mecha-
nism, i.e., using reusable objects.

How Much Energy Needs to be Cost?. We expect to benefit
the efficiency of energy if users would like to share (down-
load and cache) machine codes and then use it with their
mobile devices. Specifically, we measure the energy cost of
each downloading operation (by averaging at least 100 stan-
dard usages) in according to different data sizes.7 Fig. 15
shows the negligible energy consumption for machine code
downloading from 1 MB traffic flow to 230 MB at varying
intervals under 4 network conditions. We observe that, tak-
ing the 802.11ac and FDD-LTE cases for instance, SnapCode
effectively consumes 29 mJ (7� 10�7% battery life) and
43 mJ (1� 10�6% battery life) for each machine code shar-
ing, and the energy cost variation are all less than 6:2 mJ.
Comparing to the default Android ART mechanism (com-
piling reusable objects), our solution can benefit more than
90 percent energy saving in all scenarios, which indicates
the significant benefits from SnapCode.

What are the Implications with SnapCode?. As SnapCode
runs machine codes directly rather than compiling the reus-
able objects before use, it can dramatically reduce apps’
launching time. To shape the exactly implications of Snap-
Code, we measure the launching time of 20 most popular
apps. Fig. 16 depicts the cumulative probability distribution
(CDF) of launching time for app uses on S5 LTE-A smart-
phone. We find that SnapCode with 802.11ac access achieves
the best performance (180ms on average) in responding to
user request. In the 802.11bgn and FDD-LTE cases, both
launching time are 185ms on average, which almost tie to the
best case. In the HSPA+ case, the cost is 255ms on average.
Considering real-life experiences [50] and our experimental
results in Table 2, we summarize that SnapCode achieves
good efficiency and provides user as well experience as
default Android ART (0.1 s).

7 DISCUSSIONS

This section discusses the practical issues and ongoing work
of our current implementation. Broadly, there comes out to
more data flow demands of security shield penalty.

Security Shield Penalty and Improvement. Security shield
defends users against untrusted parties in insecure environ-
ments. To minimize the penalty, our design keeps security
shield light-weighted and outsources the burdensome work
to the powerful server. The server is responsible for client
validation, personal data management, uploaded code cor-
rectness verification and untrusted application analysis. For

Fig. 12. Comparison of energy cost with four most popular apps as the
input baseline.

Fig. 13. Throughput meter to Chrome compilation.

Fig. 14. Traffic flow of the first 5 uses of Chrome.

7. Note that for a specific traffic flow, there might be multiple apps.
E.g., both Dropbox and AntiVirus are 61.7 MB as shown in Table 9 in
Section 7.

420 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



each version of every single app, the analysis only need to
be executed once for all and more advanced schemes can be
adopted with the development of machine code analysis
techniques. All these computation is carried out before app
usage, thus will not affect the user experience. To measure
the perceptible experience penalty caused by authentication
and encryption, we evaluate the energy cost and latency
with enabling secure function. As Fig. 17 shows, SnapCode
consumes diverse energy costs under different networking
conditions (802.11ac, 802.11bgn, FDD-LTE and HSPA+),
while the extra cost for security protection is only about 10
percent. The latency penalty is below 0.6 s in all cases, as
presented in Fig. 18. Both figures show that, introducing
security shield provides users a more trustworthy system
with only a small price, which still keeps SnapCode far
more energy-saving and efficient than traditional methods.
Note that, all security methods, e.g., encrypted communica-
tion, access control and untrusted app analysis, are adopted
as building blocks of our design, and can be replaced by
more advanced methods as the development of system
security study.

Ethics. Throughout this project, we took the utmost care
to protect users and their sensitive data. Users have total
freedom to choose to install SnapCode. Specifically, our
users explicitly opt-in to data collection. The opt-in screen
clearly informs users what data will be collected, and users
are free to opt-out at any time in the settings (or by uninstal-
ling). Furthermore, the dataset used in our experiments was

securely stored on the cloud servers, and at no time did
user data leave our system.

