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Abstract—Android overlay enables one app to draw over other apps by creating an extra View layer atop the host view, which
nevertheless can be exploited by malicious apps (malware) to attack users. To combat this threat, prior countermeasures concentrate
on restricting the capabilities of overlays at the OS level while sacrificing overlays’ usability; recently, the overlay mechanism has been
substantially updated to prevent a variety of attacks, which however can still be evaded by considerable adversaries. To address these
shortcomings, a more pragmatic approach is to enable early detection of overlay-based malware during the app market review process,
so that all the capabilities of overlays can stay unchanged. For this purpose, in this paper we first conduct a large-scale comparative
study of overlay characteristics in benign and malicious apps, and then implement the OverlayChecker system to automatically detect
overlay-based malware for one of the world’s largest Android app stores. In particular, we have made systematic efforts in feature
engineering, Ul exploration, emulation architecture, and run-time environment, thus maintaining high detection accuracy (97 percent

precision and 97 percent recall) and short per-app scan time (~1.7 minutes) with only two commodity servers, under an intensive

workload of ~10K newly submitted apps per day.

Index Terms—Android overlay, mobile malware detection, app market, user interaction, android emulation, machine learning

1 INTRODUCTION

VERLAY has been a user interface (UI) feature of Android,
which enables a mobile app to draw over other apps by
creating an extra View layer atop the host View, as illustrated
in Fig. 1. The rationale behind this feature is to improve the
users’ experience when they are interacting with multiple
apps at the same time. Indeed, with the limited sizes of smart-
phone screens, squeezing the Uls of multiple apps on a small
screen would significantly impair usability — although Multi-
Window [1] (for displaying multiple apps in a split-screen
mode) has been supported since Android 7.0, it is seldom used
by smartphone users [2]. Overlays have been widely adopted
by mobile apps installed on hundreds of millions of mobile
devices, such as Facebook, Uber, Messenger, Zoom, etc. We
observe that as of Nov. 2020, 27.2 percent (136 out of 500) of the
most popular apps in Google Play Store use overlays.
Unfortunately, the overlay feature is often exploited by
malicious apps (or says malware) to attack users [3], [4], [5],
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[6], [7], [8], [9]. Since overlays can intercept user input that
is intended for the underlying host View, one common
attack is to capture sensitive user actions or data on the fly
through deceptive overlays, as illustrated in Figs. 1c, 1d,
and le. To make matters worse, a recent study [10] demon-
strates that the Ul feedback loop can be completely compro-
mised and controlled through the “cloak and dagger”
attack without the Android permission SYSTEM_ALERT_ -
WINDOW which is officially assigned to allow an app to cre-
ate overlays on top of all other apps.

Given the severity and prevalence of overlay-based
attacks, the Android overlay mechanism has been substan-
tially updated in the release of Android 8.0 in Aug. 2017. Spe-
cifically, two-fold measures were taken to facilitate users’
comprehensive surveillance on apps’ usage of overlays: (1)
unifying the original six types of overlays into a single one,
and (2) changing the management style of overlay-related
permissions from static configuration at installation time to
dynamic approval at run time. Unfortunately, despite these
efforts, overlay-based attacks still persist due to real-world
challenges. On one hand, there still exist ~40% of Android
devices that have not been upgraded to Android 8.0+, thus
being vulnerable to overlay-based attacks. For these devi-
ces, several countermeasures have been proposed to restrict
the capabilities of overlays at the operating system (OS)
level [5], [11], [12]. However, these solutions barely see any
adoptions by Android due to the concern of sacrificing
overlay usability. On the other hand, even for devices run-
ning Android 8.0+, malicious apps are still able to launch
overlay-based attacks in a two-stage manner [13] — first
inducing users to grant overlay-related permissions upon

1536-1233 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 07,2022 at 11:05:28 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-9067-8733
https://orcid.org/0000-0002-9067-8733
https://orcid.org/0000-0002-9067-8733
https://orcid.org/0000-0002-9067-8733
https://orcid.org/0000-0002-9067-8733
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0002-9990-5090
https://orcid.org/0000-0002-9990-5090
https://orcid.org/0000-0002-9990-5090
https://orcid.org/0000-0002-9990-5090
https://orcid.org/0000-0002-9990-5090
https://orcid.org/0000-0002-0934-5035
https://orcid.org/0000-0002-0934-5035
https://orcid.org/0000-0002-0934-5035
https://orcid.org/0000-0002-0934-5035
https://orcid.org/0000-0002-0934-5035
mailto:gongliangyi@gmail.com
mailto:lizhenhua1983@gmail.com
mailto:hywangthu@gmail.com
mailto:linhaomails@gmail.com
mailto:xma.cs@xjtu.edu.cn
mailto:xma.cs@xjtu.edu.cn
mailto:yunhaoliu@gmail.com

GONG ETAL.: OVERLAY-BASED ANDROID MALWARE DETECTION AT MARKET SCALES: SYSTEMATICALLY ADAPTING TO THE NEW...

\.. - SN ».
(a) (b) (c) (d) (e)

Fig. 1. Five common forms of overlays: (a) float, (b) cover, (c) hollow out,
(d) single point, (e) offscreen. The upper row plots the underlying host
View and the overlay lying on top of it, while the lower row plots the
user-perceived view in each case. Benign apps typically use cases (a)
(b), while malicious apps use all cases (a)—(e).

app startup, and then successfully displaying malicious
overlays to them during the running process.

To address these issues, a more pragmatic approach is to
enable the early detection of overlay-based malware at the
app market level during the app review process (before the
apps are released to users), so that all the capabilities of
overlays can be retained and even devices that have not
been upgraded to Android 8.0+ can be effectively protected.
Unfortunately, little has been known about the feasibility
and effectiveness of this approach due to the lack of system-
atic understandings, insights, and datasets of malicious
overlays in the wild. Still worse, few regulations and usage
references are available for overlay usage at present, making
it difficult to define benign and malicious overlays.

Understanding Overlay-Based Malware. To overcome these,
we collaborate with one of the world’s largest Android app
stores, i.e., Tencent App Market [14] or Market-T , to perform
a large-scale study of overlay behaviors in apps. Using both
static and dynamic analyses, we compare the overlay behav-
ior between benign and malicious apps to uncover critical
characteristics of malicious overlay in the ground-truth data
provided by Market-T. Compared with static features that
can be directly extracted from APK files, many important fea-
tures (e.g., Type and Height) of overlays are dynamically
determined at app runtime. To extract them, we automate
apps’ running using the Monkey Ul exerciser [15].

In detail, we find that 37 percent of malicious apps can still
launch overlay-based attacks on Andorid 8.0+ in the two-
stage manner described above, indicating a non-trivial threat
to even up-to-date systems. Further, our results reveal a set of
suspicious overlay properties strongly correlated with the
malice of apps: (1) Overlays are used by 50 percent of mali-
cious apps, and they intentionally make their overlays diffi-
cult to detect. (2) Type, Flags, and Format are the three
features with the strongest correlations with an app’s malice,
while the new Type (TYPE_APPLICATION_OVERLAY) in
Android 8.0+ is ineffective to early detection. (3) Overlays’
visual coverage exhibits distinct distributions between mali-
cious and benign apps. (4) A programmatically visible over-
lay can be visually invisible to users, and this fact is often
exploited by malicious apps.

