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LSTAloc: A Driver-Oriented Incentive Mechanism for
Mobility-on-Demand Vehicular Crowdsensing Market

Chaocan Xiang, Wenhui Cheng, Chi Lin, Xinglin Zhang, Daibo Liu, Xiao Zheng*, Zhenhua Li

Abstract—With the popularity of Mobility-on-Demand (MOD) vehicles, a new market called MOD-Vehicular-Crowdsensing (MOVE-CS)
was introduced for drivers to earn more by collecting road data. Unfortunately, MOVE-CS failed after two years of operation. To identify
the root cause, we survey 581 drivers and reveal its simple incentive model based on blindly competitive rewards. This model brings
most drivers few yields, resulting in their withdrawals. In contrast, a similar market termed MOD-Human-Crowdsensing (MOMAN-CS)
remains successful thanks to a complex model based on exclusively customized rewards. Hence, we wonder whether MOVE-CS can
be resurrected by learning from MOMAN-CS. Despite considerable similarity, we can hardly apply the incentive model of MOMAN-CS
to MOVE-CS, since MOD drivers are also concerned with passenger missions that dominate their earnings. To this end, we analyze
a large-scale dataset of 12,493 MOD vehicles, finding that drivers have explicit preference for short-term, immediate gains as well as
implicit rationality in pursuit of long-term, stable profits. Therefore, we design a novel driver-oriented incentive mechanism for MOVE-CS,
called LSTAloc, at the heart of which lies a spatial-temporal differentiation-aware task allocation scheme empowered by submodular
optimization. Applied to the dataset, our design would essentially benefit both the drivers and platform to incentivize MOD vehicular
crowdsensing efficiently, thus possessing the potential to resurrect MOVE-CS.

Index Terms—Incentive Mechanism, Vehicular Crowdsensing, Task Allocation, Submodular Optimization.
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1 INTRODUCTION

R Ecent years have witnessed the prosperity of the
Mobility-on-Demand (MOD) vehicle market, led by

Uber, Lyft, DiDi, and so forth [2]. As of December 2020,
Uber and Lyft had each incorporated over one million
drivers in the U.S. [3], and the global market is reaching
$228 billion by 2022 [4]. However, we notice that many
MOD drivers have suffered from shrinking earnings year
by year from 2013 to 2020 [5], probably owing to more
competition among them; the circumstance has been further
aggravated in the past nearly two years due to the recent
COVID-19 pandemic [6]. As a result, a new market termed
MOD-Vehicular-Crowdsensing (MOVE-CS) was introduced
in 2017, pioneered by the Payver platform [7]. Payver pays
the drivers to collect road data on the move, mainly accord-
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ing to the road length and the specific segments, typically at
$0.01-0.05 per mile.

After receiving the collected road data from the drivers,
Payver usually sold them to demanding companies such as
digital map construction corporations (e.g., Google Maps [8]
and lvl5 [9]). Thereby, the platform and the drivers seemed
to have achieved a win-win situation. After only three
months of operation, Payver had taken in nearly 2000 Uber
and Lyft drivers, collecting the data of more than 500K-
mile roads and boosting their earnings by 5% to 15% [10].
Unfortunately, after two years of operation, there remained
few participant drivers, and thus Payver had to bankrupt
itself in April 2019 [11].

To figure out the root cause of the aforementioned ad-
versity, we surveyed 581 MOD drivers (clarified in Sec. 2.1)
via Amazon Mechanical Turk, a well-known crowdsourcing
platform [12]. They comprise 41.2% of women and 58.8% of
men, aged from 20 to 60; 43.6%, 77.3%, and 90.2% of them
drive at least once every day, week, and month, respectively.
The survey results unveil that MOVE-CS drivers’ with-
drawals are highly related to the simple incentive model
adopted by Payver based on blindly competitive rewards.
Specifically, because each driver collects data for certain
road segments without the knowledge of others, they often
end up with low-novelty collected data for repetitive road
segments. Hence, this model leads most drivers into few
or even negative yields (e.g., when the sensing task is
performed while the vehicle is vacant), triggering their opt-
outs from the MOVE-CS market.

Contrary to the MOVE-CS market, we spot that a simi-
lar market named MOD-Human-Crowdsensing (MOMAN-
CS), led by Gigwalk [13], preserves its success since 2010. It
hires people to collect merchandise data (e.g., the location,
price, and sales) for specific vendors, and has incorporated
1.7 million participants by 2021 [13]. Behind the success of
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Gigwalk, we find a complex incentive model with exclu-
sively customized rewards. Specifically, for a task, Gigwalk
posts an initial reward and only allows one person to accept
it; if no one takes it on for a long time, the reward will be
increased. Now that the incentive model of MOMAN-CS
is capable of incentivizing humans effectively, and humans
steer the vehicles, we wonder if this model can be applied
to driver incentivization in hopes of resurrecting the MOVE-
CS market.

Since there is considerable similarity between the two
markets, most incentive mechanisms in MOMAN-CS can
be borrowed to improve MOVE-CS. For example, road data
collection in MOVE-CS can be divided into exclusive sens-
ing tasks for drivers to choose. Also, those untrodden road
segments can be assigned with more rewards. Nevertheless,
we find a key obstacle during the applying process, i.e., the
MOD drivers are also concerned with passenger missions
which typically dominate their earnings. Therefore, the task
allocation strategy in MOVE-CS should differ significantly
from that in MOMAN-CS.

To practically address this obstacle, we analyze a large-
scale dataset1 of 12,493 MOD vehicles’ service records dur-
ing a whole month (03/01/2017–03/31/2017) in a 4,400 km2

metropolitan area with 10.3 million residents. In detail, it
includes the pick-up/drop-off locations, time-variant occu-
pied/vacant statuses, and fine-grained vehicle trajectories
for each passenger mission (explicated in Sec. 2.2). The
analyses reveal that:

(1) On a daily basis, we observe that the majority (88.2%) of
drivers move from low-yield zones to high-yield zones
for picking up passengers, showcasing their explicit
preference for short-term, immediate gains.

(2) On a monthly basis, however, we note that a consid-
erable portion (30%) of drivers still drive from high-
yield zones to low-yield zones for picking up passen-
gers with a high occurrence rate of 21.1%. Surprisingly
perhaps, we find their hourly earnings to be 17.5%
more than the average level ($126.6 monthly raise),
uncovering their implicit rationality in pursuit of long-
term, stable profits.

Motivated by these findings, we present Long-Short-
Term Profit-combined Task Allocation (LSTAloc), a novel
driver-oriented incentive mechanism for MOVE-CS, whose
primary goal is to satisfy both drivers’ explicit preference for
short-term gains and their implicit need of long-term profits.
To this end, LSTAloc actively allocates tasks to the drivers
with balanced intelligence, in order to not only quickly
attract more participants, but also bring sufficient profits to
regular drivers. Meanwhile, LSTAloc should also take the
platform’s profit into account. In practice, in some cases the
interests of drivers and the platform are in correspondence,
e.g., when the platform allocates a task enabling a driver to
go from a low-yield to a high-yield zone, this driver is very
likely to accept it even with a relatively low reward. In other
cases, their interests might be in conflict, e.g., for an untrod-
den road segment whose information is however valuable

1. We collected all the data (excluding user-sensitive information)
under a well-organized IRB with informed consent of involved drivers
and passengers.

to the platform, the platform has to offer a relatively high
reward to motivate drivers.

To address the challenges mentioned above, we de-
sign a spatial-temporal differentiation-aware task allocation
scheme empowered by submodular optimization. In spe-
cific, based on the historical MOD vehicle dataset, we first
construct a two-dimensional pick-up profit heatmap and
predict the evolution of the profit heatmap by exploiting
Recurrent Neural Networks (RNN). Based on this heatmap,
we present the differentiation-aware sensing reward design.
Then, we estimate each driver’s acceptance probability by
leveraging their mobility model. With the above informa-
tion, we formulate a task allocation problem considering
both new and regular drivers’ concerns, as well as the plat-
form’s profit. Unfortunately, it is NP-hard to find the opti-
mal solution to the problem (the computation cost increases
exponentially with the number of drivers). To resolve this,
following the methodology of submodular optimization, we
devise a near-optimal algorithm, leveraging greedy local-
search to achieve a guaranteed near-optimal solution.

To summarize, we make three key contributions:

(1) Novel driver-oriented incentive mechanism design for
MOVE-CS: By surveying 581 drivers and analyzing a
large-scale dataset of 12,493 MOD vehicles, we find
that drivers have explicit preference for short-term, im-
mediate gains as well as implicit rationality in pursuit
of long-term, stable profits. Inspired by the findings,
we propose LSTAloc , a novel driver-oriented incentive
mechanism, which not only satisfies the MOD drivers’
explicit and implicit needs but also takes the platform’s
profit into account.

