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Abstract—Doors as densely-deployed natural landmarks play an important role in improving indoor positioning systems. However, the

state-of-the-art door event detection works are based on either vision or infrastructure, thus incurring non-trivial device or management

cost. To address these problems, we present a Light-weight Magnetic-based Door Event Detection method, called LMDD. It leverages

built-in magnetic sensors of common smartphones to achieve infrastructure-free door event detection. After analyzing the special

features of sensors’ readings changes caused by the door, we design LMDD scheme with three main components, including data

acquisition, events identification and events denoising. Moreover, an improved and robust door event detection framework based on a

majority-voting model is proposed to fuse multiple-dimensional sensing data from non-magnetic built-in sensors. We have implemented

a prototype of LMDD on Android-based platform. Experimental results show that LMDD with only magnetic sensor achieves door event

detection accuracy of around 80 percent on average, ranging from 70 to 87 percent in various typical indoor environments. The

enhanced LMDD based on the fusion of heterogeneous sensors can achieve a much higher door event detection accuracy of

90 percent on average.

Index Terms—Door event detection, magnetic-based, fusion of heterogeneous sensors, indoor positioning systems

Ç

1 INTRODUCTION

INDOOR Positioning Systems (IPSes) have attracted wide
attention, because it can effectively address the defects of

GPS and localize the positions of devices in a building [25],
[27], [40]. As illustrated in Fig. 1a, since the localization accu-
racy of current IPSes is limited by measurement and accu-
mulation errors, they leverage various indoor structures,
called “natural landmarks”, to calibrate the results of locali-
zation or dead-reckoning [13], [32]. However, many architec-
tural elements, like elevators, escalators, and stairs, are
sparsely deployed, thus having limited help for improved
localization accuracy of IPSes [40].

Among all natural landmarks, doors are much more per-
vasive with a high deployment density in most indoor envi-
ronments [29], [30]. They connect rooms and corridors,
rooms and rooms, as well as corridors and staircases. Doors

on existing floor plans make more contributions for the
calibration of navigation paths, the correction of human loca-
tions, and the reduction of accumulation errors. For example,
as shown in Fig. 1a, when a user equipped with a smart-
phone walks through a door, the sensors of the smartphone
can be used to detect the door event automatically. And
then, the accurate door position achieved from the floor plan
can be utilized to calibrate the accumulation errors of IPSes,
such as the dead-reckoning [31]. Hence, accurate door event
detection can play an important role in dead-reckoning-
based IPS and indoor navigation systems [17].

Various state-of-the-art door event detection approaches
have been proposed. Vision-based approaches rely on com-
plicated image processing and pattern recognition algo-
rithms to identify doors [42], but are sensitive to light and
picture quality.Meanwhile, infrastructure-based approaches
are proposed for precise door event detection. For example,
WiFi-based door event detection approaches rely on pre-
installed AP infrastructures with enormous device andman-
agement cost [17]; Behavior-based door event detection uti-
lizes the sensor information of smartphones, but is affected
by complex and random users’ behaviors, causing unstable
detection results [24], [45]; Acoustic-based door event detec-
tion is related to the states of the door and sensitive to the
surrounding noise [20]. The pre-installed infrastructures
incur non-trivial, sometimes even enormous device or man-
agement cost. Therefore, these existing approaches are lim-
ited in certain applicable scenarios or conditions.

In this paper, we propose a novel light-weight magnetic-
based door event detection named LMDD, which is an
infrastructure-free and widely applicable approach based
on popular smartphones. First, it analyzes readings from
the built-in magnetic sensor of a popular smartphone [23],
[29]. The anomalies or sharp fluctuations of magnetic sig-
nals are captured after complex environmental noises and
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random measurement noises are wiped. Then, door-passing
events are detected by applying probability-based Bayesian
techniques. The exciting thing is that extensive experiments
demonstrate door-passing events can be passively and effi-
ciently detected by magnetic sensing data without any pre-
installed infrastructure, as demonstrated in Fig. 1b.

The biggest challenge of LMDD is to accurately extract
the signal features for a door-passing event. This is because
magnetic signal fluctuations may be caused by various
unexpected “environmental events”. For instance, magnetic
intensity values also change sharply when the holder shakes
the smartphone. To eliminate such “noises” (i.e., denoising),
we combine a feature analysis algorithm with automatic fil-
tering on magnetic sensing data in LMDD.

Moreover, we explore how to substantially improve the
performance of LMDD by human activity analysis and
context awareness with non-magnetic built-in sensors. We
perform extensive experiments and find that only four sen-
sors, i.e., gyroscope, accelerometer, light sensor, and WiFi
receiver, can be practically used for improved door event
detection. But each of four sensors is only good at one spe-
cific type of application scenarios. In order to enhance the
robustness and accuracy of door event detection, we pro-
pose a fusion method of heterogeneous sensors data based
on a majority-voting model.

We have implemented a prototype of LMDD and suc-
cessfully deployed it on multiple popular Android phones,
including Google Nexus 5, Samsung Galaxy S4 and HTC
One M8 etc. We evaluate the performance of LMDD in five
typical environments, including offices, classrooms in a uni-
versity, residential houses, a hospital and a laboratory.
Experimental results show that the door event detection
accuracy of LMDD is around 80 percent on average, ranging
from 70 to 87 percent. Meanwhile, the computational com-
plexity of LMDD is in OðKNss

2Þ, where K denotes the
number of doors, N represents the necessary sampling
points for detecting a door, and ss is the width of the
Gaussian function. The enhanced LMDD based on the
fusion of heterogeneous sensors can be increased to an

average of 90 percent, ranging from 88 to 93 percent, which
is taken as a generally satisfactory level in practice.

The main contributions of our work are listed as follows:

� We propose LMDD, a novel light-weight magnetic-
based door event detection without any pre-installed
facility. LMDD only relies on natural magnetic feature
information collected from common smartphones. It
can achieve accurate door event detection by data
acquisition, events identification and events denoising.

� We further propose an improved and robust door
event detection framework based on a majority-
voting model to fuse multiple-dimensional sensing
data from four heterogeneous sensors.

� We have implemented a prototype of LMDD and
deployed it on multiple popular Android phones.
Experimental results show that the door event detec-
tion accuracy of basic LMDD is up to 80 percent on
average, which proves the effectiveness of LMDD.
Moreover, the enhanced LMDD based on the fusion
of heterogeneous sensors can further increase the
accuracy to 90 percent on average.

Roadmap. The rest of this paper is organized as follows. First,
we survey related work in Section 2. Then, we introduce the
design of LMDD in Section 3. After that, we present the
improved schemes that optimize the performance of LMDD
in Section 4. We describe the system implementation and
report evaluation results in Section 5. In the Section 6, we
discuss five factors that affects the performance of LMDD
and also propose the potential solution to improve the per-
formance. Finally, we conclude our work in Section 7.

2 RELATED WORK

In most of current researches, dead-reckoning-based IPS is
considered as the most popular method in indoor navigation
due to greatly less labor cost [19], [38], compared with
the fingerprinting-based IPS. The dead-reckoning mainly
employs landmarks on a floor plan to calibrate the positions
so as to improve localization accuracy. The door is one of the
most important and popular landmarks in the indoor envi-
ronments [31]. As a result, the door event detection, which is
key to improved indoor localization or navigation, is widely
studied in recent years [40]. The existing works of door event
detection are mainly comprised of two categories: vision-
based approaches, infrastructure-based approaches.