RTT Responsiveness from Sink to Source. As Fig. 16 has dem-
onstrated that higher network RTT can impact SnapCode
efficiency tremendously. We carry out RTT measurements
and summarize the results in Table 8. In practice, many of
the apps used in our experiments, e.g., Facebook, Google,
etc., would have access issues in China. To avoid such issues
and ensure that any perceived gains are from SnapCode, we
employ to use socks5 proxy to moving the data from content
provider (i.e., the source) to us (i.e., the sink). Specifically, we
deploy our proxy server (i.e., the transport) our test server in
Tokyo, Japan. We find that the RTT value from the transport
to the source is about 1.35 ms, which is very negligible. Fur-
thermore, the total RTT from the sink to the source are all
less than 190ms under any network environments, which
can bring efficient and practical quality of service for most of
mobile users [51].

Performance Analysis of SnapCodeon Smartwatches. To
understand latency benefits of SnapCode on smartwatches,
we conduct performance analysis on the client side with
four popular, diverse user apps: Chrome, YouTube, Uber
and Maps. In each case, we keep the app for five minutes
use with and without SnapCode enabled while connected
to a WiFi network.

For latency test in SnapCode, Figs. 19 and 20 directly
record the service latency for evaluating each test. Note that
either Moto 360 or HUAWEI watch supports 802.11b/g

Fig. 15. Energy meter to different traffic flow increase as the input baseline for measurement.

Fig. 16. Execution time (CDF) of 20 popular apps.

Fig. 17. Energy cost with enabling secure function and cloud approach.

Fig. 18. Latency with enabling secure function and cloud approach.

TABLE 8
RTT Responsiveness from Sink (Local Device) to Transport

(VPN Server) to Source (Google Play Server)

Access pattern 802.11ac 802.11bgn FDD-LTE HSPA+

Sink to transport 87 ms 99 ms 145 ms 182 ms
Transport to source 1.35 ms 1.35 ms 1.35 ms 1.35 ms

Sink to source 89 ms 101 ms 147 ms 184 ms

WU ET AL.: EXPLORING POTENTIAL AND FEASIBILITY OF BINARY CODE SHARING IN MOBILE COMPUTING 421

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



only, which can yield up to 54 Mbps downlink bandwidth
in theory [52]. In practice, we get the machine codes from
our deployed testbed (Section 5). For the four apps, we see
more powerful SoC (HUAWEI watch) and network condi-
tion (802.11g) benefits user fewer latency. Specifically, it
comes out to 8.6X speed-up factor when in using Maps on
HUAWEI smartwatch, which, in fact, reduce user around
200 seconds in regular use. It again demonstrates the effec-
tiveness and significance of SnapCode design.

Performance Analysis of SnapCodewith Mobile VR. We also
investigate how SnapCode benefit mobile VR apps in
Fig. 21. By comparing Samsung devices (Gear VR) and Goo-
gle devices (Google Cardboard VR), we observe that Snap-
Code speeds up user significantly with average 6.4X factor.

In detail, we plot the distribution of all the latency reduc-
tion ratios across network condition. We observe that, in
original method, Gear VR has a faster performance than

Google VR, which reaches around 8 s. In comparison, Snap-
Code provides user no significant differences wherever run-
ning on any devices. We highlight the stable performance of
SnapCode and will extend it to work with either more OS,
e.g., iOS, or wireless devices, e.g., smart-home.

How Many Data Needs to be Transferred When Using Snap-
Code?. We also explore SnapCode’s data flow consumption
for installing/updating the most popular 100 apps on Goo-
gle Play. Specifically, Table 9 summarizes their information
which ordered by greatest popular reduction. We observe,
when linked native libraries and static resources, the data
flow can be larger than install package, i.e., APK file. For
instance, the APK file of Fackbook is 99MB, while it reaches
235:9MB in using SnapCode. Thus, we treat SnapCode as
achieving the promised benefits at a cost of more data flow.
Nevertheless, it is acceptable in WiFi environment or user
has sufficient data budget.