(2) Guaranteed near-optimal task allocation: We present a
spatial-temporal differentiation-aware task allocation
scheme empowered by submodular optimization, in-
cluding the pick-up heatmap prediction based on RNN,
the differentiation-aware sensing reward design, the
mobility-model-driven acceptance probability estima-
tion, and the submodularity-based task allocation algo-
rithm. A series of theorectic analyses prove that it can
achieve an acceptable approximation ratio (1 − e−2)/2
with polynomial time complexity.

(3) Extensive emulations based on a large-scale vehicular
dataset: Using the aforementioned MOD vehicle dataset,
we emulate the operation process of the original
MOVE-CS model and LSTAloc respectively on a
common commodity server. Results show that with
LSTAloc , 87.3% of the allocated tasks cater for drivers’
explicit preference of short-term gains; meanwhile, all
the drivers are expected to make positive earnings and
50% of them make 3.2× more earnings (than with the
original MOVE-CS model), serving their implicit need
of long-term profits. Besides benefiting the drivers,
LSTAloc brings 34.3% more profit to the platform.

The rest of this paper is organized as follows. We first in-
troduce the motivation based on user studies and large-scale
data analysis in Sec. 2. Then, we provide the novel incen-
tive model called LSTAloc and present the crucial research
problem in Sec. 3, followed by designing its key algorithms
in Sec. 4. In Sec. 5, we conduct extensive evaluations based
on the large-scale MOD vehicle dataset. Moreover, we make
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(a) Temporal differentiation analysis

Fig. 1: Variations of pick-up
probability (top) and per-trip
earnings (bottom) in different
time periods for the same zone.
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Fig. 2: In-depth analysis of drivers’ behavior patterns via 2D slicing. (a) Drivers’ short-term
preference on a daily basis, i.e., the percentage of drivers moving from low-yield zone to high-
yield zone. (b-c) Drivers’ long-term pursuit on an individual basis, including their occurrence
ratios of driving from high-yield zone to low-yield zone, and their average earnings in a month.

discussions in Sec. 6 and review the related works in Sec. 7.
Finally, we conclude this paper in Sec. 8.

2 MOTIVATION

In this section, we investigate the reasons behind the down-
turn of the MOVE-CS market via user studies and large-
scale data analysis. Then, the results are fed back to explore
potential methods to incentivizing MOD vehicular crowd-
sensing efficiently for resurrecting the MOVE-CS market.

2.1 Crowdsourcing-based User Studies

Methodology. To investigate why the above two markets
faced completely different fates, we conduct user stud-
ies [14] with 581 MOD drivers via Amazon Mechanical Turk.
The respondent pool is restricted to qualified drivers. The
participants comprise 41.2% of women and 58.8% of men,
including North Americans (34.4%), Europeans (12.7%),
Asians (38.6%), and others (14.3%, such as Australians and
Africans), aging from 20 to 60; 43.6%, 77.3%, and 90.2% of
them drive at least once every day, every week, and every
month, respectively.

We adopt the USE questionnaire methodology [15] and
use a 5-point Likert scale (ranging from Strongly Disagree
to Strongly Agree) to assess the participants’ perceptions.
Results are classified into two groups, i.e., 4 and 5 for agree-
ment; 1, 2, and 3 for disagreement. The queries are designed
to get to the bottom of two key questions, i.e., why does the
MOVE-CS model fail to encourage MOD drivers? why is
the MOMAN-CS model effective to incentivize users?
Results. We first investigate whether the MOD drivers are
willing to perform sensing tasks. Survey results indicate
92.6% of participants are willing to perform sensing tasks on the
move. Digging deeper, it seems related to the fact that the
majority (63.8%) of drivers take on sensing tasks with ex-
pectations of extra earnings, conforming to common sense.

Further survey on the two models shows that the blind
competition model adopted by Payver is not welcomed
by 63.3% of participants; 94.3% regard the repeated data
collection—which may cause a lower or even negative
profit—as a major drawback. Therefore, it is reasonable to
deduce that the blind competition model introduces un-
certainty in drivers’ profits, which severely impacts their

enthusiasm for task participation. Contrarily, 95.2% of par-
ticipants prefer MOMAN-CS, because it not only has trans-
parent rewards (70.2% agreement), but also gives them more
choices of tasks (81.3% agreement). To sum up, MOVE-CS’
downfall was likely a result of the employed blind competition
model failing to offer drivers stable profits, while MOMAN-
CS motivates participants successfully with its exclusive task
selection and transparent reward.

2.2 Large-scale Dataset Collection and Analysis

Dataset collection. Cooperating with a MOD company,
we acquire a large-scale MOD driver dataset; all the user-
sensitive information is removed according to the local IRB
protocols. This dataset comprises 92 GB service records
of 12,493 MOD vehicles for one month (03/01/2017–
03/31/2017) in a 4,400 km2 metropolitan area with 10.3 mil-
lion residents. Each record contains an anonymized vehicle
ID, the trajectory time series with an interval of 15 seconds,
and an occupied/vacant state indicator. Moreover, with the
trajectory series, we calculate the pick-up profits according
to the existing policies on MOD vehicle fares [16].
Pick-up profit analysis. The pick-up profit denotes the
average profit of MOD drivers from picking up passengers
in a zone during a time period (e.g., 1 hour). It highly
depends on this zone’s pick-up probability and per-trip
earnings. The pick-up probability refers to the proportion
of vehicles that pick up passengers out of all the vacant
vehicles in the zone within a time period. The per-trip
earnings represent the average income earned by vehicles
in the zone during a time period. Hence, in the following,
we randomly select an area (about 256 km2) of the city, and
divide it into 14×18 uniform zones. Then, we analyze the
spatial-temporal differences of pick-up profits in each zone
and time period in terms of the pick-up probability and the
per-trip earnings.

We initially analyze the temporary diversity of pick-
up probability and per-trip earnings during different time
periods in a randomly selected zone. As demonstrated in
Fig. 1a, both the pick-up probability (top) and the per-trip
earnings (bottom) vary significantly with time. In particular,
the pick-up probability and per-trip earnings is distributed
between 5.0% and 19.1%, $1.96 and $2.91, respectively.
Moreover, both pick-up probability and per-trip earnings
roughly follow periodic patterns, e.g., Fig. 1a illustrates that
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the pick-up probability from midnight to 6 a.m. is always
smaller than that of the other periods in a day, as most citi-
zens are asleep. Next, we analyze their spatial diversities in
different zones during a time period (e.g., 6 p.m. to 7 p.m.).
As demonstrated in Figs. 3a and 3b, similarly, both the pick-
up probability and the per-trip earnings are found to vary
with zones in the same period. In particular, the pick-up
probability and per-trip earnings widely fluctuate between 0
and 39%, $1.55 and $5.41, respectively. In summary, the pick-
up profits of MOD drivers have huge spatial-temporal differences
in different zones and time periods.
MOD drivers’ behavior analysis. MOD drivers have be-
havior patterns with a common goal (making money) but
diverse individual preferences (such as how to make more
money) based on driving experience. To fully grasp their
behavior patterns, we conduct a comprehensive analysis of
the large-scale dataset by slicing it — in the aspects of both
short-term and long-term profits — on a daily basis and an
individual basis, respectively.

First, we slice the dataset on a daily basis to study
drivers’ short-term preference in each day. Then, we select
ten low-yield zones randomly. Targeting each zone, we cal-
culate the corresponding percentage of drivers, who move
directly (from this low-yield zone) into a high-yield zone
for picking up passengers. As shown in Fig. 2a, the average
percentage of one month in all selected zones is 88.2%. It
indicates most drivers in low-yield zones have a tendency of
moving out (towards higher-yield zones), which is compelling
evidence of drivers’ explicit preference for immediate gains.

Second, to understand drivers’ long-term pursuit, we
slice the dataset on an individual basis, each slice with
the entire one-month driving records of a driver. Then,
we randomly select 300 drivers. Focusing on each driver’s
behavior pattern, we calculate the occurrence of her/his
moving, in the entire month, from a high-yield zone into
a low-yield zone for passenger pick-ups. After ranking
drivers, as shown in Fig. 2b, we find that 30% of them (90
drivers) have more than 21.1% occurrence, which appears
to be weird at first glance. By comparing the hourly pick-up
profits of these 90 drivers against the average level of all
12,493 drivers, surprisingly, we find that these drivers make
17.5% more pick-up profits per work hour than the average
level (about $126.6 monthly raise considering the 8-hour
work day), as shown in Fig. 2c. After a thorough analysis of
these findings, the mystery finally uncovers its veil: regular
drivers possess the ability of dynamic profit prediction to some
degree, and rationally choose where to go based on this knowledge
in pursuit of long-term, stable profits, rather than blindly seek the
immediate gains.