1) Vision-Based Approaches. With the help of cameras,
doors can be recognized by image processing and pattern
recognition in terms of specific shapes, colors, scales, and
textures. A boosting algorithm [15] was introduced to clas-
sify doors in various environments. Structures of doors
become weak classifiers, such as frames, knobs, hinges and
gaps. Doors are determined by a strong classifier that is the
weighted summation of all weak classifiers. Specifically, a
probabilistic framework based on door models was pro-
posed [3]. Comparing with modeling data in a database,
doors are identified with at least 84 percent confidence.
Context information [9], [11] was also introduced to distin-
guish doors with different functions, such as exits, rest-
rooms and offices. However, the complex indoor scenarios,
such as the dark [18] or the imprecise photographing
angle [19], [39], may affect the quality of pictures taken on
the smartphones [25], [39], [41], decreasing the accuracy
and applicability of vision-based approach.

Fig. 1. The usage scenario of LMDD in Indoor Positioning Systems
(IPSes) and its basic idea based on the magnetic intensity change.
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2) Infrastructure-Based Approaches.Yang et al. [16], [40], [42]
employ pre-deployed infrastructures to do indoor localiza-
tion, such asWiFi and ultrasound sensors.When positions of
tracking objects are obtained, locations of doors can be found
or calculated. Specifically, Hnat et al. [16] proposed a track-
ing scheme called “Doorjamb”, which uses many ultrasound
sensors on doors to detect moving objects. Yang et al. [40]
proposed a novel indoor localization called “LiFS” based on
WiFi infrastructures. In the LiFS, doors are treated as key ref-
erence points to establish the relationships between stress-
free floor plan and fingerprint space. And then, door detec-
tion is achieved by comparing with the RSS values near
doors. UnLoc [31] was proposed as an unsupervised indoor
localization based on sensor-based dead-reckoning and envi-
ronment sensing. It uses seed landmarks to re-calibrate
human locations, thus requiring no site survey and no instal-
lation of additional infrastructures except WiFi. In the
UnLoc, the door detection relies on the surrounding abun-
dant WiFi APs, which is less dependable/scalable. Besides,
infrastructure-based methods suffer from the limited cover-
age, expensive system costs and unstable signal strengths.

In summary, all current works of door event detection
are based on either vision or pre-install infrastructures.
They incur enormous cost and are sensitive to applicable
environments, which impairs the universality and usability
of door event detection in the IPS systems. To overcome this
deficiency, we explore how to leverage the magnetic infor-
mation to achieve pervasive and accurate door event detec-
tion with the following two reasons [44]. First, as the earth
magnetic field exists almost everywhere in the world,
LMDD can be applicable to nearly all the kinds of environ-
ments. Moreover, the natural magnetic information is easy-
access in common smartphones, and insensitive to users’
behavior and severe environments (dark, secret, noisy, etc.
expect metal objects) [41]. As a result, LMDD can achieve an
accurate and robust door event detection.

3 METHODOLOGY

In its basic design, LMDD is a door event detection approach
that only relies on the sensing data from a single smartphone.
It utilizes the magnetic field characteristics (Section 3.1) to
realize the door event detection that refers to detecting the event
whether a user is passing through a door or not. The approach
consists of three processes: data acquisition (Section 3.2),
events identification (Section 3.3), and environmental event
cancellation (or called denoising (Section 3.4).

3.1 Magnetic Field Characteristics
In general, themagnetic field observed by sensors is a combi-
nation of 1) geomagnetic field and 2) ambient magnetic field.
The geomagnetic field (i.e., the magnetic field of the earth)
often acts as a global reference for orientation detection and
navigation. However, magnetic interferences in the indoor
environment cause that the geomagnetic field fails to report
right directions. Non-uniform distributions of magnetic
fields inside buildings directly affect electric compass [12].
To understand the changes of magnetic signals near the door
area, we investigate the influence of building structures and
the trend ofmagnetic characteristics under different cases.

3.1.1 Features of Magnetic Field Near a Door

Modern buildings usually have many electronic and ferro-
magnetic structures, such as reinforced concrete, electronic

sub-systems, andmetallic furniture. These ambientmagnetic
fields may well cause magnetic anomalies in certain areas
[10]. A typical example is shown in Fig. 2. The wall of a room
is made of reinforced concrete or steel structures, which can
obviously affect indoor magnetic field distributions like a
metallic box. Thus, the magnetic field inside the room is dif-
ferent from that outside the room, e.g., in the corridor.

Generally speaking, distributions of magnetic fields in
distinct parts of a building are quite different [14]. Since
doors are usually the breaking parts of reinforced concrete or
steel walls, the magnetic intensity changes drastically on
both sides of a door. Meanwhile, doors often contain a few
metallic components, such as doorknobs, hinges, and metal
panels, thus interfering the readings of the magnetic sensor.
In a nutshell, doors are the boundaries of two major zones
of modern buildings, i.e., rooms and corridors, so sharp
changes of magnetic intensity are taken as the hints of doors.

3.1.2 Trend of Magnetic Field for Different Cases

For obtaining magnetic distributions inside a building, we
conduct a series of benchmark experiments using a typical
magnetic sensor (Honeywell HMC5883L). First, we measure
the magnetic intensity when holding the device in a fixed
position. The result is plotted in Fig. 3a, demonstrating the sta-
bility of magnetic intensity in a fixed position. Then, the
holder walks along a straight corridor, and the result is shown
in Fig. 3b. In this case, it is hard to identify obvious features
from the changes of magnetic intensity. Finally, the holder
passes through a door and walks into a corridor, and the
result is recorded in Fig. 3c. Obviously, there is a clear “drop
and rise” pattern in Fig. 3c, which implies the event of passing
through a door.

3.2 Data Acquisition
Most of today’s smartphones contain magnetometers or
compasses for providing navigation services. The output of
these sensors consists of three vector components in x, y and
z axes. It has been reported that a smartphone is in most time
horizontally placed [28]. So, when people use smartphones
for indoor navigation, the x and y axes compose the horizon-
tal plane and the z axis represents the vertical direction.

A magnetic sample at time t is made up of three compo-
nents fMðxÞ;MðyÞ;MðzÞg. Each component represents
the reading of an axis. Let M denote the square root of
the magnetic fields of all three vectors, so M ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðxÞ2 þMðyÞ2 þMðzÞ2

q
. Then, the azimuth angle c can

be calculated as

c ¼ arctan
jMðzÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MðxÞ2 þMðyÞ2
q : (1)

Fig. 2. The structure of a modern room and the door.
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Normally, the magnetic sensors are often assembled on
the board of a smartphone. During the sensing period, car-
rying ways of the smartphone are changed frequently.
Thus, the spatial posture of the magnetometer must be con-
sidered. In addition to the azimuth angle c, the pitch angle
v and the roll angle u are introduced to determine the spa-
tial posture. The pitch angle controls the relative elevation
between phone and horizontal plane and the roll angle
refers to the rotation around the X direction respectively.
We can transform the onboard coordinate system (OCS) to
the local absolute coordinate system (LACS). Fig. 4 elabo-
rates three angles in the transformation between OCS and
LACS. All magnetic intensities of our approach are obtained
in LACS. Hence, the influence of the spatial posture is lim-
ited to a minimum level according to the results of transfor-
mation of the coordinate systems. Three components of the
magnetic strength in LACS can be derived as follows:

ML ¼ Ac �Av �Au �MO; (2)
where ML represents the magnetic components in LACS
andMO represents the magnetic components in the onboard
coordinate system respectively. The arrays of three angles
are shown as follows:

Ac ¼
cosc sinc 0

� sinc cosc 0

0 0 1

2
64

3
75

Av ¼
1 0 0

0 cosv sinv

0 � sinv cosv

2
64

3
75

Au ¼
cos u 0 � sin u

0 1 0

sin u 0 cos u

2
64

3
75:

(3)

For simplicity, we still use M to denote the ML in the
remaining sections. The magnetic intensity can be calcu-
lated from three magnetic components. After the translation
from OCS to LACS, the effect of smartphone postures is
reduced to the minimum level. Therefore, sensing data
traces from different participators have the same evaluation
base. When people use smartphone to do indoor navigation,
the smart phone is faced up with a high probability [28].
Hence, we assume that the smart phone is placed in parallel
to the ground during the trace collection phase. It means
that the Z component is stable unless the metal materials
appears in the vertical direction. Therefore, we can use the
magnetic strength directly to represent the magnetic trace.