In particular, we notice that although there are 52 over-
lay-related features defined in the Android SDK (see
Table 1), they fail to capture several important aspects of
overlays in practice. For example, no existing feature corre-
sponds to whether an overlay is actually visible to the user
when it is being rendered (e.g., Figs. 1d and 1e). To address
this limitation in the Android SDK, we introduce four novel
features into our study (which can improve the detection
accuracy of our system described later).
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TABLE 1
Android Apps’ Layout and View Parameters
That Determine the Overlay Behavior

Category Parameters

Appearance X,Y,Width, Height, Gravity, isOpaque,
horizontalMargin, horizontalWeight,
verticalMargin, verticalWeight,
screenOrientation,
isOpaque, Alpha, Background, Format,
dimAmount, screenBrightness,
VisualCoverage, isReallyVisible

Priority Type

Functionality = Root, ScreenShot

Quantity ActivityCoverage, NumOfOverlays

Flags FLAG_FULLSCREEN,
FLAG_LAYOUT_IN_SCREEN,
FLAG_NOT_FOCUSABLE,
~~~~~~ (31 in total)

Static BIND_ACCESSIBILITY_SERVICE,

PACKAGE_USAGE_STATS

The calculated four novel features we design for detecting malicious overlays
are in italic.

Detecting Overlay-Based Malware. Leveraging the above
insights, we then develop a system called OverlayChecker
to enable market-scale early detection of overlay-based
malicious apps at the app submission time. Such detection
capability is highly attractive since it does not require OS-
level changes and thus can address the tension between
usability and security of previously-proposed solutions [5],
[11], [12]. Based on the characterization results of malicious
overlays, OverlayChecker collects 56 static and dynamic
features from each app. Moreover, we introduce a normal-
ized feature-frequency encoding scheme, which represents
features with their normalized occurrence frequencies.
Compared with the traditional One-Hot encoding used in
our preliminary work [16], this encoding scheme is able to
retain more fine-grained feature information that is useful
in deciding the malice of quite a few apps. Taking this as
input, we detect malicious overlay behavior via a random
forest machine learning model trained with large-scale,
ground-truth data provided by Market-T.

To cope with the large amount of app submissions to
Market-T per day, we make multifold endeavors to architect
an efficient analysis infrastructure. First, we built a light-
weight Android emulator that directly runs the Android OS
and apps on x86 architecture, coupled with the state-of-the-
art dynamic binary translation technique [17] to support apps
that use Android’s native APIs. Also, we adopt GPU-
assisted acceleration to expedite the graphic rendering for
apps, which intercepts the “micro” graphic instructions
(that are reconstructed from OpenGL instructions by the
graphic driver) and directly executes them on x86 servers’
dedicated GPUs. Further, noticing that static and dynamic
analysis are independent of each other and thus can be
done in parallel, we design a publish-subscribe pipeline to
optimize the overall workflow. With the above efforts, we
achieve a speedup of 8-10x compared to using the default
emulator [18] in Android SDK.
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Further in practice, we observe that the original Monkey
UI exerciser bears three shortcomings: redundant actions,
action loops, and rigid generation of UI events, which could
degrade the UI exploration coverage and hinder the expo-
sure of features. We thus design an app-aware Ul explora-
tion strategy by additionally taking the specialties of
various apps into account. First, we fine-tune the composi-
tion of the generated Ul events to reduce redundant actions
for the specific types of apps. Second, we leverage an app’s
UI layout structure and component information to guide
the automatic UI exploration to avoid action loops. Third,
we adaptively tune the generation frequency of certain UI
events to prevent apps from identifying the existence of our
emulator and thus suppressing their malicious activities. As
a result, we manage to achieve a higher (76%—86%) Ul
exploration coverage with 40 percent fewer Ul events as
compared with the default Monkey.

Real-World Performance and Robustness. OverlayChecker
has been integrated into Market-T as a part of the app
review process since Jan. 2018 and has been constantly opti-
mized. It works under an intense workload of ~10K app
submissions per day using only two commodity servers
(we run Android 6.0 and 8.0 on the two servers respec-
tively). The per-app analysis time is ~1.7 minutes, and
OverlayChecker is able to achieve 97 percent detection pre-
cision and 97 percent recall as of Mar. 2020. Through the
lens of malicious overlays, we find that OverlayChecker is
especially effective (over 90 percent accuracy) in detecting
certain types of malicious apps, e.g., ransomware, adware
and porn-fraud apps, due to their heavy reliance on over-
lays to launch intended attacks.

Furthermore, we applied OverlayChecker to 10K random
apps in Google Play Store on May 1st, 2020, and detected 25
previously unknown apps with malicious overlays that
were caught stealing credentials. Although these apps were
removed by Google Play Store within days, these incidents
demonstrate that despite Google’s existing app-security
checks, early detection is still necessary to prevent malware
from being made available to users.

We present an in-depth analysis of the random forest
model used by OverlayChecker to investigate whether
attackers can avoid OverlayChecker by adapting their
malware’s behaviors. By interpreting our model, we show
that the behaviors of benign and malicious overlays are suf-
ficiently different, making it difficult for a malicious overlay
to avoid OverlayChecker: most existing malicious overlay
strategies are entirely precluded, and attackers are left with
a significantly weaker range of attack capabilities.

2 BACKGROUND

2.1 Android Overlay Basics

In the Android UI framework, an overlay is a special feature
enabling one app to create an extra View layer that sits on
top of the host View. Different from the host View which is
almost always in a rectangular shape occupying the full
screen of the user device, an overlay possesses plentiful
freedom in terms of shape, area, and location. As shown in
Fig. 1, an overlay can be (a) a small-area circle floating atop
the host View at an arbitrary location, (b) a full-screen rect-
angle completely covering the host View, (c) a hollow-out
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rectangle partially covering the host View, (d) a single point
that is rather difficult to notice, or (e) a rectangle outside the
screen that cannot be noticed by users. All overlays are able
to intercept user input intended for the underlying host
View if certain flags are specified [16]. In brief, overlay is a
powerful Ul feature allowing one app to display something
on top of others, which can be used to intercept sensitive
user input, or even alter the user’s perceptions of which app
is currently active on the screen.

Each overlay’s appearance is defined by a number of
Layout [19] and View parameters [20] (an overlay is an
object inheriting the View class), as listed in Table 1. Among
the appearance parameters, the X, Y, Width, and Height
geometry parameters are intuitive. Gravity decides the
placement of an overlay within a larger UI container. 1s0-
paque and Alpha together qualify and quantify the trans-
parency. Background specifies an overlay’s background
image or color. Format defines the desired bitmap format
like RGBA_8888 (meaning that the overlay can be of any
transparency), TRANSPARENT, and TRANSLUCENT.

The capability of an overlay is derived from the specifica-
tions of Type, Root, ScreenShot, and Flags. When an
Android app intends to use the overlay feature, it typically
requests the SYSTEM_ALERT_WINDOW permission. Further
on Android 8.0+, another SYSTEM_OVERLAY_WINDOW per-
mission should also be requested. More in detail, SYS-
TEM_OVERLAY_WINDOW overlays originally have 6 Types
of display priorities, among which TYPE_SYSTEM_ERROR
has the highest priority-a TYPE_SYSTEM_ERROR overlay
can even appear on top of the lock screen [21], which can be
used to launch serious attacks such as the ransomware
attack. With the release of Android 8.0, to facilitate users’
comprehensive surveillance on apps usage of overlays, the
overlay mechanism has been essentially updated by unify-
ing the original 6 Types of overlays into a single Type,
which also requires users’ explicit approval at app startup
time to display atop other apps. In addition, Root and
Screenshot define the functionality of an overlay. There
are also 31 Flags specifying various aspects of overlay
behavior, e.g., if FLAG_WATCH_OUTSIDE_TOUCH is set, an
overlay can receive all the Ul events outside its coverage
area.

Finally, there are two static properties at the app level that
can amplify the capability of overlays: BIND_ACCESSI-
BILITY_SERVICE and PACKAGE_USAGE_STATS. The for-
mer is used to assist Android users with disabilities, and the