3 LSTAloc DESIGN FOR MOVE-CS
Motivated by the findings in Sec. 2, we design a new driver-
oriented incentive mechanism model called LSTAloc for
resurrecting the MOVE-CS market, and advance the crucial
research problem.

3.1 Incentive Model Design

Logic behind the design. LSTAloc leverages the active
task allocation of the platform to simultaneously satisfy MOD
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Fig. 3: Pick-up profits in different zones during the same time
period, in terms of (a) the pick-up probability and (b) the per-
trip earnings ($).

drivers’ explicit and implicit needs for short-term and long-
term profits, respectively. The logic behind this model de-
sign is as follows:

(1) The dataset analysis in Sec. 2.2 shows that MOD
drivers have an explicit preference for short-term, imme-
diate gains as well as implicit rationality in pursuit of long-
term, stable profits. Therefore, the model design should re-
spond to drivers’ demands to encourage their participation.

(2) However, the short-term and long-term profits can
only be predicted with global knowledge of the pick-up
profits at any time and place, which is barely possible even
for regular drivers, let alone new registrants. Therefore, it is
unrealistic to let drivers actively select from all the tasks in
a short response time, while gaining acceptable profits.

(3) Hence, we deploy the task allocation scheme instead
of task selection by drivers like the MOMAN-CS model.
Specifically, the professional platform with enough spatial-
temporal knowledge predicts the pick-up profits and the
acceptance probabilities on drivers’ behalf, simultaneously
actively allocating tasks by comprehensively considering
their short-term and long-term profits.

To sum up, the LSTAloc model saves drivers from the
extremely complicated computation of profit prediction, reducing
the response time of each driver, while they are still left enough
wiggle room for options. Simultaneously, the platform can also
pursue its own interest in this process.
LSTAloc model design. To begin with, our LSTAloc model
consists of three major steps as follows:

(1) Task publishing: The new MOVE-CS platform dis-
cretizes the required road data collection into J exclusive
sensing tasks, according to the topology and length of the
roads as well as the specified applications. We denote the
set of these published tasks by J , i.e., J = {1, . . . , j, . . . , J}.
The zone of each task j (j ∈ J ) and the platform profit from
it are represented by zj and uj , respectively.

(2) Task requesting and allocation: There are large numbers
of MOD drivers delivering passengers in the city, willing
to opt in MOVE-CS. Let K denote the set of these MOD
drivers, i.e., K = {1, . . . , k, . . .K}. Each driver k (k ∈ K)
reports her/his current zone zk. Then, the platform allocates
one task for each driver, along with its location&reward
and the driver’s expected profit. Let xkj denote whether
task j is allocated to driver k, i.e., xkj = 1 if yes, and
xkj = 0 otherwise. The allocation set is then denoted by
x = [xkj ]K×J .

(3) Task acceptance and execution: Once a driver k is allo-
cated task j, she/he has a probability ρkj of accepting and
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performing it, called the acceptance probability. Each driver’s
acceptance probability depends on not only their prefer-
ences on the tasks, but also their tendencies to the zones
of the tasks [17], [18]. To assure a high task execution prob-
ability, a task may be allocated to multiple drivers. Hence,
the execution probability of each task j can be calculated
by 1 −

∏K
k=1 (1− ρkj)xkj . Similar to references [19], [20],

the total platform profit, i.e., the expected profits of all the
performed sensing tasks for the platform, is represented by

U(x) =
J∑
j=1

uj
(
1−

K∏
k=1

(1− ρkj)xkj
)
. (1)

Finally, after driver k accepts and completes the allocated
sensing task j (e.g., uploading his/her collected road data to
the MOVE-CS platform), she/he will receive a reward from
the platform, represented by cjk; the rewards of all drivers
then form a set c = [ckj ]K×J . Hence, the driver’s total earn-
ings equal to the sum of the reward by performing a sensing
task and the pick-up profit by transporting passengers. As
illustrated in Table 1, we list the frequently used notations
of this paper.

3.2 Research Problem and Challenge Analysis
The crucial problem in the LSTAloc model design is how to
allocate tasks to drivers alongside proper rewards, by study
and prediction of the spatial-temporal differences of pick-
up profit and the driver’s acceptance probability, which is
presented in the following.
Long-short-term profit-aware optimal task allocation prob-
lem (LSTO ): Given the historical MOD vehicle dataset, how
to allocate each task j to a MOD driver k with the sensing
reward [ckj ]K×J , so as to maximize the total platform profit U(x)
under the constraint of budget B, while satisfying both drivers’
explicit preference for short-term gains and their implicit needs of
long-term profits.

Maximize
[xij ],[ckj ],[ρkj ]

U(x) =
J∑
j=1

uj
(
1−

K∏
k=1

(1− ρkj)xkj
)
, (2)

s.t.
J∑
j=1

xkj ≤ 1,∀k ∈ {1, . . . ,K}, (3)

K∑
k=1

J∑
j=1

xkjρkjckj ≤ B. (4)

Note that, Eq. (3) restricts each driver is allocated at most
one task in each allocation period, similar to references [17],
[21]. Eq. (4) indicates that the sensing rewards of all the
drivers are not more than the platform’s budget B, so as to
maximize the platform profit within the limited budget.

In addressing the above-mentioned problem, there exist
three main challenges as follows:

(1) It is difficult to predict the global distribution of the pick-
up profits, due to their spatial-temporal dynamics. The pick-up
profits exhibit spatial-temporal dynamics, as demonstrated
in Figs. 1a, 3a, and 3b. Furthermore, the highly complicated
movement of both passengers and MOD vehicles between
different zones and time complicates such dynamics, hence
rendering the accurate prediction on the global distribution
of pick-up profits particularly difficult.

(2) It is challenging to satisfy the demands of both drivers and
the platform, which are aligned in some cases but conflicted in

TABLE 1: Frequently Used Notations

Notations Descriptions
j, J , J sensing task j, its total number, task set.
k, K, K MOD driver k, its total number, driver set.
zi, Z, Z zone i, its total number, zone set.
t, T , T period t, its total number, period set.
xkj whether task j is allocated to driver k.
ρkj the acceptance probability of driver k for task j.
pti , rti pick-up probability and per-trip income in zi at t.
Ikj(t) pick-up profit difference of driver k driving to zj at t.
ckj(t) sensing reward for executing task j by driver k at t.
bkj(t) driver k’s expected income for pick-up from zk to zj .
x, c x = [xkj ]K×J , c = [ckj ]K×J .
A, V allocated vehicle-task pairs set, ground set.
uj , B utility of task j, budget constraint of task excution.
U(·) sensing utility function.

HT , ht heatmap within T periods, t-th heatmap frame.

others. In some circumstances, a task may require sensing in
a high-yield zone where drivers are eager to move towards,
so that they will probably accept it with a relatively low
reward, in alignment with the platform’s interest. In other
conditions, a task valuable to the platform is perhaps related
to an unpopular zone, where drivers are reluctant to go. The
two sides do not share mutual benefits so that drivers will
only undertake the task if the reward is high enough to reach
their expectations, thereby increasing the platform’s cost.

(3) It is intricate to achieve the optimal task allocation due
to the NP-hardness and the unknown acceptance probability.
Given the acceptance probability and the sensing reward,
the optimal task allocation problem is an NP-hard problem,
according to Theorem 1. As a result, it is extremely challeng-
ing to achieve the optimal allocation with computational
efficiency, especially for the large-scale MOVE-CS market
with massive drivers (such as 12,493 drivers in our dataset).
Even worse, the acceptance probability of each driver is
previously unknown. Moreover, it is difficult to estimate the
acceptance probability, since it depends on not only the task
content (such as the task category), but also the context (such
as the locations of drivers and tasks).
Theorem 1. Given the sensing reward and the acceptance prob-
ability, the optimal task allocation problem is NP-hard.

Proof. Consider a special case of this problem, where the
platform’s budget B is large enough for recruiting the
drivers to execute all the tasks. Hence, constraint (4) can
be relaxed. In this case, given the sensing reward [ckj ]K×J
and the acceptance probability [ρkj ]K×J , the optimal task
allocation problem can be reduced from the classical NP-
hard Target-based Weapon Target Assignment problem [22] as
follows: given J targets (i.e., tasks) each with profit uj (∀j ∈
J ), andK weapons (i.e., drivers) each of which (i.e., weapon
k) has a probability ρkj of destroying (executing) each
target j (i.e., task j), assign (allocate) each weapon (driver)
k to exactly one target (task) j so as to maximize the
expected destroying probability (the total expected prof-
its)

∑J
j=1 uj(1 −

∏K
k=1(1 − ρkj)

xkj ) for all targets (tasks).
Therefore, Theorem 1 is proved.