3.3 Events Identification
As plotted in Fig. 5, LMDD identifies door events in four
steps: 1) pre-processing, 2) denoising, 3) feature definition,
and 4) event reporting. First of all, pre-processing eliminates
Gaussianwhite noise from raw data and helps to improve the
data accuracy. In the second step (denoising), we propose an
edge preserving filter to wipe out random measurement
noises, so that the anomalies or sharp fluctuations ofmagnetic
signals become clearer. In the third step (feature definition),
we use a Bayes function based on empirical feature classifica-
tions to regenerate the signal. Finally, the door events are
identified based on a priori threshold in the event reporting.

Let K denote the number of potential doors, N represent
the necessary sampling points for detecting a single door
(typically between 100 and 200), and ss denote the width of
the Gaussian function (typically between 20 and 100), it is
easy to prove that the computation complexity of LMDD
stays in OðKNss

2Þ. This means that our algorithm only con-
cerns those sharp changes within a short time.

3.3.1 The Edge Preserving Filter

The raw data of magnetic intensity on each axis (say x) col-
lected by a sensor can be represented as

MðxÞ ¼ MbhðxÞ þMnðxÞ þMeðxÞ; (4)

where Mbh is the basic harmonic determined by the geo-
magnetic intensity,Mn is the magnetic intensity of noise sig-
nal, and Me is the magnetic intensity of environmental
signal. MnðxÞ þMeðxÞ denotes the intensity of ambient
magnetic fields.

According to human route analysis and our experiments,
when a person passes through a door, his/her moving
direction does not change. Hence, Mbh should be stable and
consistent to the values before and after the door event.

The noise signal Mn contains inevitable Gaussian white
noises and random measurement noises. Gaussian white
noises lead to the small jitter of signals that may harm the

Fig. 3. Magnetic intensity samples in three situations.

Fig. 4. The relationship between OCS and LACS.
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detection accuracy, while random measurement noises
induce serious shaking of signals in the time domain [43].
As illustrated in Fig. 3c, the magnetic intensity is supposed
to go down or up gradually (smoothly), but in practice it
shakes seriously due to the random measurement noises. In
order to improve the accuracy of door event detection, it is
necessary to remove noises and to smooth the signal curves
while preserving the edges of changed signals.

Algorithm 1. Edge Preserving Algorithm F ½M�p
Input: A data trace, Mn, and the total number of sampling
points, T;
Output: The filtered trace,Mnn;
1) Set a window size S, where S � 2ss.
2) For p in T
3) Initialize:Np ¼ 0, Fp ¼ 0;
4) For q 2 ½p� S=2; pþ S=2�
5) m ¼ Gssðk p� q kÞGsr ðk MðpÞ �MðqÞ kÞ;
6) Fpþ ¼ mMðqÞ;
7) Npþ ¼ m;
8) StandardizationMnn ¼ Fp=Np;
9) End For
10) End For
11) ReturnMnn

To this end, we first use empirical values to calibrate the
built-in magnetometers. Afterwards, we design an edge
preserving filter F ½M�p (p is a sampling point) to remove
those random measurement noises. Meanwhile, we make
efforts to preserve the boundaries, spikes, and canyons of
signal curves [22]. Specifically, the edge preserving filter is
constructed based on a linear Gaussian filter that utilizes
the position-dependent renormalization

GssMðpÞ ¼ 1

Np

X
q2S

Gssðk p� q kÞMðqÞ: (5)

Here, because the noise distribution of magnetic signals
approximates the Gaussian distribution, we leverage the
Gaussian function as the weight v ¼ Gsr when there seems

to be an edge between p and q. The bigger jjMðqÞ �MðpÞjj
is, the more probable there is an edge between p and q [22].
Thereby, the edge preserving filter is generated as follows:

F ½M�p ¼
1

Np

X
q2S

Gssðk p� q kÞGsrðk MðpÞ �MðqÞ kÞMðqÞ; (6)

where S is the linear area centered in p in the x-axis, and Np

is the normalization factor

Np ¼
X
q2S

Gssðk p� q kÞGsrðk MðpÞ �MðqÞ kÞ: (7)

Here Gss is a spatial Gaussian kernel and Gsr is a range
Gaussian kernel [5]. The normal “k � � � k” represents the
euclidean distance. Shown in Fig. 9, the spatial Gaussian
kernel means the time interval between p and q. Typically,
the q is in a range such that k p� q k� ss. The range kernel
gives the difference of magnetic intensities. The parameter
sr controls the edge preservation effect. Those kernels can
be calculated as follows:

GssðxÞ ¼
1

2pss
2
exp � x2

2ss
2

� �

GsrðyÞ ¼
1

2psr
2
exp � y2

2sr
2

� �
;

(8)

where ss and sr are adjustable constants, which are deter-
mined by the analysis of empirical results. The spatial
parameter ss decides the range features in the time domain,
i.e., the width of sampling points. At the same time, the
magnetic difference is scaled by sr. The pseudo-code of the
filter is illustrated as Algorithm 1.

After applying the edge preserving filter, periodic noises
and Gaussian white noises were eliminated from the mag-
netic signal. Comparing with straightforward Gaussian
Blur algorithms, our improved bilateral filter not only con-
siders the amplitude of magnetic strengths but also deliber-
ates the time intervals of signal. Therefore, the variation of
magnetic intensities is regarded to preserve edges. The

Fig. 5. The outline of signal analysis procedures.
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accuracy and efficiency of the signal processing is enhanced
conspicuously.

3.3.2 The Bayes Function

The change of the environmental signal Me reflects environ-
mental events in two major types: human activities and pas-
sive events. Human activities are the phone holder’s actions,
such as turning around, body shaking, and shaking the
phone. They are basically unpredictable. To understand the
impact of human activities, detailed feature analysis on sig-
nal changes is needed. We use pea to denote the probability
of human activities in all magnetic samples.

On the other hand, passive events represent ambient
magnetic changes caused by environmental events, which
include the sharp changes in one axis or two axes of the
magnetometer. We use pee to denote the probability of pas-
sive events in magnetic samples.

Our concerned door events belong to the passive events,
and the process of door event detection is based on the com-
putation of probability. Specifically, we use pðdÞ to denote
the ratio of door events among all passive events. Accord-
ingly, we use p(�d) to denote the ratio of the other passive
events, which may be caused by people’s moving towards
metal material or electrical devices.

Formally, given the magnetic changes, the conditional
probability of the door event is calculated based on prior
knowledge from the measurements of indoor positioning
systems as follows:

pðdjemÞ ¼ pðemjdÞ � pðdÞ
pðemÞ ; (9)

where pðemÞ ¼ pea þ pee is the measurement of all environ-
mental events. pðemÞ can be calculated as follows:

pðemÞ ¼
Xn
i¼1

pðemÞi (10)

pðemÞi ¼ pðemijdÞ � pðdÞ þ pðemij�dÞ � pð�dÞ; (11)

where n is the number of distinct environmental events and
i is the event index. The parameter pðemÞi represents the
probability of the ith event among environmental events. It

is difficult to list all possible pðemÞi. We only describe three
cases. For example, the probability of turn-around events
pðemÞ1 is the number of turning around events divided by
the number of all environmental events.