latter allows an app to collect the usage statistics of other
apps. Although apps need to explicitly request permission to
use these capabilities, in practice a malicious app can lure
users to unknowingly grant them, e.g., by abusing the capabil-
ity from the SYSTEM_ALERT WINDOW permission [3].

2.2 Security Practices of App Stores

App stores, such as Google Play Store, Apple App Store, and
Amazon Appstore, are the de facto platform of mobile app
distribution. As of the third quarter of 2020, over 2.86 million
Android apps released on Google Play Store (the official app
store of Android). Market-T, the app store we collaborate
with in this work, has released over 6M apps since its launch
in 2012, with over 30M APKs being downloaded by 20M users
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every day. To protect users from downloading malicious
apps, Market-T conducts a series of app review procedures to
examine ~10K newly submitted apps (including both new
and updated apps) from developers on a daily basis. This sec-
tion takes Market-T as a representative case study to reveal
the practices of today’s app stores for identifying malicious
apps, as well as their utility to OverlayChecker.

To accurately determine the malice of hosted apps, Mar-
ket-T conducts a sophisticated app review process consist-
ing of fingerprint-based antivirus checking, API inspection,
and manual examination. Antivirus checking inspects apps
against virus fingerprints from antivirus service compa-
nies [16]. API inspection identifies malicious apps by scan-
ning what Android APIs are invoked in their code; its
heuristic lies in that certain patterns (combinations and
orders) of API calls imply serious security threats. For those
apps whose malice cannot be determined through antivirus
checking and API inspection, Market-T assigns security
experts to manually examine them with very high precision.

Market-T maintains a large database of malicious apps
captured during the app review process or reported by the
users in the field. The dataset is a precious resource in under-
standing the characteristics of overlays used by malicious
apps (refer to Section 3). Furthermore, the malicious apps
recorded in the database, together with the other benign apps,
form a large labeled training set, based on which supervised
learning can be applied to reveal the key overlay properties
associated with malicious apps (refer to Section 4).

Similar to other app stores, Market-T maintains the cate-
gory labels of each app (e.g., game, shopping, and educa-
tion [22]). These labels are predefined by Market-T and are
selected by app developers. For malicious apps recorded in
the database, Market-T has another set of labels such as ran-
somware, adware, and porn-fraud apps. These labels pro-
vide us with opportunities to understand the motivations
and use cases of overlay-based attacks.

2.3 Threat Model

In this work, we assume malicious apps can launch attacks
using either SYSTEM_ALERT_WINDOW overlays, or TYPE_-
TOAST overlays. Here we refer SYSTEM_ALERT_ WINDOW
overlays to those requesting the SYSTEM_ALERT_ WINDOW
permissions. Further, the SYSTEM_OVERLAY_WINDOW per-
mission is a special permission on Android 8.0+, and is not
granted at runtime. In fact, apps need to explicitly ask users to
additionally grant the SYSTEM_OVERLAY_WINDOW permis-
sion through the permissions manager in system settings.
Smart attackers often employ social engineering approaches
to induce users to authorize the SYSTEM_OVERLAY_WINDOW
permission, by purposely requesting a set of common permis-
sions (e.g., to use camera, sensors, location, and SMS) at app
startup time. In any case, the attacks can be successfully
launched without root privileges. We assume that malicious
apps can use overlays in any form (see Fig. 1), thus confusing
the users to misinterpret Ul interactions, luring the users to
type passwords or grant certain permissions, and so on. Fur-
ther, adversaries can (optionally) launch more effective over-
lay-based attacks by acquiring certain permissions like
BIND_ACCESSIBILITY_SERVICE and PACKAGE_USAGE_-
STATS, or by inferring the UI states in certain ways like the
shared-memory side channel.
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We assume that attackers have adopted techniques to
obfuscate their malicious apps and frustrate analysis. Specifi-
cally, using obfuscation techniques [23], application pacing
platforms can be employed to alter the structure of malware
code and hide the use of malicious overlays, which can help
malware spoof and bypass detection mechanisms such as sig-
nature matching and static analysis. Also, malicious apps can
use various methods to detect whether they are running in
emulation environments. For instance, malware can recognize
the processor architecture (ARM or x86) by inspecting cache
behavior and system configurations, and identify the exis-
tence of automated UI exerciser from user actions. If a mali-
cious app notices the existence of an emulator, it may
dynamically change its behavior accordingly.

Moreover, we assume the goal of the adversary to be dis-
tributing malware through a major app store. This is a power-
ful mode of attack, since inclusion in an app store “lends
credibility” to the malicious app. Additionally, most Android
smartphones are configured to only allow apps to be installed
from app stores by default. We do not consider attacks where
malicious apps are distributed outside of app stores, since
mitigating these “sideloading” attacks requires client-side
defenses that are beyond our scope.

3 UNDERSTANDING OVERLAY BEHAVIOR

3.1 App Dataset

This section presents our analysis of overlay behavior of
malicious and benign apps. Our raw dataset contains all the
new and updated apps submitted to Market-T during Jan.
2017-Sep. 2019. After removing redundant apps (i.e., APKs
with the same MD5 hash value), we are left with a total of
~550K apps as our dataset, and the entire dataset main-
tained by Market-T includes a huge number of apps with
obsolete overlay usage. For every app in the dataset, Mar-
ket-T provides not only its APK file but also its malice and
category labels. Nearly one third (31 percent) of the apps
are labeled malicious and thus are quarantined in Market-
T’s database. Note that the ratio of malicious apps is rela-
tively high because these are the submitted apps before the
app review process, instead of those released to users. As
introduced in Section 2.2, since Market-T adopts a rather
sophisticated and effective app review process, we believe
the false positive rate in this labeling is statistically insignifi-
cant [16] and thus has negligible impact on our subsequent
analysis and system design.

3.2 Overlay Feature Extraction

The first step towards understanding overlay behavior is to
extract the features of overlays in each app. Specifically, Over-
layChecker identifies overlay-based apps (i.e., apps that actu-
ally use one or more overlays) dynamically at run time. In
Android, all overlays are created by invoking the addview
API of the WindowManagerGlobal class, so we can identify
overlay-based apps by checking whether an app has created a
System Window View. Simultaneously, we can extract con-
cerned dynamic features because they are also attached when
the addview APl is invoked. For each overlay, there are static
and dynamic features requiring different extraction methods.
Static features can be directly extracted from an app’s APK
file. In contrast, dynamic features only exist at run time when
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the app is executed, and their number is much larger than that
of static features. In addition to those original features defined
in the Android SDK, we design four novel features. We will
detail these features (refer to Table 1) in the context of their
use cases.

3.2.1 App Emulation

To extract dynamic features of overlays, we explore each
app using the Monkey Ul exerciser [15] that can generate Ul
event streams at both application and system levels. When-
ever Monkey hits an overlay object, it records 54 dynamic
features (refer to Table 1 for details) for later analysis. We
execute apps and the Monkey tool on Android emulators
deployed on a commodity x86 server. However, we do not
use the default Google’s Android device emulator included
in the Android SDK [18]. Since the default emulator is based
on full-system emulation built on top of QEMU, its perfor-
mance is limited and cannot achieve our goal of emulating a
large number of apps at scale.

Instead, we built a lightweight Android emulator that
directly runs the Android OS and apps on x86 architecture.
First, as for the Android OS we use Android-x86 [24], an
open-source x86 porting of the original ARM-based Android
OS. Also, to support apps that use Android’s native APls, we
implement dynamic binary translation (DBT) based on Intel
Houdini [17] to translate the ARM instructions into x86
instructions (most dynamic libraries in Android are based on
the ARM ISA instead of x86). Further, for parallelism we
run multiple concurrent emulators on a x86 server, with each
bound to one CPU core. Specifically, for a commodity x86