4 KEY ALGORITHM DESIGN FOR LSTAloc
To address the above three challenges, we propose a spatial-
temporal differentiation-aware task allocation scheme em-
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Fig. 4: Overview of our algorithm.

powered by submodular optimization. As illustrated in
Fig. 4, it mainly consists of four components:

(1) Pick-up profit heatmap construction (Sec. 4.1): Utilizing
the historical MOD vehicle dataset, we first construct the
two-dimensional pick-up profit heatmaps, which are then
used to predict the future heatmaps by exploiting dual-
attention-based RNN.

(2) Differentiation-aware sensing reward design (Sec. 4.2):
Based on the global knowledge of the pick-up profit
heatmaps, we learn the spatial-temporal dynamics of pick-
up profits, which is fed back to devise the sensing rewards
for satisfying the driver’s explicit and implicit needs of the
short-term and long-term profits, respectively.

(3) Acceptance probability estimation leveraging drivers’ mo-
bility model (Sec. 4.3): Inspired by the predictable mobility
of MOD drivers, we leverage the drivers’ mobility model to
estimate the movement probability of drivers from one zone
to another. The results are then fed back to estimate the
acceptance probability of drivers from the aspects of their
content preference and context preference.

(4) Submodularity-based task allocation (Sec. 4.4): Given
the sensing reward design and the acceptance probability
estimation, we first analyze the properties of the optimal
task allocation problem by reformulation. Guided by the
analysis results, we present an approximation algorithm to
address this NP-hard problem, following the methodology
of submodular optimization.

4.1 Pick-up Profit Heatmap Construction

Two-dimensional pick-up profit heatmap model. The pick-
up profit is highly dependent on the pick-up probability
and the per-trip earnings in each zone. Furthermore, the
dataset analysis in Sec. 2.2 indicates that both the pick-
up probability and the per-trip earnings have the spatial-
temporal dynamics in different zones and time periods. As
a result, we use the two-dimensional heatmaps, called pick-
up profit heatmaps, to represent the dynamic spatial-temporal
pick-up profits.

In particular, we divide the map of an entire city into Z
non-overlapping zones, according to the shape of the area
and the specified spatial granularity. Let zi and Z denote
each zone i and the set of zones, respectively, such that zi ∈

Z . Similarly, the time is evenly divided into T time slots, and
the set of time slots is denoted as T . Each time slot t is also
named period t. Let pti and rti denote the pick-up probability
and the per-trip earnings in zone i at period t. Hence, the
pick-up profit heatmaps HT during the periods [1, T ] are
represented as

HT =
{
ht|1 ≤ t ≤ T

}
, (5)

ht =
{

(pti, r
t
i)|∀i ∈ Z

}
, (6)

where ht denotes the t-th frame of the heatmaps, represent-
ing the pick-up profits of all the zones at period t. Moreover,
each pixel of the heatmap frame (i.e., (pti, r

t
i) ∈ ht) repre-

sents the pick-up probability and the per-trip earnings in
zone i at period t. Intuitively, in the heatmaps, the warmer
the color, the more the pick-up profits that drivers are
expected to get (with higher pick-up probability and more
per-trip earnings), as illustrated in Figs. 3a and 3b.
Heatmap construction based on MOD vehicle dataset.
We construct the pick-up profit heatmap by using the his-
torical MOD vehicle dataset, including their trajectories,
occupied/vacant statuses, and pick-up earnings of each
trip, as illustrated in Fig. 5a. Specifically, as illustrated in
Fig. 5b, based on the trajectories of MOD vehicles and their
occupied/vacant status information, we compute the ratio
of the vehicles picking up passengers to all the vacant
vehicles in zone i within period t as the pick-up proba-
bility pti. Moreover, we compute the per-trip earnings rti
by using the average income of all the vehicles that pick
up passengers from zone i at period t. Thus, we use the
historical MOD vehicle dataset during the periods [1, T ] to
construct the corresponding pick-up profit heatmaps, i.e.,
HT =

{
(pti, r

t
i)|∀i ∈ Z, 1 ≤ t ≤ T

}
.

Heatmap prediction based on RNN. As shown in Fig. 5c,
we utilize the pick-up profit heatmaps HT of periods [1, T ]
to accurately predict the future L periods. Note that, the
prediction length L is dependent on the time interval of each
task allocation in Sec. 4.2. In particular, the dual-attention
based RNN [23], [24] is exploited to accurately predict the
next profit heatmaps based on the historical ones. Its key
idea is to leverage an LSTM-based encoder-decoder archi-
tecture with dual-attention mechanisms, including spatial
attention and temporal attention. The spatial attention is
exploited to capture the complex spatial correlations across
different zones, while the temporal attention is used to
learn the time-varying correlations between different time
periods. In summary, we use the MOD vehicle dataset to
construct and predict the global pick-up profit heatmaps of
the periods [1, T +L], i.e., HT+L =

{
(pti, r

t
i)|∀i ∈ Z, 1 ≤ t ≤

T + L
}

.

4.2 Differentiation-aware Sensing Reward Design
Based on the global pick-up profit heatmaps, we first com-
pute the spatial-temporal differences of pick-up profits,
which are used to design the sensing rewards of drivers.

The pick-up profit difference represents the expected
pick-up profit increase for an unoccupied vehicle to drive
from one zone to another for performing the sensing task.
Formally, we let Ikj(t0) represent the pick-up profit differ-
ence for driver k, when moving from her/his original zone
zk to the task’s zone zj at t0. Thus, Ikj(t0) is given by

Ikj(t0) = Et0 [ptj · rtj ]− Et0 [ptk · rtk], (7)
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Fig. 5: Illustration of pick-up profit heatmap construction and
prediction based on the MOD vehicle dataset using dual-
attention-based RNN.

where Et0 [·] denotes the mathematical expectation with
respect to t0. Et0 [ptk · rtk] denotes the expected pick-up profit
of driver k at her/his original zone zk; Et0 [ptj · rtj ] represents
that of driver k at the new zone zj . Both of them are
dependent on the probability ptk (ptj) that drivers pick up
passengers in zk (zj) at period t, and the probability p̄tk (p̄tj)
that drivers cannot do it in zk (zj) before t. Hence, we have

Et0 [ptk · rtk] =

t0+Lj∑
t=t0

p̄tkp
t
kr
t
k, (8)

Et0 [ptj · rtj ] =

t0+tkj+Lj∑
t=t0+tkj

p̄tjp
t
jr
t
j , (9)

where p̄tk = 1 + sgn(t − 1)
(∏t−1

m=1(1 − pt−mk ) − 1
)
. Lj

represents the number of time periods for task j’s allocation
interval, which is set according to specific applications. tkj
represents the spent time periods driving from zk to zj at
t0, which can be accurately estimated by existing effective
algorithms [25] and real-time applications [8].

Learning each driver’s pick-up profit difference, we de-
sign a sensing reward model, by subtracting it from her/his
expected income. In specific, let bkj(t0) denote driver k’s
expected income from passenger missions, when driving
from zk to zj . Thus, according to Eq. (7), the sensing
reward ckj(t0) for executing task j by driver k at t0 is
represented as

ckj(t0) = bkj(t0)− (Et0 [ptj · rtj ]− Et0 [ptk · rtk]). (10)
Note that bkj(t0) can be computed based on the driving time
and distance [26], [27], according to the pricing policies of
MOD vehicles [16].

Referring to the actual hourly wage of drivers, the
platform offers each of them a reward, according to their
expected profit, so that drivers are willing to spend time
on the sensing tasks. A driver’s expected profit is a combi-
nation of her/his explicit reward ckj(t0) directly given by
the platform, and implicit reward Et0 [ptj · rtj ] − Et0 [ptk · rtk]
subtly obtained by relocation to a higher-yield zone for
task j. Thus, as shown in Eq. (10), if the implicit reward
is adequate, the platform can lower the explicit reward; if
it is insufficient, the platform should offer a higher explicit
reward for compensation. As a result, all drivers are granted
more profits than the rewards from only passenger missions,
named positive profits. In sum, the sensing reward design
based on the pick-up profit differentiation learning can ensure
positive profits of all the drivers by balancing the explicit and
implicit rewards.