8 RELATED WORK

SnapCode is built upon previous research done in Mobile
cloud computing, Optimization by code offloading and
Android optimization.

Mobile Cloud Computing. The term of mobile cloud comput-
ing was first introduced around a decade ago. It has been
attracting the attentions of mobile users as a new technology
to achieve rich experience of a variety of mobile services at
very low cost, and of researchers as a promising solution [53].
Aepona Inc. describesmobile cloud computing as a new par-
adigm for mobile applications whereby the data processing
and storage are moved from the mobile device to powerful

Fig. 19. Speed-ups to different apps on Moto 360 watch.

Fig. 20. Speed-ups to different apps on HUAWEI watch.

Fig. 21. Speed-ups to different VR apps on smartphones.

TABLE 9
Machine Code Sizes (MB) of Top-50 Apps on Google Play, Ordered by Greatest Popular Reduction

App Size App Size App Size App Size

Facebook 235.9 Chrome Browser 73.6 YouTube 50.6 Messenger 128.2
Google Play services 126.9 Google 85.8 WhatsApp 44.8 Instagram 34.9
Snapchat 106.3 Gmail 35.2 Pok�emon GO 71.9 Clean Master 48.5
Maps 104.2 360 Security 39.3 Yahoo Mail 41.9 Pandora Radio 45
Kik 66.2 Verizon Messages 88 Twitter 74.8 GO SMS Pro 48.2
AntiVirus 61.7 Uber 68.7 HTC Gallery 75.6 Clash of Clans 75.2
Spotify Music 56.8 imo 16.84 Google+ 61.2 Viber 66.6
metroZONE 18.62 DU Battery Saver 23.23 Nova Launcher 15.11 DU Speed 32.4
Netflix 30.6 Pinterest 55.2 GO Speed 21.41 Power Battery 11.36
Clock 11.64 Google Photos 56.1 Power Clean 10.86 Amazon 67.6
CallApp & Block 62.3 LINE 88.9 NBA Live Mobile 71 Firefox 51.5
Skype 63.8 Tumblr 64.8 Clash Royale 102.3 Microsoft Outlook 44.9
Dropbox 61.7 WPS Office 111.1 Calculator 1.01 Temple Run 28.24

422 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



and centralized computing platforms located in clouds [54].
In addition, mobile cloud computing now has been defined
as a combination of mobile web [55] and cloud comput-
ing [56], which is the most popular tool for mobile users to
access applications and services on the Internet. Motivated
by this insights, we design a cloud compilation mechanism
for SnapCode.

Optimization by Code Offloading. A significant amount
of related work has gone into optimizing mobile systems
that combine the computation efforts of either multiple
machines or devices. The biggest category of such works
are those that use code offloading to improve the system
performance. Specifically, how to overcome the resource
constraints of mobile devices by partitioning programs
between a device and more powerful server infrastructure
is challenging. Chroma [57] provides programmers to
specify program partitions and conditions under which to
adopt those partitions, while MAUI [43], CloneCloud [3]
and EECOF [58] leverage features of managed-language
runtimes to automatically partition a program. Inspired
by such studies, SnapCode looks forward a machine code
sharing mechanism for further improving on-the-go
mobile user’s experience.

Android Optimization. Prior researches in the field of
mobile phone-alone energy optimization such as backlight
brightness adjustment [59]. The past six years have wit-
nessed significant activity in optimizing Android OS, and
several tools have been developed to help application devel-
opers test their designs for energy efficiency such as Power-
Tutor [44], MobiPerf [60] and Mobilyzer [61] etc. Several
optimizations, e.g., [39], [62], [63], have been proposed at
the Dalvik Virtual Machine (DVM) level, which is the soft-
ware responsible for the execution, management and secu-
rity of apps in the Android platform. Close to our work,
Smali [64] and Androguard [65] are designed to reverse
engineer Dalvik bytecodes. However, there is yet no work
before SnapCode that makes mobile devices focuses on
machine code sharing which bypasses the compilation for a
further optimization.