server (HP ProLiant DL-380) with 5 x 4-core Xeon CPU @ 2.50
GHz and 32-GB memory, we run 8 Android 6.0-based
emulators and 8 Android 8.0-based emulators on 16
cores concurrently and the remaining 4 cores are employed
for scheduling, monitoring, and logging. Our lightweight
emulator is much more efficient than the default emulator in
the Android SDK—typically it can reduce the emulation over-
head by 8-10x. Within each emulator, generating and execut-
ing 100, 1K, 10K and 100K Monkey events take 2, 22, 220 and
2220 seconds on average. Meanwhile, when executing Mon-
key’s generated Ul events for an app, we use Xposed [25] to
intercept the addview API" invocation data (including its
name and parameters).

Some malicious apps may attempt to recognize whether
they are running on emulators so as to hide their malicious
activities. They typically check static configurations of the sys-
tem, dynamic time intervals of user actions, and sensor data
of the device to identify emulators [26], [27]. To prevent adver-
sarial detection, we made four improvements to our emula-
tors to make them behave more consistently with real devices
and users. First, we alter the default configurations of emula-
tors, including their identity (IMEI and IMSI), network prop-
erties, and other properties defined in the build.prop file
such as PRODUCT and MODEL types [26]. Second, we adjust
the execution parameters of Monkey to make its generated Ul
events appear more realistic [15]. For example, we tune the
throttle parameter with a reasonable value, so that the
occurrence time intervals of the UI events basically comply
with real-world cases. Third, we replay traces of sensor data
(concerning the acceleration, proximity, orientation, and so
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Fig. 2. Relationship between the emulation time, ActivityCoverage,
and number of Monkey events.

forth) collected from a number of real smartphones on our
emulators to improve fidelity [27]. Finally, we customize and
obfuscate the relevant libraries of Xposed, so that the studied
apps can hardly detect Xposed’s hooking behavior [28].

3.2.2 Ul Exploration

Detecting malicious overlay behavior requires a high UI cov-
erage to examine as many overlays. Initially, we used the
Activity coverage as the main metric of Ul coverage, as
each Android app specifies its possible (but not necessarily
used) Activity objects in its AndroidManifest .xml con-
figuration file. However, this metric is overly pessimistic, as it
counts Activities that are not actually referenced by the
code. To figure out which Activities are actually used by
an Android app, we write a script to automatically scan and
analyze the configuration file and the static code of non-obfus-
cated APKs in our dataset. The scanning results show that for
an average app, 88 percent of its specified Activities can
be actually referenced. Thus, we define a more accurate met-
ric, ActivityCoverage, to quantify the Ul coverage. For an
app, the ActivityCoverage is theratio of detected Activ-
ities during emulation over its referenced Activities in
the configuration file.

Over the apps in our dataset, we observe that generating
and executing 100K Monkey events generally achieves the
highest ActivityCoverage. Consequently, it requires
around 2220 seconds (= 37 minutes) on average to analyze
the overlay behavior of every single app. However, the
abovementioned emulation time is unacceptable to both
app stores and developers in practice. From the perspective
of app stores, the resulting computation overhead is expen-
sive, e.g., Market-T would need to employ hundreds of
servers to handle its current workload. From the perspective
of app developers, after submitting an app to the store, they
would have to wait for nearly 40 minutes before the app is
released to users. This could significantly impair the pros-
perity of Market-T, given that many rival app stores allow a
newly submitted app to be released to users instantly. To
address this problem, we carefully balance effectiveness in
terms of ActivityCoverage and efficiency in terms of
emulation time [29]. Fig. 2 shows the ActivityCoverage
achieved with increasing running time of Monkey. As the
emulation time increases, the average ActivityCoverage
quickly grows until it is close to 76 percent; after that, its
growth is flat. Even spending 20x more time to generate
100K Monkey events can only increase the ActivityCo-
verage to 78 percent on average. Therefore, we choose to
run the emulation for ~100 seconds (5K Monkey events) to
achieve a nearly optimal (76 percent) ActivityCoverage
as the “sweet spot” between effectiveness and efficiency.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 07,2022 at 11:05:28 UTC from IEEE Xplore. Restrictions apply.



GONG ETAL.: OVERLAY-BASED ANDROID MALWARE DETECTION AT MARKET SCALES: SYSTEMATICALLY ADAPTING TO THE NEW...

0,

- = Malicious Apps
80}|—Benign Apps
60| Max = 100M), 1008)

Mean = 71(M), 77(8)
Median = 63(M), 75(8) .~

CDF (%)
I
o

Min = 21(M), 23(8) , *

qO 20 30 40 50 60 70 80 90 100
ActivityCoverage (%)

Fig. 3. ActivityCoverage for all malicious (M) and benign (B) apps
when 5K Monkey events are executed.

More specifically, in Fig. 3 we plot how ActivityCo-
verage varies between malicious and benign apps when
5K Monkey events are executed. There is an obvious distinc-
tion between their ActivityCoverage rates—for all typi-
cal statistical metrics (min, median, mean, and max), benign
apps have larger ActivityCoverage rates. The Pearson
correlation coefficient (PCC [30]) between ActivityCover-
age and the malice of apps is non-trivial: PCC = —0.12,
with p-value <0.001 (in all experiments throughout this
paper, we only use the PCC results with < 0.05 p-value to
ensure their statistical significance; therefore, we do not
specify the p-value when presenting PCC results hereafter).
Hence we hypothesize that malicious apps are intentionally
making it hard for dynamic analysis tools to detect mali-
cious behaviors. Therefore, we use ActivityCoverage as
a novel feature for detecting malicious overlays.

3.3 Global Statistics

Through the above described app emulation and UI explo-
ration, we find that overlays are pervasively used by more
than 30 percent of the Android apps in our dataset (includ-
ing both malicious and benign apps). Here we say “more
than” because our app emulation and UI exploration pro-
cesses are not exhausting all overlays used by all apps.
Using the malicious app labels provided by Market-T
(whose labeling process is detailed in Sections 3.1 and 2.2),
we find that overlays are being used by ~50% of malicious
apps but only ~27% of benign apps. In the meanwhile, we
notice that 37 percent of malicious apps can still launch
overlay-based attacks on Android 8.0+ in the two-stage
manner mentioned in Section 1.

More in detail, we wonder how many overlays a benign
app and a malicious app use respectively. To this end, we
devise a new feature NumOfOverlays to count the number
of detected overlays in an overlay-based app in our study. In
our dataset, 72 percent of overlay-based benign apps and 91
percent of overlay-based malicious apps use only one over-
lay. Both the average number (1.1) and maximum number
(12) of overlays used in malicious apps are smaller than
those (average: 1.5, max: 28) used in benign apps [16]. By
manually checking a random sample of overlay-based mali-
cious and benign apps, we find that malicious apps usually
have less functionality than benign apps, and thus do not
need to utilize as many overlays.

3.4 Profiling Key Overlay features
3.4.1 Understanding Static Features

BIND_ACCESSIBILITY_SERVICE. This permission is
granted for accessibility services specially designed to assist
disabled Android users [31]. Unfortunately, because an app
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Fig. 4. Frequently used Types and their PCCs with the malice of apps
before Android 8.0 was released.

with this permission has manifold powerful capabilities (e.g.,
getting the notification of any event that affects the device,
accessing the full View tree, and programmatically perform-
ing click or scroll actions), this permission can be exploited to
launch powerful attacks [32]. In our dataset, 1.3 percent of
apps utilize accessibility services, among which 2.5 percent
are malicious. In particular, 0.12 percent of apps utilize both
accessibility services and SYSTEM_ALERT_WINDOW overlays,
among which 1.6 percent are malicious. Although the number
of apps using this permission is small, we still pay attention to
the simultaneous usages of BIND_ACCESSIBILITY_SER-
VICEand SYSTEM_ALERT_WINDOW.

PACKAGE_USAGE_STATS. This permission allows an app
to collect the usage statistics of other apps including the
foreground app. Acquiring it can help a malicious app
launch more intelligent overlay-based attacks. Analysis on
our dataset shows that 2.2 percent of apps utilize this per-
mission, among which 5.2 percent are malicious. In particu-
lar, 0.36 percent of apps utilize both PACKAGE_USAGE_
STATS and overlays, among which 6.4 percent are mali-
cious. Although the overlay-based attacks coupled with
PACKAGE_USAGE_STATS are not so devastating as the