4.3 Acceptance Probability Estimation Leveraging
Drivers’ Mobility Model

The acceptance probability depends on two main factors (in-
cluding the content preference and the context preference) for
the following reasons. First, the task’s content (such as
its category, description, and time cost) is an important
factor influencing the driver’s decision on the task’s accep-
tance [17]. Second, the task’s context, namely the zone in
which the task is located, also plays a crucial role in the
driver’s decision on the task’s acceptance [28]. For instance,
if a task is located in a commercial area, the driver may
prefer to accept it due to more opportunities for picking up
passengers [28]. As illustrated in Fig. 6a, when the drivers
are located in the 1-st zone, they have a higher movement
probability towards the 2-nd zone (i.e., a commercial area)
than the 3-rd zone (i.e., a residential area). Moreover, the
higher the movement probability towards the 2-nd zone, the
more willingly drivers will accept the tasks of this zone. In
the following, we first leverage the driver’s mobility model
to estimate the acceptance probability from the aspects of
both the content preference and the context preference. And
then, we use the vehicular dataset to validate the mobility
model.
Acceptance probability estimation based on mobility
model. We utilize γj to represent drivers’ content prefer-
ence on task j, i.e., γj ∈ (0, 1). Similar to references [17], [18],
the content preference γj can be previously set according
to the task category, the task description, etc. The context
preference, as mentioned above, highly depending on the
drivers’ movement, can be characterized by the movement
probability ϕkj that driver k moves from his/her localized
zone k to the task’s zone j at least once during the time
period. Note that the time period is related to task j’s alloca-
tion interval, which is determined by the specific task types.
As a result, the acceptance probability can be modeled as

ρkj = ϕkjγj . (11)
Assuming that the movement of MOD drivers from one

zone to another follows a Poisson process [29], the move-
ment probability that driver k moves from his/her localized
zone k to zone j for n times during the time period can be
represented as

ϕkj(n) = (
1

λkj
)
n e
− 1
λkj

n!
, (12)

where λkj denotes the Poisson parameter, which is esti-
mated based on the historical MOD vehicular dataset. In
specific, for each driving case from zone k to zone j, we
compute the time interval between two successive arrivals
of zone j, called the inter-arrival time. We use the average
inter-arrival time for all the driving cases from zone k to
zone j as the λkj ’s estimation.

Since the context preference ϕkj is quantified by the
movement probability of driver k from zone k to zone j
at least once, according to Eq. (12), we have

ϕkj =
+∞∑
n=1

ϕkj(n) = 1− e−
1
λkj . (13)

Thus, according to Eqs. (11)(13), we can estimate the accep-
tance probability of driver k for task j as

ρkj = (1− e−
1
λkj )γj . (14)
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Fig. 6: (a) Illustration of movement probability of MOD driver
from one zone to another zone. (b) CDF of drivers’ inter-arrival
time in comparison with the Exponential distribution.

Dataset-based mobility model validation. We use the
MOD vehicular dataset to validate the model assumption
that the mobility model of MOD drivers follows a Pois-
son distribution. In other words, we verify whether the
inter-arrival time of MOD drivers follows the Exponen-
tial distribution or not [20]. Specifically, as illustrated in
Fig. 6b, we randomly select two zones and plot the CDF
of the inter-arrival time of all driving cases from one zone
to another during the peak time (7:00 am–9:00 am and
5:00 pm–8:00 pm) and the non-peak time (0:00 am–6:00 am),
respectively. The results show that the average inter-arrival
time is 31.6 and 52.6 seconds at peak and non-peak times,
respectively. Moreover, Fig. 6b illustrates that the inter-
arrival time distribution obtained from the real traces is
well-fitted by the Exponential distribution. Furthermore, we
use the Chi-square test method [30] to verify this model
assumption. The test results are 20.7 and 30.8 for the peak
and non-peak times, respectively. Given the significance
level 0.05, both test results are less than the critical value (i.e.,
χ2
28(0.05) = 41.3). As a result, the above results prove that

the mobility of MOD drivers from one zone to another follows a
Poisson distribution with 95% confidence probability.

4.4 Submodularity-based Task Allocation Algorithm

Problem analysis based on equivalent transformation.
Firstly, given the sensing reward design [cjk]K×J and the
acceptance probability [ρkj ]K×J , we can equivalently trans-
form the LSTO problem into a set function optimization
problem for facilitating the problem analysis. In specific, we
define the ground set V := {v = (k, j)|∀k ∈ K,∀j ∈ J }.
Let A denote the set of the allocated driver-task pairs, i.e.,
A := {v = (k, j)|xkj = 1,∀k ∈ K,∀j ∈ J }, and A ⊆ V .
Moreover, ∀A ⊆ V , U(A) := {U(x)|∀(k, j) ∈ A, xkj =
1;∀(k, j) /∈ A, xkj = 0}. It is noted that U(A) and U(x)
are different functions, but we adopt the same symbol U(·)
for simplification. Based on the above definitions, the LSTO
problem can be equivalently transformed as

Max
A⊆V

U(A) =
∑

j:(k,j)∈A

uj
(
1−

∏
k:(k,j)∈A

(1− ρkj)
)
, (15)

s.t.
∑

j:(k,j)∈A

1(k,j)∈A ≤ 1,∀k ∈ K, (16)

∑
(k,j)∈A

ckjρkj ≤ B, (17)

where 1 denotes the indicator function, which maps the
elements of the subset to 1, and the other elements to 0.

Based on the set function optimization problem, we theo-
retically analyze the properties of its objective function and
constraints as follows.
Definition 1. (Non-negativity, Monotonicity, Submodu-
larity [31]): A set function U(·) : 2V → R is i) non-
negative, if ∀A ⊆ V, U(A) ≥ 0 and U(∅) = 0; ii) monotone,
if ∀A ⊆ V and ∀v1 ∈ V \ A, U(A ∪ {v1}) ≥ U(A);
iii) submodular, if ∀A ⊆ ∀B ⊆ V and ∀v1 ∈ V \ B,
U(A ∪ {v1})− U(A) ≥ U(B ∪ {v1})− U(B).
Lemma 1. The objective function U(A) in Eq. (15) is non-
negative, monotone, and submodular.

Proof. According to Def. 1, we prove that it is non-negative,
monotone, and submodular one by one.

i) Non-negativity. If A = ∅, ∀k ∈ K,∀j ∈ J , xkj = 0.
Thus, according to Eq. (2), we have U(∅) = 0. Moreover,
since U(A) represents the task utility that is non-negative,
we have ∀A ⊆ V, U(A) ≥ 0. Thus, the objective function is
non-negative.

ii) Monotonicity. For ∀A ⊆ V , ∀v1 = (k1, j1) ∈ V\A,
according to Eq. (15), we have U(A ∪ {v1}) − U(A) =
uj1ρk1j1

∏
k:(k,j1)∈A(1 − ρkj1) ≥ 0. Hence, we can obtain

U(A) is monotone.
iii) Submodularity. ∀A ⊆ ∀B ⊆ V , ∀v1 = (k1, j1) ∈ V\B,

according to Eq. (15), we can obtain
U(A ∪ {v1})− U(A) = uj1ρk1j1

∏
k:(k,j1)∈A

(1− ρkj1), (18)

U(B ∪ {v1})− U(B) = uj1ρk1j1
∏

k:(k,j1)∈B

(1− ρkj1). (19)

Since A ⊆ B, we have∏
k:(k,j1)∈B

(1− ρkj1) =
∏

k:(k,j1)∈A

(1− ρkj1)

×
∏

k:(k,j1)∈B\A

(1− ρkj1). (20)

As ∀k ∈ K, 0 ≤ ρkj1 ≤ 1, we have
∏
k:(k,j1)∈B\A(1−ρkj1) ≤

1. Hence, according to Eq. (20),∏
k:(k,j1)∈A

(1− ρkj1) ≥
∏

k:(k,j1)∈B

(1− ρkj1). (21)

According to Eqs. (18), (19), and (21), we have
U(A ∪ {v1})− U(A) ≥ U(B ∪ {v1})− U(B). (22)

As a result, according to Def. 1, the objective function U(A)
is submodular. Thus, Lemma 1 is proved.

Definition 2. (Matroid [32]): Consider a finite ground set
V and a non-empty collection of subsets of V which is
represented as I . The pair (V, I) is called a matroid, if and
only if the following three conditions hold: i) ∅ ∈ I ; ii) If
∀A ⊆ ∀B ∈ I , A ∈ I ; iii) If ∀A ∈ I,∀B ∈ I and |A| < |B|,
∃v1 ∈ B satisfies A ∪ {v1} ∈ I .
Definition 3. (Knapsack constraint [33]): Given a set of
weights {wk} for the ground set K = {1, ..., k, ...,K} and
a knapsack of capacity B, the associated constraint is called
knapsack constraint if the sum of weights of elements in the
solution A ⊆ K satisfies

∑
k∈A wk ≤ B.