9 CONCLUSION AND FUTURE WORK

In this paper, we have proposed SnapCode, a framework
aimed at running mobile app with machine code sharing
from peers transparently. We introduced a machine code
generation technique and OS binder operation to run our
system within the scope of today’s available techniques.
This makes all generated code offloadable and allows multi-
ple mobile devices to use directly. We demonstrated this
system on 20 real apps on Google Play and showed an aver-
age speed-up of 9.90x. In regular uses, we were able to reach
as much as 120x speed-up on average. To broaden the
impact of our work, we have made the SnapCode testbed
available on two universities.

SnapCode promises a new paradigm which significantly
change the way we use apps in the future. In our design,
proper light-weight mechanisms are also adopted to enforce
security. Moving forward, facing potential emerging threats
to shared machine code, the most promising line of work is
in improving the secure shield (WatchDog) in the cloud
server.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable and
insightful comments. This work is supported by National
Natural Science Foundation of China under Grants No.
61802218.

REFERENCES

[1] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do
mobile app users complain about?” IEEE Softw., vol. 32, no. 3,
pp. 70–77, May/Jun. 2015.

[2] “Nextbit: Robin. The smarter smartphone,” 2017. [Online]. Avail-
able: https://www.nextbit.com

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clone-
cloud: Elastic execution between mobile device and cloud,” in
Proc. 6th Conf. Comput. Syst., 2011, pp. 301–314.

[4] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“Comet: Code offload by migrating execution transparently,” in
Proc. 10th USENIX Symp. Operating Syst. Des. Implementation, 2012,
pp. 93–106.

[5] D. C. Chu and M. Humphrey, “Mobile ogsi. net: Grid computing
on mobile devices,” in Proc. 5th IEEE/ACM Int. Workshop Grid
Comput., 2004, pp. 182–191.

[6] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic
Programming: An Introduction. San Mateo, CA, USA: Morgan Kauf-
mann, 1998.

[7] R. I. Strandh, “Classes of equational programs that compile into
efficient machine code,” in Proc. Int. Conf. Rewriting Techn. Appl.,
1989, pp. 449–461.

[8] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M. O. Myreen, and J. Alglave, “The semantics of x86-cc multipro-
cessor machine code,” ACM SIGPLANNotices, vol. 44, pp. 379–391,
2009.

[9] H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security in mobile ad
hoc networks: Challenges and solutions,” IEEE Wireless Commun.,
vol. 11, no. 1, pp. 38–47, Feb. 2004.

[10] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight
and flexible operating system for tiny networked sensors,” in
Proc. 29th Annu. IEEE Int. Conf. Local Comput. Netw., 2004,
pp. 455–462.

[11] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online
resource allocation, content placement and request routing for
cost-efficient edge caching in cloud radio access networks,” IEEE
J. Sel. Areas Commun., vol. 36, no. 8, pp. 1751–1767, Aug. 2018.

[12] A. N. Khan, M. M. Kiah, S. U. Khan, and S. A. Madani, “Towards
secure mobile cloud computing: A survey,” Future Generation
Comput. Syst., vol. 29, no. 5, pp. 1278–1299, 2013.

[13] P. K. Tysowski, “Methods and apparatus for use in transferring
user data between two different mobile communication devices
using a removable memory card,” U.S Patent 8,233,895, Jul. 31
2012.

[14] E. Pitoura and G. Samaras, Data Management for Mobile Computing,
vol. 10, Berlin, Germany: Springer, 2012.

[15] D. Zhang, L. Tan, J. Ren, M. K. Awad, S. Zhang, Y. Zhang, and
P.-J. Wan, “Near-optimal and truthful online auction for computa-
tion offloading in green edge-computing systems,” IEEE Trans.
Mobile Comput., p. 1, 2019, doi: 10.1109/TMC.2019.2901474.