“cloak and dagger” attacks, we still need to be cautious of
the simultaneous usages of PACKAGE_USAGE_STATS and
overlays.

3.4.2 Understanding Type and Flag

Type. An overlay can have a total of 16 Types before
Android 8.0 was released, among which the six Types listed in
Fig. 4 are the most frequently used in Android 6.0~Android
7.1. In comparison, the remaining 10 Types are together used
by less than 0.1 percent of overlay-based apps. Most notably,
84 percent of the apps that use TYPE_SYSTEM_ERROR over-
lays are malicious, and the PCC between TYPE_SYSTEM_ER-
ROR and the malice of apps is as high as 0.69. This is because
TYPE_SYSTEM_ERROR possesses the high priority enabling
overlay to appear on top of all activity windows, even the lock
screen interface [21], which gives a chance to serious overlay-
based attacks. Thereby, the six most frequently used Types are
deprecated and unified into a new TYPE (TYPE_APPLICA-
TION_OVERLAY) in Android 8.0+ to facilitate users’” compre-
hensive surveillance on apps’ usage of overlays. Since the new
TYPE is used by both benign and malice apps, it is ineffevtive
for detecting malware and therefore is not considered as a key
fearture. Moreover, compared with the TYPE_SYSTEM_ER-
ROR overlay, the new TYPE overlay is limited below critical
system windows like the status bar or the lock screen, and can
only appear atop other activity windows after the explicit
authorization of users.
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Flag. We study all the 31 Flags of Android overlays.
Fig. 5 depicts the statistics of the 13 most frequently used
Flags. We observe that the top four Flags’ correlations
with the malice of apps differ greatly. For example,
although FLAG_NOT_FOCUSABLE is used in 2/3 of overlay-
based apps, only 9.5 percent of these apps are malicious
and the corresponding PCC is as low as -0.55. The reason is
straightforward—a FLAG_NOT_FOCUSABLE overlay cannot
get users’ input events independently (i.e., it also needs the
permission of FLAG_WATCH_OUTSIDE_TOUCH). In contrast,
85 percent of the apps that use FLAG_FULLSCREEN over-
lays are malicious and the PCC is as high as 0.7. This is
because a FLAG_FULLSCREEN overlay can cover the whole
screen (including the status bar) and thus can easily deceive
mobile users.

3.4.3 Understanding Appearance Features

Format and Alpha. Among the 18 appearance parameters
in Table 1, Format is of the highest importance to malicious
overlay behavior since it determines the basic bitmap trans-
parency of an overlay. As shown in Fig. 6, among the three
major Formats: RGBA_8888, TRANSLUCENT and TRANS-
PARENT, RGBA_8888 is not only the most frequently used
but also the most related to the malice of apps. This is
because RGBA_8888 means that the overlay can be of any
transparency, and thus gives the overlay the greatest pre-
sentation freedom.

Supplementary to Format, Alpha also impacts the trans-
parency of an overlay. Since Alpha is a continuous value
lying between 0.0 (fully transparent) and 1.0 (fully opaque),
we manually divide the value scope into three ranges: [0, 0.5],
(0.5, 1.0) and 1.0. From Fig. 7, we observe that Alpha = 1.0 is
not only the most frequently used but also the most related to
the malice of apps. This can be reasonably ascribed to the fact
that Alpha = 1.0 is the default configuration for a View and
few developers would adjust this configuration. Thus, we
infer that Alpha should not be an important property in
detecting malicious overlay behavior.
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Fig. 6. Frequently used Formats and their PCCs with the malice of
apps.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 12, DECEMBER 2022

1

0.5

0 —

-0.5

Il Usage Frequency in Overlay-based Apps.
[ICorrelation with the Malice of Apps

-

1 (0.5, 1)
Alpha

[0,0.5]

Fig. 7. Usage frequency of different ranges of Alpha, and their PCCs
with the malice of apps.

VisualCoverage. Based on our experiences of manu-
ally examining the layouts of numerous overlays, we propose
a novel appearance feature named VisualCoverage that
denotes the ratio of the host View's area visually covered by
the overlay(s). When the host View is fully or partially cov-
ered by an overlay, the overlay’s VisualCoverage is calcu-
lated by dividing the intersection area by the area of the host
View. A more complex case is in Fig. 8—there is one host
View and two overlays on the screen, so the overlays’ Visu-
alCoverage is calculated by dividing the shaded area by the
area of the host View. In practice, we find that overlays’ Vis-
ualCoverage exhibits distinct distributions between mali-
cious and benign apps [16]. For benign apps overlays,
VisualCoverage is almost uniformly distributed; for mali-
cious apps’ overlays, the distribution of VisualCoverage is
highly skewed. Thus, the PCC between VisualCoverage
and the malice of apps is fairly high (0.4).

Y and Gravity. We further consider each overlay’s
VisualCoverage scope, denoting the host View's geomet-
ric scope visually covered by the overlay. Figs. 9 and 10 plot
the heat maps of the VisualCoverage scopes for benign
and malicious apps’ overlays. The frame of each figure rep-
resents the screen of common Android smartphones. Again,
we notice distinct distributions between the overlays’ Vis-
ualCoverage scopes of malicious and benign apps. Specif-
ically, we observe that for benign apps’ overlays, the
VisualCoverage scopes tend to locate at the top left cor-
ner of the screen (i.e., a small-area rounded or squared over-
lay floating at the top left corner, showing system status
information). But for malicious apps’ overlays, the Visu-
alCoverage scopes do not have a preferred region in the
screen. This indicates that an overlay’s Y coordinate and
Gravity are also correlated with the malice of its affiliated
app—recall that Gravity decides the placement of an over-
lay within a larger Ul container.

isReallyVisible. Visibility is critical for a user’s per-
ception of an overlay. Unfortunately, a programmatically
visible overlay can be visually invisible to users, e.g., in
Figs. 1b and 1c if the overlay is transparent, in Fig. 1d where

Fig. 8. Our calculation of the VisualCoverage for multiple overlays.
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Fig. 9. Heat map of the VisualCoverage scopes for benign apps’
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Fig. 10. Heat map of the VisualCoverage scopes for malicious apps’
overlays.

the overlay is too small to see with naked eyes, or in Fig. le
where the overlay is outside the screen. According to our
manual observations, this fact is often exploited by mali-
cious apps. To cope with this issue, we calculate a novel fea-
ture isReallyVisible based on an overlay’s appearance
features including Width, Height, Alpha, Background,
isOpaque, and so on. The workflow for our calculation of
isReallyVisible is plotted in Fig. 11. Among all the
apps that have used overlays, 33 percent of malicious apps
and 13 percent of benign apps are using overlays that are
not really visible, showing the significance of isReally-
Visible in detecting malicious overlays.

3.5 Summary of the Study Results

Our comparative study leads to a series of useful insights with
respect to malicious overlay behavior: (1) Overlays are used
by more than 30 percent of Android apps overall in our data-
set, and 50 percent of malicious apps. (2) On the other hand,
both the average and maximum numbers of overlays used in
malicious apps are smaller than those in benign apps. This is
because malicious apps usually have less functionality than
benign apps. (3) We observe malicious apps intentionally
make it hard for dynamic analysis tools to detect their over-
lays. (4) Type, Flag, and Format are the three features that
correlate most strongly with an app’s malice, while the new
Type in Android 8.0+ is less effective in early detection, e.g.,
84 percent of the apps that use TYPE_SYSTEM_ERROR over-
lays are malicious (PCC = 0.69) before Android 8.0 was
released, however it should be noted that there becomes a
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Fig. 11. Flow chart for our calculation of isReallyVisible for an
overlay.
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single new Type overlay in Android 8.0+; more than two
thirds of the apps that use FLAG_FULLSCREEN or FLA-
G_LAYOUT_IN_SCREEN overlays are malicious (PCC = 0.68
and 0.55); and 48 percent of the apps that use RGBA_8888
overlays are malicious (PCC = 0.45). (5) We design a complex
feature VisualCoverage that reveals distinct distributions
between the overlays of malicious apps and benign apps. (6)
A programmatically visible overlay can be visually invisible
to users, and this fact is often exploited by malicious apps. To
make it clear, we develop a novel feature isReallyVisible
based on multiple existing appearance features.

4 SyYSTEM DESIGN AND DEVELOPMENT

4.1 System Design and Implementation

Guided by our study results in Section 3, we build Overlay-
Checker to detect overlay-based malware and evaluate its
efficacy.

Owverview and Workflow. As shown in Fig. 12, once an app
is submitted, OverlayChecker first leverages DBT to enable