Lemma 2. Constraints (16) and (17) are a matroid constraint
and a knapsack constraint, respectively.

Proof. We first prove that constraint (16) is a matroid con-
straint, according to Def. 2. Specifically, let I denotes the
collection of all the solutions that satisfy constraint (16). In
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the following, we prove that the pair (V, I) constructed by
constraint (16) satisfies the three conditions of matroid.

i) ∅ ∈ V , and ∅ satisfies constraint (16). Hence, we have
∅ ∈ I , and the first condition is true.

ii) Since B ∈ I , according to Eq. (16), for ∀k1 : (k1, j) ∈
B, we have ∑

j:(k1,j)∈B

1(k1,j)∈B ≤ 1. (23)

Moreover, since A ⊆ B, for ∀k2 : (k2, j) ∈ A, we can get∑
j:(k2,j)∈A

1(k2,j)∈A ≤ 1. (24)

Thus, based on Eq.(24), we have A ∈ I , and the second
condition is true.

iii) Since A ∈ I , B ∈ I , and |A| < |B|, ∃k1 : (k1, j1) ∈
B\A which satisfies the following inequation:∑

j:(k1,j)∈A

1(k1,j)∈A <
∑

j:(k1,j)∈B

1(k1,j)∈B = 1. (25)

Thus, based on Eqs.(16)(25), we can get∑
j:(k1,j)∈A

1(k1,j)∈A = 1. (26)

Moreover, since A ∈ I , according to Eqs. (16)(25)(26), for
∀k2 : (k2, j) ∈ A ∪ {(k1, j1)}, the following inequation
holds: ∑

k2:(k2,j)∈A∪{(k1,j1)}

1(k2,j)∈A∪{(k1,j1)} ≤ 1. (27)

As a result, we can obtain A ∪ {(k1, j1)} ∈ I , and the third
condition is true. As constraint (16) satisfies all the three
conditions, it is a matroid constraint.

Moreover, we prove that constraint (17) is a knapsack
constraint. Consider that each element (k, j) ∈ V has the
weight ckjρkj ; the sum of weights of elements in the solu-
tionA ⊆ V is constrained by the knapsack capacityB. Thus,
Lemma 2 is proved.

Algorithm design. According to Lemmas 1 and 2, the
problem is proved to be maximizing a non-negative, mono-
tone, and submodular function with a knapsack constraint
and a matroid constraint. Thus, following the methodology
of submodular optimization [34], as shown in Alg. 1, we
propose a greedy local search-based near-optimal task allocation
algorithm. Three key ideas behind this algorithm design are
as follows:

(1) Creating feasible solutions via the swapping operations.
Thanks to the exchange property [32] of the matroid
constraint, we exploit the swapping operation to create
feasible solutions which satisfy both the matroid con-
straint (16) and the knapsack constraint (17). In specific,
let (v+, v−) and Vs denotes a swap and the swap set,
respectively, where v+ represents a non-allocated pair,
i.e., v+ = (k+, j+) ∈ V\A; v− denotes an allocated one,
i.e., v− = (k−, j−) ∈ A ∪ {∅}; Vs = {(v+, v−)}. It is
worthy noting that ∅ represents a dummy element; the
swapping operation in line 10 is equivalent to adding
v∗+ to A directly, when v∗− is ∅.

(2) Greedy search based on the largest marginal profit-cost ratio.
Since this problem is maximizing a monotone and
submodular objective function with a knapsack con-
straint, in line 7, we greedily search the swap (v∗+, v

∗
−)

which achieves the largest marginal profit-cost ratio,

Algorithm 1: Greedy Local Search-based Near-
optimal Task Allocation Algorithm.

1 Input: Task set J ; MOD driver set K; Budget B;
Sensing reward set [ckj ]K×J ; Tasks’ profit set {uj};
Drivers’ acceptance probability set [ρkj ]K×J ;
Output: Task allocation [xkj ]K×J ; Platform profit U .

2 Initialize S ← {(v0, v1)|∀v0 ∈ V,∀v1 ∈ V, v0 6= v1};
3 for s in S do
4 A ← s;
5 Vs = {(v+, v−)|∀v+ ∈ V\A,∀v− ∈ A ∪ {∅}};
6 while Vs 6= ∅ do
7 (v∗+, v

∗
−) = arg max

(v+,v−)∈Vs

U(A\{v−}∪{v+})−U(A)
ck+j+

;

8 Vs ← Vs\{(v∗+, v∗−)};
9 if A∪ {v∗+}\{v∗−} satisfies constraints (16)(17)

and U(A ∪ {v∗+}\{v∗−}) ≥ (1 + ε
K2J2 )U(A)

then
10 A ← A∪ {v∗+}\{v∗−};
11 Vs = {(v+, v−)|∀v+ ∈ V\A,∀v− ∈ A∪∅};

12 if U(A) > U(A∗) then
13 A∗ ← A;

14 Set x← {xkj = 1|∀k,∀j, (k, j) ∈ A∗};
15 Compute U(x) based on x, {uj}, and [ρkj ]K×J ,

according to Eq. (15);
16 return x and U(x) .

i.e., (v∗+, v
∗
−) = arg maxπ(v+, v−), where

π(v+, v−) =
U(A\{v−} ∪ {v+})− U(A)

ck+j+
. (28)

If the new swap (v∗+, v
∗
−) can satisfy constraints (16)(17)

and improve the platform profit by at least ε
K2J2 , it uses

this swap to updates the solution.
(3) Achieving guaranteed near-optimal solution based on two-

level iteration. The performance of the greedy search in
the inner loop (i.e., lines 6-11) fluctuates with the varied
initialization s. Furthermore, it is still an open issue to
obtain the optimal initialization [34]. Thus, we use the
outer loop (i.e., lines 3-13) to iteratively search the the
best result within an initialization set, so as to achieve
a near-optimal solution. Specifically, in line 2, we first
create the initialization set S , which includes all the sets
of any two different elements in V . Afterward, in lines
3-13, it iteratively searches each locally optimal solution
based on each initialization by using the inner loop and
selects the best one as the final result A∗.

Theorem 2. Alg. 1 achieves near-optimal solutions with
a (1 − e−2)/2-approximation ratio in polynomial time
O(K6J6 log(KJ)), where K and J denote the numbers of
drivers and tasks, respectively.

Proof. According to Lemmas 1 and 2, the optimal task
allocation problem is maximizing a monotone, submodular
objective function with a matroid constraint and a knapsack
constraint. As a result, referring to [34], Alg. 1 which uses
a greedy local-search strategy can achieve a (1 − e−2)/2-
approximation ratio.

Since Alg. 1 has at most K2J2 initializations, there are
no more than K2J2 outer loops, where K and J represent
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Fig. 7: Road coverage heatmaps in the LSTAloc and MOVE-CS models; black, green, yellow, and red lines represent collected
times of 0, 1, 2, and 3, respectively.
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Fig. 8: (a) Drivers’ profits in the LSTAloc and MOVE-CS
models, and (b) the profit increase ratio of LSTAloc compared
with the original MOVE-CS model.

the numbers of drivers and tasks, respectively. In each outer
loop, since Alg. 1 improves the profit by more than ε

K2J2 ,
it has at most K

2J2

ε log(KJ) swap operations. Furthermore,
the time complexity of each swap operation is O(K2J2),
since V has at most KJ elements. As a result, the time
complexity of Alg. 1 is O(K6J6 log(KJ)). To sum up,
Theorem 2 is proved.

5 EVALUATION

We use the large-scale MOD vehicle dataset to emulate the
operation process of the original MOVE-CS model and the
LSTAloc model. Furthermore, we comprehensively com-
pare the performance of our algorithm with five baseline
algorithms, followed by evaluating the performance of the
acceptance probability estimation component.

5.1 Emulation Methodology and Settings

The emulation of the proposed LSTAloc model and the
original MOVE-CS model is based on the large-scale MOD
vehicle dataset (specified in Sec. 2.2) as follows. First, the
MOVE-CS platform requires road data of 878 road segments
with a total length of 191.1 miles in a 32 km2 area. Then,
for higher accuracy, each road is required to be sensed k
times with decreasing profit u to the platform (k = 3,

u = $2.5, 1.5, and 0.5 per mile for the three times respec-
tively). There are 1000 MOD drivers, randomly selected as
participants willing to collect the road data for the MOVE-
CS market. Next, we run the emulation for five days, which
may end in advance if the budget is exhausted.