[16] “Antutu Report: TOP 10 Global Popular Smart phone and User
Preferences,1H 2016,” 2017. http://www.antutu.com/en/view.
shtml?id=8258

[17] “The mobile ecosystem runs on ARM,” 2016. [Online]. Available:
https://www.arm.com/markets/mobile

[18] “Android open source project,” 2017. [Online]. Available: https://
source.android.com

[19] “DU antivirus security,” 2017. [Online]. Available: https://play.
google.com/store/apps/details?id=com.duapps.antivirus

[20] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. IEEE INFOCOM, 2012,
pp. 945–953.

[21] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu,
and M. Musuvathi, “Kahawai: High-quality mobile gaming using
GPU offload,” in Proc. 13th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
2015, pp. 121–135.

WU ET AL.: EXPLORING POTENTIAL AND FEASIBILITY OF BINARY CODE SHARING IN MOBILE COMPUTING 423

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 

https://www.nextbit.com
http://dx.doi.org/10.1109/TMC.2019.2901474
http://www.antutu.com/en/view.shtml?id=8258
http://www.antutu.com/en/view.shtml?id=8258
https://www.arm.com/markets/mobile
https://source.android.com
https://source.android.com
https://play.google.com/store/apps/details?id=com.duapps.antivirus
https://play.google.com/store/apps/details?id=com.duapps.antivirus


[22] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud comput-
ing: A survey,” Future Generation Comput. Syst., vol. 29, no. 1,
pp. 84–106, 2013.

[23] D. Johansen, R. Van Renesse, and F. B. Schneider, “Operating sys-
tem support for mobile agents,” in Proc. 5th Workshop Hot Topics
Operating Syst., 1995, pp. 42–45.

[24] A. M€oller, F. Michahelles, S. Diewald, L. Roalter, and M. Kranz,
“Update behavior in app markets and security implications: A
case study in google play,” in Proc. 3rd Int. Workshop Res. Large,
2012, pp. 3–6.

[25] P. Nordin, W. Banzhaf, and F. D. Francone, “12 efficient evolution
of machine code for cisc architectures using instruction blocks
and homologous crossover,” Advances Genetic Program., vol. 3,
1999, Art. no. 275.

[26] P. Nordin, Evolutionary Program Induction of Binary Machine Code
and its Applications. M€unster, Germany: Krehl Munster, 1997.

[27] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain,
A. Krishnamurthy, T. Anderson, and J. Gao, “Moving beyond end-
to-end path information to optimize CDNperformance,” in Proc. 9th
ACMSIGCOMMConf. InternetMeas. Conf., 2009, pp. 190–201.

[28] C. Huang, A. Wang, J. Li, and K. W. Ross, “Understanding hybrid
CDN-P2P: Why limelight needs its own red swoosh,” in Proc. 18th
Int. Workshop Netw. Operating Syst. Support Digital Audio Video,
2008, pp. 75–80.

[29] C. Gkantsidis and P. R. Rodriguez, “Network coding for large
scale content distribution,” in Proc. IEEE 24th Annu. Joint Conf.
IEEE Comput. Commun. Societies., 2005, pp. 2235–2245.

[30] D. Decasper and B. Plattner, “Dan: Distributed code caching for
active networks,” in Proc. 17th Annu. Joint Conf. IEEE Comput.
Commun. Societies, 1998, pp. 609–616.

[31] J. West, “How open is open enough?: Melding proprietary and
open source platform strategies,” Res. Policy, vol. 32, no. 7,
pp. 1259–1285, 2003.

[32] “Android lollipop,” 2017. [Online]. Available: https://en.
wikipedia.org/wiki/Android_Lollipop

[33] “Android runtime (ART),” 2017. [Online]. Available: https://en.
wikipedia.org/wiki/Android_Runtime

[34] “ADBI - The android dynamic binary instrumentation toolkit,”
2017. [Online]. Available: https://github.com/crmulliner/adbi

[35] L. Reyzin and N. Reyzin, “Better than biba: Short one-time signa-
tures with fast signing and verifying,” in Proc. Australasian Conf.
Inf. Security Privacy, 2002, pp. 144–153.