Obviously, pðemÞ1 is a part of pea, caused by human activi-
ties. Similarly, the probability of shaking body event pðemÞ2
is the number of shaking body events divided by the number
of all environmental events. pðemÞ2 also belongs to the prob-
ability pea. Accordingly, the probability of approaching met-
als pðemÞ3 is retained in the probability pee [6].

We employ pðdjemÞ as the estimator to determine the door
events. If pðdjemÞ is greater than a given threshold " (a con-
stant value based on prior knowledge), a door event is
detected. To understand the threshold " clearly, below we
provide an example. If the door appears after a turn-around
event, " exceeds the threshold obviously. It means that the
door event is very likely to be connectedwith the turn-around
event, sincemost doors are located in one side of the corridor.

3.4 Environmental Event Cancellation (or Event
Denoising)

Door event detection results based on signal analysis may
involve false positives, due to environmental events that are
not essentially related to doors. For more accurately defined
features, more detailed signal features of magnetometers
need to be investigated. For example, if metal material
appears on a side of the sensing area, readings from one
axis (x or y) would change (but readings from the z axis
are not affected). Signal changes by human activities also
have specific patterns. Fig. 6 shows the change pattern of
three axes when a man makes a 90 degree turn. Obviously,
the average magnetic intensity almost keeps in the same
value, but the values of x-axis and y-axis seem “exchanged”.
When the man carrying a smartphone walks slowly and
shake their body, the pattern is illustrated as Fig. 7. If the
smartphone holder moves to near a metallic object, the pat-
tern is sketched in Fig. 8.

The features of common environmental events can be
formally described. If we define the features with specific
functions well, the irregularities and periodic noises like
body shaking and turning back can be observed and
excluded from event reports. A critical observation lies in
that the metal material near the door area only affects one
or two plain axes (e.g., x-axis or y-axis) of the magnetome-
ter. Consequently, LMDD utilizes the following cross correl-
ative function to search positive activities

Cxy ¼
Pn

i¼1ðMðxÞi � EðMðxÞÞÞðMðyÞi � EðMðyÞÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðMðxÞi �EðMðxÞÞÞ2 �Pn

i¼1ðMðyÞi � EðMðyÞÞÞ2
q ;

(12)

Fig. 6. Changes of magnetic intensities when the holder turns around.

Fig. 7. Changes of magnetic intensities when the holder shakes body.

Fig. 8. Changes of magnetic intensity when the holder is close to metallic
material.
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where EðMðxÞÞ and EðMðyÞÞ are the expected values of
magnetic intensity. The cross correlation Cxy ranges from 0
to 1.0. The larger jCxyj is, the higher the correlation between
the events is. When jCxyj exceeds a threshold �, LMDD fil-
ters this event from the results. In the LMDD, the events are
divided into three kinds: 1) highly relevant events, 2) corre-
lated events, and 3) weakly relevant events. In order to
denoise undesirable events and avoid possible loss of detec-
tion accuracy, the threshold is chosen in the range interval
of correlated events according to priori knowledge of indoor
positioning systems. According to our experiments, for
highly relevant environmental events, � is larger than 0.8. If
� lies between 0.5 and 0.8, those events are treated as
“correlated events”. Other kinds of environmental events
are identified in the similar way.

4 HETEROGENEOUS SENSORS FUSION

Although LMDD can only use magnetic information to
achieve the door event detection, its accuracy and robustness
are limited by the complex influence of indoor surroundings
and the low precision of available magnetic sensors, which
will be discussed in Section 6. Specially, the complex indoor
surroundings have many various large metal objects that
affect the magnetic information. For example, when a smart-
phone is close to metal household appliances or metal furni-
ture, the readings of the built-in magnetic sensor will change
erratically. Thus, it is extremely difficult to only use the non-
infrastructure-based magnetic information to achieve highly
accurate door event detection. Evenworse, themagnetic sen-
sors built in the commercial smartphones are inaccurate and
vulnerable to noise due to their low costs, hence high-preci-
sion door event detection is almost impossible without par-
ticular devices equipped with high-performance magnetic
sensors. As a result, to address this problem, we explore to
utilize human activity analysis and context awareness with
other built-in sensors of commercial smartphones to further
improve detection performance as follows.

4.1 Non-Magnetic Sensor Based Door Event
Detection

According to our survey, most of commercial smartphones
are mainly equipped with gyroscope, accelerometer, WiFi

receiver, barometer, proximity sensor and light sensor,
besides magnetic sensor [41]. Obviously, both the barometer
and the proximity sensor are irrelevant to the door event
detection [31]. As a result, we conduct extensive experi-
ments to investigate whether the other four sensors can be
utilized to further improve the detection performance of
LMDD. In these experiments, we carry an Android-based
phone to walk through 30 doors of three different kinds in
four typical environments, including office, classroom, resi-
dential house and hospital. Moreover, we collect about
1,200 samples of Gyroscope, Accelerometer, Light Sensor
and WiFi Receiver for door event detection, and the experi-
mental results are specified as follows.

1) Gyroscope. As shown in Fig. 1b, when a user walks into a
room from a corridor, s/he often changes the walking direc-
tion and turns into the door [45]. As shown in Fig. 10, this turn
can lead to a large rotation angle of the smartphone, which is
useful to identify the door event detection based on the
changes of gyroscope data. Hence, we can detect the door-
passing event according to this rotation angle which can be
calculated based on the gyroscope readings as follows.

As the readings of the digital gyroscope in a smartphone
are discrete, we approximately calculate the angle of human
rotation by summarizing the gyroscope samples within a
certain time interval. Specifically, the rotation angle of the
smartphone denoted byW can be computed as

W ¼
Z T0þt

T0

nðtÞ dt �
XS0þs

i¼S0

niTi; (13)

where T0 is the starting time of a revolving action, and t is
the duration of the rotation. We use i to represent a discrete
sampling point, which is started from S0 to S0 þ s during
walking through a door. ni and Ti denote the angular veloc-
ity and the elapsed time at the ith sampling point, respec-
tively. Both of them can be obtained from the smartphones,
such as the gyroscope readings ni.

According to Eq. (13), we can compute the rotation angle
W based on the gyroscope readings through integrations,
like the red part in Fig. 10. If the W is larger than a pre-set
threshold gg, it indicates that the user may walk through a
door. According to our experiments, when the door is open,
gg is at least 1.7 within 2s time window, while it is above 1.7
within 4s time window when the door is closed.

2) Accelerometer. Similar to Gyroscope, the profile of the
accelerometer data has a distinguished feature when the user
walks through a closed door. Specifically, as shown in Fig. 11,
the accelerometer data changes greatly at the first, then
becomes stable, finally varies significantly again. Intuitively,
when a person passes through a closed door, she/he first
would walk to the door, followed by stopping moving to
open it, then continue to pass through this door. As a result, it
is feasible to infer whether a person walks through a door by
identify the movement pattern, i.e., moving-stop-moving [1].

Fig. 9. The spatial and range Gaussian kernels.

Fig. 10. Changes of the gyroscope readingswhen passing through a door.

Fig. 11. Changes of the acceleration readings when passing through a
closed door.
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In the following, we use the accelerometer data to count the
movement steps,which are used to infer themovement status.