For the MOVE-CS model, drivers collect road data on
the move at any time they want during their work hours.
Drivers averagely spend $0.06 per mile on fuels [35]; their
data collection costs are only induced in the unoccupied
state during extra trips for tasks. After the data are up-
loaded, each driver gets a reward. The original settings
Payver adopted ($0.01-0.05 per mile) are so unreasonable
that most participants can only get few or even negative
profits. To make a fair comparison, in the emulation, in
contrast, we let a portion (1/a) of the platform profit u be the
reward, e.g., k=3, 1/a=0.2, and the rewards are $0.5, 0.3, 0.1
per mile respectively, according to the economic theory [36].
For the LSTAloc model, there are N rounds of task al-
locations. In each round, as explicated in Sec. 3.1, the
platform publishes sensing tasks; each corresponds to one
collection of a road segment. The platform then predicts
drivers’ pick-up profits and their acceptance probabilities,
based on which it allocates sensing tasks to these drivers.
Each driver accepts and accomplishes the tasks. Once the
task is accomplished, she/he receives the reward given by
the proposed algorithm. We implement the emulation on a
commodity server with 3.00GHz dual-core Intel Core Xeon
Gold 6561 CPU and 192GB RAM.

5.2 Results of Model Evaluation

Drivers’ profits. We first evaluate the two models on
drivers’ profits. As illustrated in Fig. 8a, for the MOVE-
CS model, 14.5% of drivers have negative profits from
sensing tasks, because they might spend a lot on collecting
repeated road data, resulting in rewards far less than the
driving cost. In contrast, all the drivers in the LSTAloc
model make positive profits, thanks to the sensing reward
design based on the spatial-temporal differentiation of pick-
up profits. Moreover, we analyze all the task allocation
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Fig. 9: Impacts of different numbers of drivers on the perfor-
mance of two models, in terms of drivers’ profits and platform
profit.
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Fig. 10: Comparison of the LSTAloc algorithm and four base-
lines in terms of the platform profit in different numbers of
drivers and tasks.
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Fig. 11: Comparison of the LSTAloc algorithm and four base-
lines in terms of the near-optimality and the drivers’ profits.

0 5 10 15 20 25
Relative error of prediction (%)

0

25

50

75

P
la

tf
o

rm
 p

ro
fi
t 

($
)

LSTAloc
Hector

iLOCuS
GA

RAD

(a) Error of pick-up profit heatmap

VL L M H VH
Acceptance probability level

0

25

50

75

P
la

tf
o

rm
 p

ro
fi
t 

($
)

LSTAloc
Hector

iLOCuS
GA

RAD

(b) Drivers’ acceptance probability

Fig. 12: Influences of different heatmap errors and acceptance
probabilities on the algorithm’s performance.

results in LSTAloc . Results show that, 87.3% of the allocated
tasks enable drivers from low-yield to high-yield zones,
consistent with their desires for immediate gains.

Furthermore, we compare the drivers’ profits in the two
models by calculating the drivers’ profit increase ratios in
LSTAloc to those in MOVE-CS. As demonstrated in Fig. 8b.
we find in our model, 50% of drivers increase profits by
320%, and 30% have an increase ratio of 880%, compared
with MOVE-CS. Further analysis indicates its effectiveness
is anchored in the active task allocation scheme, i.e., in-
centivizing drivers to complete the tasks suitable for them.
Besides, Fig. 8b shows that 20% of drivers suffer decreased
profits (than in the MOVE-CS model), due to no tasks
allocated to them, which can be solved by prior allocation
to these drivers in the next round.
Platform’s profit. We evaluate the platform profit in the
two models. We first visualize the coverage heatmap of
collected road segments throughout the five days. As shown
in Fig. 7, our coverage ratio of collected roads in each day
is consistently higher than that in MOVE-CS. Our coverage
ratio increases day by day, and ends up 94.7% in the last
day, 22.0% higher than that in MOVE-CS. Meanwhile, our
platform profit increases by 34.3%, also attributed to the
active task allocation scheme, i.e., encouraging drivers to
unpopular roads, increasing the road coverage ratio as well
as the platform profit.
Impacts of parameters. We evaluate the impacts of the
number of drivers on the model performance, in the aspects
of drivers’ profits and the platform profit. As shown in
Fig. 9a, we illustrate the box-plot of the drivers’ profits in
the two models. The results show that LSTAloc can guar-
antee all the drivers’ positive profits, while 14.6% of drivers

have negative profits in MOVE-CS model. Moreover, the
drivers’ profits of the two models decrease with the number
of drivers, since more opt-in drivers lead to more fierce
competition for earnings. However, the decrease ratio in
MOVE-CS is averagely 32.2% higher than that in LSTAloc .
Moreover, Fig. 9b demonstrates that the platform profits of
the two models improve with the number of drivers. The
platform profit of LSTAloc outperforms that of MOVE-CS
by 45.8% on average. Other parameters (e.g., budget) show
similar effects on results, so we do not show them due to
the page limit.

5.3 Results of Algorithm Evaluation

Baseline algorithms. To comprehensively evaluate the per-
formance of the key algorithm of LSTAloc , we exploit five
baselines as follows: (1) Hector [27] greedily allocates sensing
tasks with maximal marginal profit-cost efficiency to the
drivers, while using their basic driving costs as the rewards.
(2) GA [37] exploits the Genetic algorithm to maximize
the platform profit with the assumption that the sensing
rewards are already given. (3) iLOCuS [26] allocates the
sensing tasks greedily to minimize the task distribution
divergence, while utilizing the high pick-up probability of
the task’s zone as the hidden incentives. (4) RAD randomly
allocates tasks with a uniform distribution of pick-up prof-
its. (5) OPT uses the brutal-force search method to achieve
the optimal solution with exponential time cost. In the
remaining, we call the proposed algorithm LSTAloc as well
for simplification.
Platform profit. We first evaluate the platform profit of
the LSTAloc algorithm in different numbers of drivers
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Fig. 13: Ablation studies by comparing LSTAloc with its variant without the acceptance probability estimation (i.e., w/o ape),
regarding the coverage heatmap of collected road segments. Note that, we set the acceptance probability of LSTAloc w/o ape
25%, 75%, and 100% in (a), (b), and (c), respectively.

1 2 3 4 5

Index of zones

0

0.3

0.6

0.9

1.2

M
A

P
E

LSTAloc Gaussian Uniform

(a) Estimation error

120 140 160 180 200
Budget ($)

0

100

200

300

400

500

P
la

tf
o

rm
 p

ro
fi
t 

($
)

LSTAloc Gaussian Uniform

(b) Platform profit

Fig. 14: Impacts of different mobility models on the algorithm’s
performance, including the estimation error (i.e., MAPE) and
the platform profit.

and tasks, compared to four baselines. As demonstrated in
Figs. 10a and 10b, the platform profit of LSTAloc exceeds
those of RAD, GA, Hector, and iLOCus by 466.8%, 103.2%,
61.7%, and 257.1% in different numbers of drivers, respec-
tively, and by 516.5%, 132.7%, 44.4%, and 237.8% in different
numbers of tasks, respectively. Fig. 10a illustrates that the
platform profit of LSTAloc increases with the number of
drivers. However, its growth rate tends to decrease with
the number of drivers. It is because more participating
drivers can provide the platform with more options for task
allocation, thus enhancing the platform’s profit. However,
owing to the limited budget, the growth rate of platform
profit decreases with the number of drivers. In addition,
Figs. 10a and 10b show that the performances of Hector, GA,
and iLOCus are close to that of LSTAloc when the numbers
of drivers and tasks are very small. The reasons are that the
number of the candidate solutions for task allocation is very
limited owing to few drivers and tasks, hence leading to
similar performances for these methods.
Drivers’ profits and near-optimality. We evaluate the near-
optimality and drivers’ profits of LSTAloc by comparing
it with Hector, iLOCus, RAD, and OPT. As illustrated in
Fig. 11a, we compare the platform profit and the time cost
of LSTAloc with those of OPT in a small-scale scenario
(i.e., M = 10, S = 6). The results illustrate that LSTAloc
can averagely achieve 97.2% of the optimal platform profit
with only 0.004% of OPT’s time cost in different numbers
of drivers. As for drivers’ profits, there exists a large gap
between LSTAloc and baselines. As shown in Fig. 11b,
LSTAloc guarantees a 100% positive profit ratio (i.e., the
percentage of MOD drivers with positive profits after opting