[36] S. Seys and B. Preneel, “Power consumption evaluation of efficient
digital signature schemes for low power devices,” in Proc. IEEE
Int. Conf. Wireless Mobile Comput., Netw. Commun., 2005, pp. 79–86.

[37] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

[38] D. Zhang, Y. Qiao, L. She, R. Shen, J. Ren, and Y. Zhang, “Two
time-scale resource management for green internet of things
networks,” IEEE Internet Things J., vol. 6, no. 1, pp. 545–556, Feb.
2019.

[39] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the
os and dalvik semantic views for dynamic android malware ana-
lysis,” in Proc. 21st USENIX Security Symp., 2012, pp. 569–584.

[40] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An informa-
tion-flow tracking system for realtime privacy monitoring on
smartphones,” ACM Trans. Comput. Syst., vol. 32, no. 2, 2014,
Art. no. 5.

[41] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–269,
2014.

[42] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 2, pp. 39–53, 2004.

[43] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “Maui: Making smartphones
last longer with code offload,” in Proc. 8th Int. Conf. Mobile Syst.
Appl. Services, 2010, pp. 49–62.

[44] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proc. 8th IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign
Syst. Synthesis, 2010, pp. 105–114.

[45] “Monsoon power monitor,” 2017. [Online]. Available: https://
www.msoon.com/LabEquipment/PowerMonitor/

[46] “2016 mobile marketing statistics compilation,” 2016. [Online].
Available: http://www.smartinsights.com/mobile-marketing/
mobile-marketing-analytics/mobile-marketing-statistics/

[47] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
and R. Chandramouli, “Studying energy trade offs in offloading
computation/compilation in java-enabled mobile devices,” IEEE
Trans. Parallel Distrib. Syst., vol. 15, no. 9, pp. 795–809, Sep. 2004.

[48] “The chromium projects,” 2017. [Online]. Available: https://
www.chromium.org/chromium-os

[49] “Google web store for chromium OS,” 2017. [Online]. Available:
https://chrome.google.com/webstore/category/apps

[50] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent
inside my app?: Fine grained energy accounting on smartphones
with eprof,” in Proc. 7th ACM Eur. Conf. Comput. Syst., 2012,
pp. 29–42.

[51] T. Kelly, “Scalable TCP: Improving performance in highspeed
wide area networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 2, pp. 83–91, 2003.

[52] “IEEE 802.11,” 2017. [Online]. Available: https://en.wikipedia.
org/wiki/IEEE_802.11

[53] M. Ali, “Green cloud on the horizon,” in Proc. IEEE Int. Conf. Cloud
Comput., 2009, pp. 451–459.

[54] A. Ahmed, A. Nasser, and S. Mohamed, “Mobile Cloud Comput-
ing: advantage, disadvantage and open challenge,” in Proc. 7th
Euro American Conf. Telematics Inf. Syst. 2014, p. 21.

[55] J. H. Christensen, “Using restful web-services and cloud comput-
ing to create next generation mobile applications,” in Proc. 24th
ACM SIGPLAN Conf. Companion Object Oriented Program. Syst.
Languages Appl., 2009, pp. 627–634.

[56] L. Liu, R. Moulic, and D. Shea, “Cloud service portal for mobile
device management,” in Proc. IEEE 7th Int. Conf. e-Bus. Eng., 2010,
pp. 474–478.

[57] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb,
“Simplifying cyber foraging for mobile devices,” in Proc. 5th Int.
Conf. Mobile Syst. Appl. Services, 2007, pp. 272–285.

[58] M. Shiraz, A. Gani, A. Shamim, S. Khan, and R. W. Ahmad,
“Energy efficient computational offloading framework for mobile
cloud computing,” J. Grid Comput., vol. 13, no. 1, pp. 1–18, 2015.