In our experiments, we employ a lightweight and practi-
cal step counting algorithm that utilizes the time-varying
magnitude of acceleration, as shown in Fig. 11. In order to
alleviate the influence of random noise, we first composite
three triaxial data of the accelerometer and adopt a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

as the magnitude of acceleration. Then, the
savitzky-golay filter [26] is employed to smooth the data
curve after the static component is removed. Finally, the
peaks and valleys are detected based on the pre-set thresh-
olds. The number of steps S is counted as

S ¼ jnpj þ jnvj
2

; (14)

where np and nv represent the number of the peak and the
valley in a time window. The number of steps S is approxi-
matively equal to the number of peak-valley pairs.

3) Light Sensor. As shown in Fig. 12, when a person walks
through a door from a corridor to enter into a room, the
intensity of light sensor data changes drastically, e.g., the
increase is up to 50 Lux in Fig. 12. The reasons are specified
as follows. According to the observations of our experiments,
the light intensities of different rooms or corridors are gener-
ally different, while the doors are the main connectors
among them. Thus, we can detect the change of light inten-
sity for the door event detectionwith the followingmethod.

We first use the savitzky-golay filter to smooth the curve
of light data, then calculate the mean ml of the light intensity
in a sliding time window. If the difference of ml in two adja-
cent time windows is greater than a threshold g l , a door
event is identified: mlðtÞ � mlðt� 1Þ > gl, where mðtÞ
denotes the mean of light intensity in the tth time window.

4) WiFi Receiver. Although it is extremely difficult to
guarantee there are large numbers of APs deployed in each
doors of each buildings, it is common and popular to deploy
a few sparse WiFi APs in the modern buildings [47]. For
example, in our experimental environment, we found three
deployed APs, which can provide the opportunity to
improve the accuracy of door event detection. As illustrated
in Fig. 13, the RSSI values of the smartphone for all the three
APs change substantially when the person passes through a
door, i.e., around the 40th sampling point. As a result, we
can use these WiFi APs to detect the door as follows.

We first compute the change of the average RSSI values
in two adjacent time periods for each WiFi AP. If the change

of the ith WiFi AP is greater than the threshold gap, a door
event is detected (ci ¼ 1), otherwise it is not detected
(ci ¼ 0). The experimental results show that gap is set
10-20 dBm, as the strength of WiFi signal would exhibit
obvious difference (e.g., around 10-20 dBm) on both sides of
a wall. Finally, we fuse the decision results of all the WiFi
APs to reduce the false positive.

4.2 Fusion of Heterogeneous Sensor Data
The above experimental observations and analysis show that
Gyroscope, Accelerometer, light sensor and WiFi receiver of
smartphones can be used for door event detection. Neverthe-
less, each sensor is only good at a specific kind of scenarios in
terms of the detection accuracy, due to their different dimen-
sional sensing data [7]. For example, the precision of gyro-
scope-based door event detection is high when a person
passes through a door with a big turn; accelerometer-based
door event detection is accurate when passing through the
closed doors; light-based door event detection works well
when the light intensity is different between a room and a
corridor; the good performance of WiFi-based door event
detection highly depends on large numbers of deployed APs
in the environment. Due to the diverse and complex indoor
surroundings, the single-dimensional sensing data is not
enough for door event detection when only using any one of
these four sensors. As a result, we fusemultiple-dimensional
sensing data from four different sensors to improve the
robustness and accuracy of door event detection.

Specifically, Fig. 14 illustrates the framework of door event
detection based on the fusion ofmultiple-dimensional sensing
data. First, we detect this door-passing event only based on
themagnetic sensing data. If the result indicates that it may be
true, it will continue confirming its truth by fusing the detec-
tion results of other four sensors, or no door event is detected.
In our method, as Eq. (15), we use weight-based majority vot-
ing scheme for the fusion, in order to differentiate the contri-
butions of different sensors to the door event detection

V ¼
XN
i¼1

viri; (15)

where N is the number of built-in sensors. ri denotes the
detection result of ith sensor, where ri ¼ 1when the ith sen-
sor reports a door-passing event, otherwise ri ¼ 0. vi is a
priori weight based on the contribution of ith sensor to
improving LMDD. If V exceeds a pre-set voting threshold k,
a door-passing event is eventually reported. Otherwise,
there is no door-passing event detected.

Fig. 12. Changes of the light intensity when passing through a door.

Fig. 13. Changes of the WiFi signal strengths when passing through a
door.

Fig. 14. The framework of door event detection based on the fusion of
heterogeneous sensor data.

2638 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 11, NOVEMBER 2019



5 PERFORMANCE EVALUATION

5.1 Experiment Setup and Settings
We implement a prototype system of door event detection
to realize LMDD method as follows. First, we develop a
smartphone App based on Android platform to collect the
sensing data of the smartphone sensors, including the mag-
netometer, gyroscope, accelerometer, light sensor and WiFi
receiver. And then, the smartphone sends the sensing data
to a remote server by the Cellular network and WiFi.
Finally, based on these sensing data, the server uses the
LMDDmethod to detect whether the door exists.

As shown in Fig. 15, we make experiments in five differ-
ent kinds of typical environments, including office, class-
room building, residential house, hospital and laboratory.
For one thing, the doors of office, hospital and laboratory
are symmetrically distributed along a corridor, while the
room arrangement is not regular and the directions of doors
are diverse in the classrooms. For another, the doors are
made of metallic material in the classroom, hospital and lab-
oratory, nevertheless, most of doors are wooden in the office
and house, while some doors are made of glass in the labo-
ratory. The floor plans of the office, the laboratory, the hos-
pital, and the classroom are illustrated in Fig. 16.

In the experiments, we recruit 50 volunteers who are liv-
ing, working, or studying in these five environments. They
use five different kinds of popular smartphones, including
Samsung Galaxy S4, Huawei Ascend P7, Sony Xperia Z2,
XiaoMi M2S, and Meizu MX. In total, we conduct about
1800 times of experiments in three months, where more
than 100 door events are included. For each door, we collect
positive data when a person holds a smartphone to walk
into and out of the door, respectively. Also, we collect nega-
tive data when a person holds a smartphone to approach
the wooden, the metallic and the glass objects, such as the
furniture, the cookers and the fish tanks, etc.

As it is extremely difficult to use mathematical model to
calculate the optimal identification threshold of door-pass
event [29], we exploit the statistical analysis based on real
experiments to get their parameter settings. Specifically, we
made large numbers of repeated experiments, and

computed the threshold value with 95 percent confidence
level based on the statistical analysis. For example, the
thresholds of gyroscope, accelerometer, light and WiFi are
1.7, 0.7, 46Lux and 15 dBm, respectively. Its rationality is
that these threshold values can guarantee that the door
identification accuracy is no less than 95 percent [21]. Fur-
ther more, the more the repeated experiments, the better the
threshold settings. We set the time windows 2 s for an open
door and 4 s for a close door, respectively, according to the
observations of our experiments. The threshold � of event
denoising (refer to Section 3.4) is initialized as 0.7.

We mainly utilize two metrics to evaluate the door event
detection performance [36], [46]: 1) false positive rate(FPR),
the fraction of cases where the LMDD announces a ‘Door
Detected’ event but a user doesn’t walk through a door
actually, as Eq. (16). 2) false negative rate(FNR), the fraction
of cases where a user walks through a door but the LMDD
fails to detect the door, as Eq. (17)

FPR ¼
Pm

j¼1 FPjPm
j¼1 Nj

(16)

FNR ¼
Pm

j¼1 FNjPm
j¼1 Pj

; (17)

where m is the number of different experimental environ-
ments. FPj denotes the number of positive reports about
false door events and FNj denotes the number of negative
reports about true door events in the jth experimental envi-
ronment, respectively. Pj denotes the number of true door
events and Nj denotes the number of false door events in
the jth experimental environment. In this paper, we use the
true positive rate (TPR) as the accuracy of door event detec-
tion in the performance evaluation of LMDD. The TPR is
the percentage of true door events detected correctly [46],
i.e., TPR ¼ 1� FNR.