the app to run efficiently on x86 environments (®). To auto-
mate various app behaviors, we use the Monkey exerciser to
automatically generate Ul event streams (@). When running
the app, multiple defensive interventions are also imple-
mented to prevent intentional detection evasion (®). Next,
we extract the app’s requested permissions from its meta-
data (@®), and use Xposed to capture the invocation of the
addview API during the app’s execution (©). As a result,
we distill the key overlay features as identified in Section 3
from the above logged data (@). The selected features are
then encoded in a normalization manner (®), and piped
into a machine learning classifier (e.g., random forest) to
determine the app’s malice (©). In the remainder of this sec-
tion, we will describe OverlayChecker’s emulation infra-
structure used for dynamic and static analyses, as well as
feature engineering techniques and model design in detail.

Emulation Infrastructure. As introduced in Section 3.2.1,
OverlayChecker builds its app emulation environment atop
a customized lightweight Android emulator to extract
dynamic features of overlays. Here we focus on further
enhancing the underlying emulation infrastructure to cope
with several real-world challenges.

In detail, we find that the average ActivityCoverage
of the original Monkey exerciser is only 76 percent, which
inevitably omits some malicious overlays displayed during
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Fig. 13. Comparison of Monkey Ul exerciser with our enhanced Ul
exerciser.

the app running process. To better expose and embody
overlay features, we further advance our automatic UI
exploration methodology targeting Monkey’s three major
drawbacks — redundant actions, action loops [33], and
fixed-rate generation of Ul events, which could degrade Ul
coverage and thus hinder feature exposure.

First, in practice we notice that portions of different Ul
events vary with apps [34], so the uniformly set composition
of Ul events tends to reduce the ActivityCoverage of
many apps due to redundant actions. We thus fine-tune the
composition of the generated Ul events (e.g., the portion of
touch events) to reduce redundant actions according to the
specific types of apps (e.g., shopping or news feed apps). Here
we perform category-level rather than app-level analysis for
parameter settings given that many apps are obfuscated and
thus may incur high analysis workload. Second, we find that
action loops root in the random nature of Monkey’s generated
events, which is inherently limited due to the lack of informa-
tion regarding an app’s interactable UI components and vis-
ited Activities. With the Ul Automator [35], we leverage
an app’s Ul layout structures as heuristics for triggering
actions and Activities, as well as record visited Activi-
ties to detect and avoid severe action loops. Third, since the
original Ul event generation rate is fixed, we note that the mal-
ware can take the interval as a critical indicator of emulation
and detection; if the interval is smaller than a set threshold,
they would suppress malicious activities (become idle).
Hence, once an app is constantly idle during emulation with-
out responding to input events (indicating that the app may
have recognized the emulator), we exponentially increase the
interval from 500 ms to quickly reach an ideal interval. Note
that we stop increasing the interval once the overall waiting is
over 2 minutes to avoid significant overhead. If the waiting
time exceeds 2 minutes when checking an app, it is then con-
sidered to be highly suspicious and submitted for further
manual inspection. As a result, we manage to achieve a higher
(76%—86%) Ul exploration coverage with 40 percent fewer Ul
events, as shown in Fig. 13; more specifically, 99.6 percent
apps exhibit the same set of activities on our emulators as on
physical devices.

We note that although fine-grained Ul tests bring a higher
UI exploration coverage, the execution of more activities
increases the emulation time by an average of ~15%, which
may be undesirable for both app developers and the markets.
Therefore, we introduce diversified hardware-assisted virtual-
ization techniques with Android-x86 into the underlying run-
time, such as Intel VT [36] and KVM [37], to enable our system
to fully explore the power of x86 CPUs. In addition, to further
improve the performance, VirtlO [38], a para-virtualization
technique, is adopted to accomplish GPU-assisted acceleration
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in graphic rendering which is formerly excuted by the host
CPU. Specifically, we first intercept “micro” instructions from
the guest (Android-x86) side graphic driver (that disintegrate
and reassemble the “micro” instructions from OpenGL instruc-
tions) within apps’ rendering pipelines, and then execute them
atop the GPU on the host (x86 server) side [39], thus essentially
surpassing the original CPU-based software rendering. With
these efforts [40], we are able to reduce the average scan time
per app by around 10 percent as shown in Fig. 14.

Feature Engineering. Having optimized the emulation
environment, we then shift our focus to feature engineering.
Preliminarily, we adopt the traditional One-Hot scheme to
encode extracted features, where 1 denotes the occurrence
of the corresponding feature and 0 denotes otherwise.
Though yielding generally fine performance (96 percent
precision and 96 percent recall), we observe that One-Hot
encoding has a strong dependency on some key features,
resulting in that the malware can accordingly evade detec-
tion by not using them, leading to false negatives. Noticing
that the problem is mainly caused by the orthogonal and
binary dimensions of the One-Hot vector which lacks
some essential information, we introduce a new feature-fre-
quency encoding scheme to address this problem by retain-
ing more fine-grained feature information.

In detail, as shown in Section 3, we note that there are sig-
nificant differences of the occurrence frequencies of key fea-
tures (e.g., Type, Flags, Format and Alpha) between
benign and malicious apps, which can be contained to expand
the dimension. Therefore, the feature-frequency encoding
scheme is an efficient approach to obtain ample information.
In practice, instead of using 1 or 0 to denote whether the corre-
sponding feature is used or not, the new scheme replaces the
homologous bit with the occurrence frequency of each feature.
However, experiments show that prominent discrepancies
exist among the occurrence frequencies of different features.
In other words, features that appear more frequently than
others may dominate the attention of machine learning mod-
els, thus impairing the performance of the current encoding
scheme. To address the issue, we devise an enhanced strategy
that transforms the occurrence frequency of each feature into
a normalized value, eliminating the influence caused by the
diversified occurrence frequencies among features.

Malice Detection. Through the normalized feature-fre-
quency encoding scheme, we transform the logs into an
m x n-dimension vector, where m is the number of samples,
and n is the total number of extracted features. Next, we
pipe the engineered feature vector into eight machine learn-
ing models (as listed in Table 2) to compare their perfor-
mance (in terms of precision and recall) and overhead (in
terms of training time). To reduce the impact of possible
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TABLE 2
Efficacy of ML Algorithms Using 56 Overlay Features
versus the 52 Original Overlay Features
(Excluding Our Four Novel Features)

Algorithm Precision Recall Training Time
(56/52) (56/52) (56/52) second
Naive Bayes 0.89 /086  0.75/0.75 2/2
LR 0.88/0.85 0.87/0.84 6/6
Random Forest 0.97/0.94 0.97/0.94 35/35
DNN 0.95/0.93 0.95/0.93 79/75
XGBoost 0.94/0.92 0.95/0.91 83/82
RBF-SVM 0.95/0.91 0.95/0.91 1626/1625
Linear-SVM 0.93/0.91 0.93/0.91 11551/11542
Poly-SVM 0.93/0.89 0.92/0.89 59294 /58762

data leakage, which may result in overestimated evaluation
results, we leverage 10-fold cross-validation when evaluat-
ing precision and recall. In Table 2 we present the compari-
son results of the eight different machine learning classifiers
trained on: (1) the 52 overlay features from the Android
SDK, and (2) these 52 features plus the four novel features
we developed in Section 3.4. We see that our four novel fea-
tures improve the detection accuracy of malicious overlays
by ~3% regardless of classifier — note that such 3 percent
increase is not trivial when the precision/recall is already
very high (>90%), thus demonstrating their utility.

We also notice that the evaluated models” advantages lie
in different aspects, while no single model outperforms
others in all the metrics. In particular, tree-based models
(RF and XGBoot) and neural network model (DNN) benefit
from the rather skewed distribution of most features in the
dataset (e.g., regarding occurrence frequency). However,
performance metrics of the DNN model are accompanied
by the expense of overfitting, due to its complexity internal
network structures. In contrast, the ensemble learning tech-
nique of random forest (RF) integrates the power of multi-