[59] K. Naik, “A survey of software based energy saving methodolo-
gies for handheld wireless communication devices,” Dept. Electri-
cal Comput. Eng., Univ. Waterloo, Waterloo, ON, Rep. 2010-13,
2010.

[60] S. Rosen, H. Yao, A. Nikravesh, Y. Jia, D. Choffnes, and Z. M. Mao,
“Demo: Mapping global mobile performance trends with mobi-
lyzer andmobiperf,” in Proc. 12th Annu. Int. Conf. Mobile Syst. Appl.
Services, 2014, pp. 353–353.

[61] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao,
“Mobilyzer: An open platform for controllable mobile network
measurements,” in Proc. 13th Annu. Int. Conf. Mobile Syst., Appl.
Serv., 2015, pp. 389–404.

[62] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler: Con-
verting android dalvik bytecode to jimple for static analysis with
soot,” in Proc. ACM SIGPLAN Int. Workshop State Art Java Program
Anal., 2012, pp. 27–38.

[63] J. Jeon, K. K. Micinski, and J. S. Foster, “Symdroid: Symbolic exe-
cution for dalvik bytecode,” Department of Computer Science,
University of Maryland, College Park, no. CS-TR-5022, Jul. 2012.

[64] “Smali: An assembler/disassembler for Android’s dex format,”
2016. [Online]. Available: https://github.com/JesusFreke/smali

[65] A. Desnos and G. Gueguen, “Android: From reversing to decom-
pilation,” in Proc. Black Hat Abu Dhabi, 2011, pp. 77–101.

Chao Wu received the PhD degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 2017,
and the BEng degree in software engineering
from Southeast University, Nanjing, China, in
2012. He is a postdoc in Tsinghua University. His
research interests include mobile computing sys-
tems, edge computing and networked systems
with a focus on operating system principle, per-
formance optimization, architecture design. He is
a member of the IEEE.

424 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 

https://en.wikipedia.org/wiki/Android_Lollipop
https://en.wikipedia.org/wiki/Android_Lollipop
https://en.wikipedia.org/wiki/Android_Runtime
https://en.wikipedia.org/wiki/Android_Runtime
https://github.com/crmulliner/adbi
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
https://www.chromium.org/chromium-os
https://www.chromium.org/chromium-os
https://chrome.google.com/webstore/category/apps
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/IEEE_802.11
https://github.com/JesusFreke/smali


Lan Zhang received the bachelor’s degree from
the School of Software, Tsinghua University,
China, in 2007, and the PhD degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, China, in 2014. She is
currently a research professor with the School of
Computer Science and Technology, University of
Science and Technology of China. Her research
interests span privacy protection, secure multi-
party computation and mobile computing, etc.
She is a member of the IEEE

Zhenhua Li received the BSc andMSc degrees in
computer science and technology from Nanjing
University, in 2005 and 2008, and the PhD degree
from Peking University, in 2013. He is an associ-
ate professor with the School of Software, Tsing-
hua University. His research areas mainly consist
of cloud computing/storage, content distribution,
andmobile Internet. He is amember of the IEEE.

Qiushi Li received the BEng degree from the Uni-
versity of Electronic Science and Technology of
China, in 2017, and he is currently working toward
the PhD degree at the Department of Computer
Science and Technology, Tsinghua University,
Beijing, China. His research interests include
mobile computing systems and applications.

Yaoxue Zhang received the BS degree from the
Northwest Institute of Telecommunication Engi-
neering, China, and the PhD degree in computer
networking from Tohoku University, Japan in
1989. His major research interests include com-
puter networking, operating systems, ubiquitous
computing, big data driven service optimisation,
and mobile networks. He serves as an associate
editor of the Chinese Journal of Computers and
the Chinese Journal of Electronics. He is a senior
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WU ET AL.: EXPLORING POTENTIAL AND FEASIBILITY OF BINARY CODE SHARING IN MOBILE COMPUTING 425

Authorized licensed use limited to: Tsinghua University. Downloaded on March 10,2022 at 16:28:02 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