5.2 Experiment Results
In the following, we first evaluate the performance of our
method by compared with the existing works. After that,

Fig. 15. The doors of different environments.

Fig. 16. Floor plans of the experimental environments.
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we evaluate the performance of our method in terms of
three aspects, including various built-in sensors, experimen-
tal environments and door types. Finally, we evaluate the
power consumption of our method.

5.2.1 Comparison with the State-of-the-Art

We compare our method with UnLoc [31], which uses the
unsupervised learning method based on WiFi signals and
Gyroscope sensing data.We conduct 100 times of experiments
to detect 35 doors, and calculate the false detection ratio of all
the 35 doors in each experiment.We evaluate the performance
of LMDDwith only magnetic sensor, by comparing its cumu-
lative distribution function(CDF) of the false detection ratio
with that of UnLoc. As shown in Fig. 17, the experimental
results show that the worst false detection ration of LMDD is
less than 60 percent but that of UnLoc ismore than 85 percent.
Besides, LMDD has the better performance with an enhance-
ment of at least 40 percent inmedian false detection ratio over
the UnLoc techniques. In the experiments, the UnLoc clusters
on gyroscope data and WiFi together to identify turns within
a WiFi area in the same cluster. The turns in the cluster are
identified as doors of adjacent classrooms in a corridor. How-
ever, not every turn refers to a door, and the doors are indi-
rectly detected in the UnLoc. In the other hand, when the
number of surroundingWiFi APs decreases or theWiFi signal
is weak and unstable, the detection errors of UnLoc will
increase obviously, while LMDD is non-infrastructure and
independent on environments. According to the above
results, it can be proved that even the basic LMDD algorithm
outperforms UnLoc, let alone the improved LMDD algo-
rithms with other built-in sensors. So, by comparison, the
LMDD can achieve more higher performance of door event
detection.

5.2.2 The Impact of Different Sensors

In this section, we make experiments to evaluate whether
the fusion of additional built-in smartphone sensors, includ-
ing the gyroscope, accelerometer, light sensor and WiFi
receiver, can improve the detection performance of LMDD.

First, we evaluate the influence of single sensor on the
detection performance. As shown in Fig. 18, compared with
the basic LMDD only based on magnetometer, it can
decrease the FPR and the FNR by about 8 and 23 percent on

average, respectively. Specifically, adding the gyroscope
can achieve the FPR/FNR by about 6/11 percent and
make a greatest improvement on the FNR, i.e., more than
52 percent, while adding the WiFi can achieve the FPR/
FNR by about 3/20 percent and make a largest decrease of
the FPR, more than 62.5 percent. Adding the accelerometer
and light sensor can achieve the FPR/FNR by about
4/15 percent and 4/21 percent, respectively. We find that
most doors of our experiments connect the rooms to the cor-
ridors, and a person needs to make a turn into a room from
a corridor or in a reverse direction. As a result, it is very
accurate to detect the doors by analyzing the change of
gyroscope sensing data. Moreover, compared with the
house wall, the other equipments in the house have slight
impact on the RSS of WiFi signal. Thus, it is difficult to iden-
tify a non-door event as a door event by using WiFi.

Second, in the voting process, the weight of each sensor
should be calculated based on the contribution of each sensor
on the improved LMDD’s performance [4]. The more contri-
bution, the higher weight. Specifically, we conducted experi-
ments and computed the contributions of each sensor based
on the experimental results. For example, Fig. 18 shows that
the TPRs of door event detection are increased by 12, 8, 2 and
3 percent when using gyroscope, accelerometer, light sensor
and WiFi receiver, respectively. Therefore, the normalized
weights of gyroscope, accelerometer, light sensor and WiFi
receiver are set 0.48, 0.32, 0.08, and 0.12, respectively. Notice
that, the accuracy of weight settings increases with the num-
ber of experiments. Thus, in the future, we will study how to
use big data from large-scale application scenarios to further
improve the accuracy of parameter settings.

In order to prove the reasonability of weight settings, we
add new experiments to evaluate the performances of
LMDD in different weight combinations. We compare our
weight settings with other three settings, include a uniform
weight (i.e., the weight of each sensor is uniformly 0.25) and
two groups of randomweights. As shown in Fig. 19, the per-
formance of LMDD with our weight settings is much better
than other settings. It is because our settings are based on the
contribution of each sensor, where the more the contribution
of each sensor, the bigger the weight. Moreover, it is an open
problem to compute the optimal weight settings due to non-
linear, hard modeling contributions of these sensors [4]. In
the future, we will study how to use machine learning based
on a number of real experimental results to get an approxi-
matemodel [7], and compute a near-optimal weight.

Finally, we evaluate the impact of the fusion of all the
four built-in sensors on the detection performance of
LMDD. As shown in Fig. 18, it can improve the detection
performance significantly by utilizing the sensor fusion,
e.g., its FPR and FNR are decreased from 8 and 23 percent
to 2 and 9 percent, respectively, in comparison with the
basic LMDD based on magnetometer.

Fig. 17. Performance comparison between LMDD and UnLoc, in terms
of CDF of false detection ratio.

Fig. 18. The FPR/FNR of LMDD with different built-in sensors.

Fig. 19. The accuracy of improved door event detection with different
weights combination.
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5.2.3 The Impact of Different Environments

We evaluate the performance of the proposed method in
terms of different environments. At first, we only investigate
the performance of the basic LMDD based on a magnetic sen-
sor in five various environments: office, classroom, house,
hospital, and laboratory. As shown in Fig. 20, the basic LMDD
can achieve the FPR by 5, 10, 6, 8 and 7 percent and the FNR
by 30, 19, 20, 14, 13 percent in the five environments, respec-
tively. Although the performances of these five environments
are similar, e.g., the differences of TPRs are less than 5 percent,
the accuracy is different with the environments. Specifically,
the basic LMDD can achieve the lowest FPR about 5 percent
in the office and the lowest FNR about 13 percent in the labo-
ratory. Moreover, the FPR and FNR of basic LMDD in the
classroom and office are higher than those in other environ-
ments. Through analyzing the structures and layouts of envi-
ronments in Figs. 15 and 16, the reasons are that the office
rooms are full with massive wooden furniture (as illustrated
in Fig. 15a), which makes a slight influence on the magnetic
field. Thus, the FPR of LMDD in the office rooms is much
lower than that of the others, while the FNR is greatly higher
than the others for wooden doors. As shown in Fig. 15b, the
laboratories are built well with high-density steel inside the
concrete, while the doors of the laboratory connecting the
rooms and the corridors are almostmade ofmetal. As a result,
it is more accurate to detect the doors and the FNR is lower
than the others. However, a large number of devices with
large metallic objects are deployed in the laboratory, such as
electrical appliances and furniture, which affect the surround-
ing magnetic field seriously and incur the larger FPR. In con-
clusion, the performance of LMDD is different with the
environments and seriously affected by the door materials,
the ferromagnetic structures of buildings and the surrounding
metallic objects [10], [12], [28], [31].