ple trained models, and largely enhances its generalization
ability, thus effectively reducing the performance degrada-
tion incurred by overfitting. Also, the model’s simplicity (as
compared to complex network models) and the parallel
nature of RF’s internal trees make the training process
rather efficient. Consequently, the RF model is selected, pro-
ducing the best precision (97 percent), best recall (97 per-
cent), and an acceptable training time.

In practice, to label newly submitted apps as malicious (M)
or benign (B) in terms of overlay behaviors, OverlayChecker
uses a three-step process. First, OverlayChecker quantifies the
malice of each detected overlay in a given app as a confidence
value [16], denoted as CoM (Confidence of Malice), between 0
and 1.0 using the classification model. Second, Overlay-
Checker produces a confidence score for the entire app; to be
conservative, we use the malice of the most malicious over-
lay in the app. Third, OverlayChecker labels the app as mali-
cious if the confidence is above a specific threshold. Based
on the malice of known apps provided by Market-T, we con-
figure the confidence threshold as 0.24 (Malicious: >0.24,
Benign: <0.24) to minimize the false positive and negative
rates, as illustrated in Fig. 15.

Moreover, we use our dataset to compare Overlay-
Checker with three recent representative malware detection
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systems (i.e., APIChecker [22], DroidCat [41], and DAN-
droid [42]). Based on our collected dataset, we then compare
their detection accuracies with OverlayChecker’s, finding that
OverlayChecker behaves the best as shown in Fig. 16. Further-
more, we inspect the false positives and negatives of the three
researches, observing that the erroneous judgements are
mostly because the relevant apps are leveraging other means
to conduct attacks rather than overlays. To be more specific,
the three researches all pay special attention to common mali-
cious behavior and features (e.g., APIs, intents and permis-
sions). In fact, we note that overlay-based malware has little to
do with such common features, making the detection algo-
rithms designed in the three researches incompetent. In con-
trast, OverlayChecker concentrates on the key features of
overlays, and thus is capable of effectively discovering abnor-
mal overlays (which are usually malicious) in Android apps.

4.2 System Deployment and Performance

Distributed Deployment. Each app’s analysis is originally
comprised of nine steps as shown in Fig. 12, among which
several steps do not rely on each other indeed and thus can
be executed in parallel. Thereby, we reshuffle the execution
sequence of the analysis steps, as depicted in Fig. 17. We
introduce a loosely-coupled pipeline instead of the original
monolithic back-to-back execution manner, which in detail
consists of three components — dynamic analysis, static
analysis, and model classification, working together to
implement a publish-subscribe system. Specifically, submit-
ted tasks are extracted from a message queue and published
to listening channels. Then dynamic and static analysis
channels ballot for unfinished tasks (i.e., tasks not being
analyzed by both the dynamic and static analysis compo-
nents) to perform app emulation (corresponding to Step
@O@B® in Fig. 12) and metadata extraction (Step in
Fig. 12), respectively. When all the above analysis tasks are
finished, the classification model can then utilize the col-
lected feature data to determine an app’s malice (Step @ in
Fig. 12). As a result, we manage to shorten the average per-
app scan time by ~10%.

APIChecker MmRecall

DroidCat

DANdroid

Precision / Recall (%)

Four Malware Detection Systems

Fig. 16. Performance comparison with state-of-the-art malware detec-
tion systems.
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Fig. 17. OverlayChecker’s distributed deployment in Market-T.

Integration to a Real App Market. OverlayChecker has been
integrated into Market-T as a part of app review process
since Jan. 2018. It explicitly marked potentially malicious
apps with an “Overlay Risk” annotation. As of Jun. 2018,
OverlayChecker was still able to achieve 96 percent preci-
sion and 96 percent recall, with the per-app analysis time
being ~1.7 minutes on average. Market-T presented this
annotation to users when they viewed the app in the store
and encouraged them to take appropriate precautions, e.g.,
“This app is using risky overlays (confidence = 0.74), please dis-
able its overlay permission at once!”. We have continuously
updated our classification model on a monthly basis using
data from newly submitted apps. When the classification
model is ready and integrated into OverlayChecker, the
evaluation time for one app is within 2 minutes. Noticing
that all apps in the dataset were forward-compatible (proba-
bly because that as of Sep. 2019 there were still 40 percent
smartphones not being upgraded to Android 8.0+), we
deploy OverlayChecker on a single commodity x86 server
(refer to Section 4.1 for the detailed configurations) running
Android 6.0. As a result, OverlayChecker is able to check
~10 K apps submitted to Market-T per day.

Unfortunately, Market-T reported that OverlayChecker’s
detection performance had exhibited a constant trend of
degradation since Jun. 2019 [16] - for example, the precision
decreased to 92 percent and the recall decreased to 90 per-
cent in Oct. 2019, probably because some overlay-based
malware that could bypass the updated overlay mechanism
in Android 8.0 proactively abandoned the forward compati-
bility with the original mechanism in Android 6.0 to inten-
tionally evade the detection of OverlayChecker. To this end,
we have upgraded the runtime environment of Overlay-
Checker since Oct. 2019, where each submitted app was
analyzed in parallel on the original Android 6.0-based emu-
lator and the additional Android 8.0-based emulator (so
two commodity servers are required now). Finally, Overlay-
Checker can achieve essentially 97 percent precision and 97
percent recall at Market-T as of Mar. 2020. We have pro-
vided the up-to-date performance results of the production
system within 12 months, as shown in Fig. 18.

To understand the 3 percent false positives of the random
forest model, we manually inspected the detection logs and
found that the 97 percent precision does not actually mean 3
percent errors in the classification results. In fact, although we
determined that the 3 percent false positives are benign apps,
97 percent of them had irregular overlay behaviors, because
some app developers abuse overlays, particularly using sev-
eral TYPE_SYSTEM_ERROR overlays or FLAG_FULLSCREEN
overlays to exhibit certain content (e.g., advertisements). The
developed apps often have top-ranking features [16] (with rel-
atively high Gini importance) that are highly correlated with

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 12, DECEMBER 2022

100

L
95

90

Precision / Recall (%)

—*-Precision
[-8-Recall

85

4 56 7 8 91011121 2 3
Month
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malware. As a matter of fact, the 3 percent false positive rate is
considered acceptable by Market-T, as apps flagged by Over-
layChecker receive a 2nd-round manual review. Specifically,
among the nearly 10K apps submitted per day, there are usu-
ally about 1100 apps flagged by OverlayChecker, among
which nearly 1020 are meanwhile labeled as malicious by
Market-T (using its own high-precision security checking
mechanisms, refer to Section 2.2). Thus, OverlayChecker only
has around 80 apps requiring manual review, and only
around a couple of them are false alarms.

As we observe in Section 3.3, overlays are used by 50 per-
cent of malicious apps, so the high recall (97 percent) illus-
trates that OverlayChecker is able to detect nearly half (48.5
percent) of all malicious apps hosted on Market-T using
solely automated overlay behavior analysis. Specifically,
using the category labels of apps maintained by Market-T
(Section 2.2), OverlayChecker can detect the vast majority
(90+%) of certain types of malicious apps, e.g., 99 percent of
ransomware, 98 percent of adware, 94 percent of porn-
fraud, and 92 percent of SMS-fraud apps. The reason is intu-
itive: such malicious apps heavily rely on overlays to launch
their desired attacks. Ransomware apps use TYPE_SYSTE-
M_ERROR overlays to show ransom messages on top of
users’ lock screens; adware and porn-fraud apps exploit
SYSTEM_ALERT_WINDOW overlays to show ads on top of
other apps; SMS-fraud apps use SYSTEM_ALERT_WINDOW
overlays to capture users’ telephone call information (for
sending fraud SMS messages later).

Important Features and Malicious Behaviors. By exploring the
Gini [43] indices of each tracked features, which is a prevalent
metric derived from a trained random forest model to evalu-
ate feature importance, we understand key features most
essential to our malware detection model. Here, we use the
Gini [43] importance to evaluate important features in our
trained random forest model. Overall, the results [16] are con-
sistent with our measurement findings in Sections 3.3 and 3.4.