In order to evaluate the robustness of the identifica-
tion threshold in different environments, we calculate the
improvement of TPRwhen themagnetic-based LMDD fused
each sensor in five environments. As shown in Fig. 21, the
TPRs of door event detection for each sensor are increased
by different levels with diverse environments, but the differ-
ence of TPRs for each sensor in five environments is small.
The standard deviation of the TPRs are 2.2, 2.7, 1.9, 3.2, when
basic LMDD fuses gyroscope, accelerometer, light sensor

andWiFi receiver, respectively. As a result, the identification
threshold of each sensor is robust, and the detection perfor-
mance is relatively stable in the complex scenarios.

Moreover, we evaluate the performance of improved
LMDDwith the fusion of all built-in sensors in five different
environments. As shown in Fig. 22, the improved LMDD
can achieve the FPR by 2, 4, 3, 6 and 5 percent and the FNR
by 12, 10, 13, 8, 7 percent in the five environments, respec-
tively. The average TPR of door event detection is increased
to 90 percent. The improved LMDD can achieve the lowest
FPR about 2 percent in the office and the lowest FNR about
7 percent in the laboratory. The performance of improved
LMDD in the residential house is worst with the highest
FNR 13 percent because of the wooden doors and less WiFi
APs. The improved LMDD performs very well in the hospi-
tal and the laboratory, where a user always needs to make a
turn when he/she enters a door that is easily detected by
the gyroscope and accelerometer.

In some special cases, the users may pass through the
doors without turns. Thus, we evaluate whether LMDD still
works without user’s turns based on the experiments. We
tested the performance of LMDD without the turn. The
experimental results show the TPRs of LMDD with the turn
and without it are 91 and 85 percent, respectively. The FNR
of door event detection without the turn only increases by
6 percent, compared with that with the turn. As a result,
even if the users make no turn when passing through a door,
the LMDD can still achieve a good performance of door
event detection with the following reasons. First, the LMDD
achieves the door event detection mainly based on the mag-
netic field, which is nearly not affected with/without user’s
turn. Moreover, although the gyroscope is invalid without
user’s turn, the LMDD can still use the fusion of other sen-
sors to identify the door event, thus greatly alleviating the
negative influencewithout user’s turn.

5.2.4 The Impact of Different Types of Doors

We evaluate the performance of LMDD in three different
kinds of doors, including metallic doors, wooden doors, and
glass doors. As shown in Fig. 23, the FNR of metallic door
event detection is less than 15 percent but that of glass door
event detection is more than 20 percent. Hence, it can be
observed that metallic doors are more easily detected than

Fig. 20. The FPR/FNR of basic LMDD in five environments.

Fig. 21. The TPR of basic LMDD with different built-in sensors in five
environments.

Fig. 22. The FPR/FNR of LMDD fusing all built-in sensors in five
environments.

Fig. 23. The FPR/FNR of basic LMDD for three types of doors.
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others because of the serious effect of metal on the magnetic
field. At the same time, in the negative experiments, when the
smartphones were put near the metallic, the wooden and the
glass doors, respectively, we observe that the FPR is more
than 8 percent and the largest near themetallic, but is the least
near the glass and only 5 percent. The FPR and FNR of
wooden door event detection is only 7/20 percent. We find
that the metallic doors can more easily affect the magnetic
field of smartphones than the others, which is themain reason
of high-accuracy metallic door event detection. Based on the
above experimental observations, it can be found that the
detection performances of LMDD have slight differences in
various types of doors due to different materials, structure
and size, which can be further leveraged to distinguish each
door and benefit to indoor localization.

5.2.5 Power Consumption

In this section, we evaluate the power consumption of our
method. In our system, in order to reduce the power con-
sumption of local processing in smartphone as much as pos-
sible, we upload all sensors’ data to a cloud server where all
the data is processed. The energy consumption of data proc-
essing in cloud server is not included in the power consump-
tion of smartphones. Thus, the total power consumption
Ptotal of LMDD which is only related to the smartphone con-
sists of system consumption Psystem and sensor consumption
Psensors, i.e., Ptotal ¼ Psensors þ Psensors. The sensor consump-
tion Psensors is the power consumed by the implementation of
the smartphone sensors, while the system consumption
Psystem is the basic consumption of implementing the smart-
phone system. Then we first measure the battery level for
about 100 times when only running the basic Android sys-
tem, and calculate the energy consumption of Android sys-
tem Psystem. And then, in order to evaluate the power
consumption of each sensor, we measure the power con-
sumption of smartphone for 30 times when individually
switching on one ofWiFi, magnetometer, gyroscope, acceler-
ometer and light sensor. Thus, we can compute the sensor
consumption as Psensor ¼ Ptotal � Psystem, where Psystem is the
average power consumption of Android system.

The power consumptions of Android system and various
sensors are shown in Table 1. Specifically, as shown in
Fig. 24, the system and WiFi consume the most energy
(about 73.6 percent), where the WiFi spends the energy
about 36.2 percent. Moreover, the magnetometer only uses

a small amount of energy (about 12.1 percent) while other
built-in sensors consume about 14.3 percent energy. As a
basic component, the Android system consumes a high
amount of energy (about 37.4 percent) that is unavoidable.
WiFi is another main consumer especially in the working
mode, which is the other shortcoming of the UnLoc. By con-
trast, the energy cost of the basic LMDD with the magnetic
sensors only refers to the power consumption of the system
and magnetic, but UnLoc needs the 88 percent power con-
sumption of the system, WiFi and gyroscope. The power
consumption of UnLoc is seven times more than that of
basic LMDD. As a result, the experimental results show that
LMDD is a lightweight, low-cost and ubiquitous door event
detection system.

6 DISCUSSION AND FUTURE WORK

In this section, we make extensive experiments to explore
the influences of four factors on the detection performance,
including the errors of magnetic sensor, the influence of
users’ behavior, the interference of indoor environments,
the crowdsensing of massive users, and the usage of LMDD
in IPSes. Further, we give the future work based on these
experimental results and analysis.

Error of Magnetometer. We evaluate the error of magnetic
sensor in the smartphone by comparing with a particular,
accurate sensor, i.e., Honeywell HMC5883L with 5 milli-
gauss precision [48]. As shown in Fig. 26, we connect this
magneto-resistive magnetic sensor to a TelosB wireless sen-
sor for communication, while using a laptop based on
Ubuntu system to receive the magnetic sensing data. We
compare the HMC5883L sensor with the smartphone mag-
netic sensor in terms of stable status. As shown in Fig. 25,
the readings of HMC5883L is more stable than that of a
smartphone magnetic sensor in the stable status, while the
reading change of HMC5883L is larger than that of the
smartphone magnetic sensor when passing through a door.
The above results show that the smartphone magnetic sen-
sors have large errors. Thus, in the future, we will explore
how to calibrate the sensing error of smartphone magne-
tometer to further improve the performance of LMDD.

Further more, we evaluate the heterogeneity of magnetic
sensors for different smartphones. Specifically, in our

TABLE 1
The Power Consumption (mW) of Sensors

Parts Average Maximum Minimum

Android system 151.9 215.6 88.2
Magnetometer 49 112.7 24.5
WiFi 147 245 122.5
Gyro., Acc. and Light 58.8 49 73.5

Fig. 24. The average power consumption of sensors.

Fig. 25. Comparison between HMC5883L and smartphone magnetic
sensor in the stable status.

Fig. 26. The magneto-resistive magnetic sensor HMC5883L.
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experiment, we compare the magnetic sensors’ readings of
five smartphones, including Sumsang Galaxy S4, Huawei
Ascend P7, Sony Xperia Z2, XiaoMi M2S, and Meizu MX.
which are held by a user to walk through the same door. As
shown in Fig. 27, the magnetic sensors’ readings are differ-
ent with the smartphones. The reason is that different
phones have different vendors for their internal chips,
which have influences on the sensor readings [2]. In addi-
tion, we observe that the variation ranges of magnetic inten-
sity passing the same door are approximate, e.g., about
20mT , though the absolute readings of different devices are
different. Thus, we utilize the range Gaussian kernel to cal-
culate the variation of magnetic intensities. The range fea-
ture is a relative variable and not affected by absolute
readings seriously, thus greatly alleviating the influence of
heterogeneous chips on LMDD. Finally, we evaluate the
performance of LMDD with these five different smart-
phones in Fig. 23, which shows its detection accuracy is
more than 80 percent on average. Hence, our schemes can
effectively overcome the influence of device heterogeneity
on the LMDD. In the future, we will explore the high-
accuracy magneto-resistive magnetic sensor to calibrate the
sensing errors of common smartphone magnetometers and
use the crowd-sensing to weaken the influence of different
internal chips on the LMDD accuracy.

Influence of Users’ Behavior. First, we analyze the impact of
walking speed on the performance. Since the average walk-
ing speed of indoor users is about 1:48 � 2:11 m/s [33], the
time difference is very small when a user passes through a
door. For example, when a user walks slowly or fast
through a door (about three meters’ length), the time differ-
ence is less than 0.6 s. Thus, the walking speed of users
through a door has slight influence on the time window size
and the detection performance. Furthermore, we conduct
extensive experiments to further verify this conclusion by
comparing the performance of LMDD in different walking
speeds of users. We change the speeds uniformly from
0.6 m/s (very slow) to 3 m/s (very fast). As shown in
Fig. 28, the performances of LMDD in the slow (1.2 m/s),
normal (1.8 m/s) and fast speeds (2.4 m/s) are similar, and
all the TPRs are more than 85 percent. Moreover, if the
speed is abnormal, e.g., very slow (about 0.6 m/s) or very
fast (about 3 m/s) [33], though the TPRs are still above
72 percent, it is a little lower than that with normal speeds,

e.g., about 10 percent. It is because that the time window
size and sampling frequency are set to constants for easy
use in practice. Hence, the slower the speed, the shorter the
walking distance in a time window, and the smaller the
range of magnetic intensities, as illustrated in Fig. 9. (It is
similar in the very fast speed.) As a result, when the speed
is very slow or very fast, the range Gaussian kernel of mag-
netic intensities in a time windows becomes smaller and is
less than the threshold, thus decreasing the detection accu-
racy slightly. In summary, the walking speed of users
makes a negligible impact on the LMDD’s performance.

Second, we discuss the influence of user’s action and the
door state on the LMDD’s performance. When the door
states (e.g., open/closed door or inside-swing/outside-
swing door) or user’s actions (e.g., open/close a door)
change, the difference of magnetic field intensities between
inside and outside of a room still keeps constant [23]. As the
LMDD detects the door events based on the changes of mag-
netic field intensity when a user walks through the door, the
door states and user’s actions have a negligible impact on the
performance of LMDD. In the future, we will explore how to
diminish these influences so as to further improve the perfor-
mance, e.g., using machine learning algorithms to learn
user’s behaviors based on their historical data [29], [34], [41].

Interference of Indoor Environments. In the complex indoor
environment, variousmetallic objects may affect the magnetic
intensity of magnetic sensors, thus decreasing the detection
performance of LMDD. For example, when a smartphone is
close to large metallic objects, such as electrical appliances,
furniture, etc, the magnetic field will be changed. Thus, we
make experiments to explore the negative influence of indoor
environments on the detection performance of LMDD. As
shown in the Fig. 29, when a smartphone is close to an air con-
ditioning and a metallic file cabinet, the magnetic intensity is
changed. Even when a person with a laptop backpack walks
through a smartphone, themagnetic intensitywill occur pulse
change due to the interference from the inside laptop and
metallic objects. According to the above observations, the
complex indoor environmentsmake a significant influence on
the sensing data of magnetic sensor, which undermines the
detection performance LMDD. Hence, in the future, we will
explore to solve this problem by utilizing deep-learning
scheme to build more accurate detection model based on a
mass of door event detection data.

Crowdsensing of Massive Users. To alleviate the negative
influences of sensor error and complex indoor environ-
ments, we can use the crowdsensing of massive users to
improve the detection performance. In this section, we con-
duct a small-scale pilot experiment to explore the impact of
crowdsensing on the performance of basic LMDD. We col-
lect the sensing data from six volunteers when they pass
through a door with Android-based smartphones. We com-
pute the detection errors by making a majority voting deci-
sion based on the crowdsensing of these 6 users to evaluate
the performance of LMDD. As shown in the Fig. 30, the

Fig. 27. Heterogeneity evaluation of smartphone magnetic sensors.

Fig. 28. The accuracy of LMDD in human walking speeds from 0:6m=s
(very slow) to 3m=s (very fast). Q2

Fig. 29. The multiple factors in a complex indoor environment.
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worst false detection ratio of LMDD with crowdsensing is
less than 45 percent but that of basic LMDD is more than
55 percent. Besides, the crowdsensing-based LMDD has the
better performance with an increase of at least 33 percent in
median false detection ratio over basic LMDD, which indi-
cates the effectiveness of crowdsensing to improve the per-
formance of LMDD. In the future, we will further explore
how to use the crowdsensing [8], [32], [37] to improve the
accuracy of door event detection.

Application of LMDD in Indoor Localization. As the ulti-
mate goal of LMDD is to calibrate the indoor localization
results in IPSes, we discuss how to apply LMDD to indoor
localization as follows. First, we take a basic application of
LMDD-based indoor localization as an example [31]. As
shown in Fig. 1a, the localization error of a user in IPSes
increases with his/her walking distance due to the accu-
mulation error [25], [31]. When the user passes through a
door, LMDD can accurately detect the door event based on
the change of magnetic sensing data. After that, we can
use the approximate localization of the user achieved from
current IPSes (such as the dead-reckoning) to match the
door position of the floor plan [35], which is then used to
calibrate the inaccurate localization of the user. Moreover,
in practice, the user‘s position may match the false door
positions due to the large error of the approximate locali-
zation or short distances between doors. To address this
problem, we can use the fine-grained features of magnetic
intensity to identify each door, since different material,
structure and/or size of doors make the fine-grained
diversity of the magnetic sensing data [29]. Also, we can
use other inertial sensors of smartphones to distinguish
the adjacent doors. e.g., the Gyroscope sensing data can be
used to identify the left-side/right-side doors of the corri-
dor due to different turning directions [29], [41]. These
researches are deferred to the future work, while this
paper mainly focuses on the accurate door event detection.

7 CONCLUSION

Doors are important landmarks for indoor positioning sys-
tems. An accurate and light-weight door event detection
approach is therefore highly desired. In this paper, we
observe special change patterns of magnetic signals when
carrying a smartphone to pass through a door. Based on
this observation, we design a light-weight, magnetic-based
infrastructure-free door event detection approach (named
LMDD) running on common smartphones. A signal analy-
sis algorithm combined with a feature correlation function
is designed to capture door events and cancel environmen-
tal events. In order to further improve the robustness and
accuracy of LMDD, an improved door event detection
framework based on a majority-voting model to fuse multi-
ple-dimensional sensing data from non-magnetic built-in
sensors. Prototype experiments in various typical environ-
ments show that LMDD achieves sound door event

detection accuracy. We believe that our proposed door
event detection method would significantly benefit indoor
positioning systems.
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