For example, TYPE_SYSTEM_ERROR’s highest importance
complies with its highest correlation with the malice of apps
in Android 6.0. Similarly, the very high importance of FLAG_-
FULLSCREEN and FLAG_LAYOUT_IN_SCREEN conform to
their high correlations with the malice of apps. Specially, our
introduced novel features VisualCoverage, NumOfOver-
lays and isReallyVisiblerank the 6th, 8th and 11th in
terms of Gini importance. Among the 56 features, only two
(PACKAGE_USAGE_STATS and BIND_ACCESSIBILITY_ -
SERVICE, detailed in Section 3.4.1) are static and their impor-
tances ranked only 12th and 44th. As discussed in Section 3.2,
this is because many important characteristics of overlays
only exhibit dynamically at app runtime [16]. This thus con-
cretely shows that it is necessary to consider dynamic features
to ensure high detection effectiveness.
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Furthermore, Fig. 19 illustrates the distribution of the over-
lay-based malicious behaviors. As shown, porn/fake adware
attack accounts for the largest portion, while malware launch-
ing specific attacks such as remote control app attacks is much
less pervasive. For app categories, gaming apps are most
likely to manifest malicious behaviors (~14% are malicious),
which tend to displaying porn/fake ads, and stealing users’
accounts and passwords. In addition, office and system apps
usually induce users to give them administrator permissions.

4.3 Extensibility

OverlayChecker is not limited to Market-T and can be directly
applied to other app stores. First, our research methodology
can be applied by other app stores as it only requires the APK
file and security label of each app as preconditions. At present,
almost all app stores can provide the APK files of its hosted
apps, and most mainstream app stores maintain their own
database of malicious apps. Further, although the construc-
tion of our classification model relies on the app dataset pro-
vided by Market-T, once the model is trained OverlayChecker
can work independently of Market-T and help other app
stores detect malicious overlay behavior.

In order to validate the practical extensibility of Overlay-
Checker, we applied it to 10 K randomly sampled apps in
Google Play Store on May 1st, 2020. Despite Google’s own
sophisticated security checking, OverlayChecker is still able
to detect 25 (0.25 percent) apps with malicious overlay
behavior. We note that the malicious apps can overlay a
web browser window on top of the other apps and load a
fake login page to stole users’ credentials.

Interestingly, we observed that these apps were removed
from Google Play Store in early June, 2020, potentially due
to reports from users and researchers. However, since these
apps were officially available, users who installed them
were potentially vulnerable for over a month. This indicates
the pressing need today for an effective and efficient mar-
ket-scale early detection system.

4.4 Robustness to Evasion Attempts
In the learned classification logic in OverlayChecker, it may
not be difficult for a knowledgeable attacker to pick a single
overlay feature used in our system and make it look (more)
benign, but the key point of OverlayChecker’s detection is to
consider all features of an overlay in combination to determine
its malice. This thus significantly raises the bar of creating a
powerful malicious overlay, making the detection in Overlay-
Checker difficult to evade even if the attacker can reverse engi-
neer the classification model employed by OverlayChecker
(e.g., by trial-and-error attempts).

In particular, the robustness of OverlayChecker is derived
from the random forest classification model. The organization
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of the trained classifier precludes attackers from adopting the
vast majority of malicious techniques in their overlays. For
example, the most famous class of overlay-based attacks,
“cloak and dagger” attacks [11], can only go through a fixed
decision path [16], which always results in a malicious classifi-
cation in our model. An attacker seeking a benign label must
sacrifice many powerful capabilities, such as binding to acces-
sibility services, accessing user events, or displaying over the
full screen. This seriously limits the power of the attacker’s
overlays, since most existing malicious overlay strategies are
precluded (demonstrated by the 97 percent precision/recall
in Section 4.2). Since the model is updated frequently, such
classification logic will become even more restricted after con-
sidering more malicious overlay behaviors in the future.

5 RELATED WORK

Owerlay-Based Attacks. The most direct overlay-based attacks
construct deceptive overlays, confusing users to misinterpret
Ul interactions. Fig. 1 classifies such attacks into five groups.
First, as shown in Fig. 1a, malicious redressing overlays can be
constructed to impersonate small UI widgets (e.g., buttons) as
a part of the current Ul window, thus triggering users to
click [3]. Second, malicious transparent overlays, as shown in
Fig. 1b, are made invisible to cover victim apps, causing users
to see the visible one but operate on the invisible one. Massive
GUI hijacking attacks based on these transparent overlays
have been reported to lure users to type passwords (by hijack-
ing keyguards) or grant permissions (by hijacking security
alerts) [4], [5], [7]. Malicious transparent overlay attacks can
also be launched through Webview in Android to compro-
mise web content [8]. Third, as shown in Fig. 1c, malicious
hollow-out overlays selectively uncover UI components of vic-
tims apps, misleading users over the meaning of the interac-
tion by manipulating the covered overlay [3]. Fourth,
malicious hover overlays (in Fig. 1d) are too tiny in size to be
noticed visually. For example, hover overlays have reportedly
been abused by malicious apps to capture sensitive inputs
(e.g., passwords and credit card numbers) [9], [11]. Finally,
malicious overlays outside the screen (in Fig. le) cannot be
noticed by users, but can still maliciously capture Ul events.
Overlay-based attacks can also be constructed indirectly
through UI inference and user behavior analysis. An adver-
sary can launch overlay-based attacks by inferring Ul states
using shared memory side channels [6]. Moreover, the loca-
tion of screen taps on mobile devices can be identified from
certain sensors [44]. This empowers non-trivial overlay-based
attacks based on users’ tapping behavior.

Attack Defenses. Bianchi et al. propose an on-device defense
(known as WhatTheApp) that adds a security indicator to the
system navigation bar to identify the top Activity and
inform users about the origin of the app with which they are
interacting [5]. However, WhatTheApp is vulnerable to tim-
ing attacks because the security indicator is calculated periodi-
cally—a malicious overlay can be inserted within the period.
Furthermore, attackers can bypass the periodic check by ren-
dering a malicious overlay on top of the victim app and then
quickly hiding it. To fix this problem, Overlay Mutex was pro-
posed to prevent a background non-system app from render-
ing on top of any foreground apps [7].
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Moreover, dynamic approaches for capturing malicious
overlays at runtime have been proposed [45]. However, as
these approaches use runtime monitors, they incur consider-
able user-side resources (e.g., CPU and battery usage). Addi-
tionally, the alert windows for reporting malicious overlays
can themselves be attacked by malware. DECAF and Overlay-
Checker have essential methodological differences. In particu-
lar, DECAF leverages legally enforceable terms and conditions
to detect ad fraud, while OverlayChecker acquires its detection
mechanisms via a comparative study of the overlay behavior
between benign and malicious apps, since there are no regula-
tions on the overlay usage.

6 CONCLUSION

Usability and security often constitute two sides of a tool in
real world. At present in the Android OS, there is enormous
tension between the remarkable usability and severe security
threats of overlays. Without effective countermeasures, attack-
ers can alternatively exploit the original overlay mechanisms
on Android 6.0 or the updated overlay mechanisms on
Android 8.0+ to launch overlay-based attacks. This paper
addresses this tension by exploring the possibility of enabling
the detection of overlay-based malicious apps at the app mar-
ket level. We conduct a comparative study of the overlay
behavior between benign and malicious apps, based on a
large-scale, ground-truth dataset from Market-T, one of the
world’s largest Android app stores. Guided by a number of
useful insights revealed by our study, we design and deploy
the OverlayChecker system with multi-fold systematical
efforts to quickly and automatically detect overlay-based mali-
cious apps with high precision and recall. OverlayChecker is
integrated into Market-T as an important part of the app
review process, and we apply OverlayChecker to random
apps in Google Play Store to further confirm its efficacy.
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