in MOVE-CS), outperforming Hector, iLOCus, and RAD by
24.2%, 9.2%, and 58.1%. Hence, differing from the three
baselines, LSTAloc ensures a positive profit for every driver,
thanks to consideration of long-term and short-term profits
of drivers. In particular, since GA adopts the same reward
design scheme as LSTAloc , it also achieves a positive profit
ratio of 100% like LSTAloc .
Algorithm’s robustness. To investigate the robustness of
the LSTAloc algorithm, we evaluate the influences of dif-
ferent heatmaps’ errors and acceptance probabilities on the
algorithm’s performance. First, we evaluate the impacts of
prediction error of heatmaps on the performance of the
LSTAloc algorithm. Particularly, we add the White Gaussian
noise into the pick-up profit heatmaps, where the noise
deviation is set according to the relative prediction error
ranging from 0% to 25%. As demonstrated in Fig. 12a, the
platform profits of LSTAloc and iLOCuS decrease with the
prediction error, since both of them are based on the pre-
dicted heatmaps. Moreover, the platform profit of LSTAloc
is always much higher than those of other baselines with
different prediction errors. In the case of 25% prediction
error, LSTAloc even outperforms RAD, GA, Hector, and
iLOCus by 307.9%, 173.9%, 27.6%, and 214.9%, respectively.
Moreover, we let the acceptance probability of drivers fol-
low the stochastic uniform distribution U and vary it in five
levels, i.e., U(0, 0.2), U(0.2, 0.4), U(0.4, 0.6), U(0.6, 0.8), and
U(0.8, 1), called Very Low (VL), Low (L), Moderate (M),
High (H), and Very High (VH), respectively. As demon-
strated in Fig. 12b, the higher the acceptance probability,
the more the platform profits for all methods. LSTAloc
outperforms RAD, GA, Hector, and iLOCus in the platform
profit averagely by 410.9%, 200.8%, 104.2%, and 346.9%,
respectively.

5.4 Acceptance Probability Estimation Component
Evaluation

To evaluate the performance of the acceptance probabil-
ity estimation component, we emulate the LSTAloc model
based on the large-scale MOD vehicle dataset (specified
in Sec. 5.1). Acquiring ground-truth information about
whether these drivers accept the allocated tasks is challeng-
ing, so we leverage the real-world MOD vehicle dataset to
construct an approximate alternative. Specifically, drivers
often have schedules for picking up passengers and would
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not usually change them [17]. Moreover, when a MOD
driver passes through a road segment, his/her vehicle can
automatically collect road data without nearly extra cost.
Therefore, when an allocated task is located in a zone the
driver will pass through, this driver will be more likely to
accept it. To this end, we assume that if the driver travels
through the road segment of the allocated task at least once
during the period, she/he will accept the task. Otherwise,
they will not accept it [20]. Since the key to the accep-
tance probability estimation is the movement probability
estimation based on the mobility model, we set the content
preference a constant (i.e., 100%) so as to evaluate the impact
of this key model particularly. In the following, we first
evaluate the component’s performance by comparing it with
two mobility models, then conduct ablation studies.
Impacts of different mobility models. We evaluate the
influence of the mobility model on the LSTAloc algorithm’s
performance by comparing it with Gaussian and Uniform
models. As shown in Fig. 14a, we select five zones randomly
and compare the Mean Absolute Percentage Error (MAPE)
of the movement probability estimation for these zones by
using different mobility models. The results indicate that
LSTAloc—which uses the Poisson model—achieves the best
accuracy; its accuracy averagely outperforms the Gaussian
and Uniform models by 65.8% and 88.5%, respectively. Fur-
thermore, Fig. 14b illustrates that LSTAloc achieves much
more platform profits than the Gaussian and Uniform mod-
els in different budgets. The platform profit in the LSTAloc
averagely outperforms those in the Gaussian and Uniform
models by 16.7% and 21.4%, respectively.
Ablation studies. We conduct an ablation study to evalu-
ate the effectiveness of the acceptance probability estima-
tion component. In specific, we utilize a baseline without
the acceptance probability estimation component called
LSTAloc w/o ape, which assumes that the acceptance prob-
ability of each driver is unchanged and previously known.
As demonstrated in Figs. 13a, 13b, and 13c, we visualize
the coverage heatmap of collected road segments with the
limited budget for LSTAloc w/o ape when setting the
acceptance probability 25%, 75%, and 100%, respectively.
The results indicate that the lower acceptance probability
settings may reduce the coverage of collected road segment,
since most tasks are allocated repeatedly to multiple drivers,
hence decreasing the coverage ratio. Moreover, Fig. 13d
shows the coverage ratio in LSTAloc is up to 70.4%, which
is 17.9% higher than those in LSTAloc w/o ape. The reason
is that, without the acceptance probability estimation com-
ponent, most allocated tasks in LSTAloc w/o ape may not
meet the drivers’ willingness and will not be accepted by
these drivers, thus resulting in the dramatic decrease of the
performance.

6 DISCUSSIONS & FUTURE WORK

Multi-task allocation for each driver. In LSTAloc model,
we restricts that each driver is allocated at most one task
in each allocation period, so as to alleviate the negative
influence of executing sensing tasks on the chief job of MOD
drivers, i.e., picking up passengers. If we intend to offer
drivers more freedom of task selection, we can extend our
work to the multi-task allocation model that each driver is

allocated more than one task. In this new model, besides
task allocation optimization, the driving trajectories should
be wisely planned so that each driver can pass by all of
their allocated tasks with minimal driving distance/cost,
i.e., a classical Travelling salesman problem (TSP) [38]. More
challengingly, these two problems are tightly coupled with
each other. For example, different task allocation results may
affect their driving trajectory plans. Thus, in the future, we
will address the task allocation problem and TSP jointly.

Concerning spatio-temporal coverage of tasks. Accounting
for the spatio-temporal coverage of executed tasks is signif-
icant for many practical applications, such as city-wide air
quality monitoring [26], [37]. Our work aims at maximizing
the total platform profit (i.e., the total utility of executed
tasks), which may weaken the spatio-temporal coverage of
tasks. To improve their spatio-temporal coverage, we can
extend our work by improving the utilities for the tasks
which are always not allocated by the platform (or not
accepted by drivers). Furthermore, we can add a coverage
constraint that the expected execution probability of each
task (i.e., 1−

∏K
k=1(1− ρkj)xkj ) is no less than a predefined

threshold. Since this constraint is non-linear, it makes the
problem more challenging. In the future, we will study how
to solve the problem of maximizing a submodular function
with a matroid constraint, a knapsack constraint, and a non-
linear constraint.

Privacy protection for both drivers and passengers. In
MOD vehicular crowdsensing, a large amount of data about
drivers and passengers is shared to analyze the drivers’
behaviors, potentially incurring their privacy leakage [39],
[40]. On the one hand, LSTAloc makes a slight influence
on the passengers’ privacy with the following two reasons.
First, we mainly use the MOD vehicles to execute the sens-
ing tasks during their unoccupied time without passengers.
Moreover, only the trajectories and the occupied/vacant
state indicators of MOD vehicles are utilized to construct
the pick-up profit heatmap and estimate the acceptance
probability. Therefore, little private information about each
passenger is shared, and our work causes subtle risks on
the privacy of passengers. On the other hand, LSTAloc may
affect the drivers’ privacy, as it uses their driving trajectories
with the anonymized vehicle ID. Two feasible ways can be
used to protect the drivers’ privacy. First, since the MOD
platform (e.g., DiDi, Uber, etc.) is trusted for drivers, we can
use this platform to allocate MOVE-CS tasks for each driver,
thereby protecting their privacy from being stolen by un-
trusted third-party platforms. Second, many good privacy
protection algorithms can be utilized, such as the differential
privacy [41] and personalized privacy protection [42]. In
the future, we will study the trade-off between the driver’s
privacy protection and platform profit.

Advices for MOD vehicular crowdsensing: Based on the
findings presented in this paper, there are some suggestions
for promoting the market of MOVE-CS. First, leveraging
MOD vehicles is a promising way to collect sensing data
cheaply. However, the incentives for MOD drivers should
be wisely considered to encourage enough drivers. Second,
surveying drivers’ perceptions and analyzing their behavior
is critical to designing an efficient incentive mechanism.
Finally, accounting for drivers’ long-short-term profits is

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3271671

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on May 20,2023 at 19:03:42 UTC from IEEE Xplore.  Restrictions apply. 



14

TABLE 2: Comparisons between existing works and LSTAloc regarding the system model and algorithm performance.

Incentivizing non-MOD vehicles Incentivizing MOD vehicles
[37] [43] [44] [45] [46] [47] [48] [49] [50] [26] Ours

Picking up passengers × × × × × X X X X X X
Executing sensing tasks X X X X X × × × X X X

Drivers’ long-short term profits × × × × × × × × × × X
Guaranteed performance X X × X X × X × × × X

greatly important to incentivize their participation when
allocating sensing tasks.

7 RELATED WORK

Recently, there have been considerable studies of incen-
tivized mobile crowdsensing [46], [51]–[55], most of which
focus on human mobility [52]–[54], [56] without considering
the special impacts of vehicle mobility. Compared with hu-
man mobility, vehicle mobility is often constrained by road
networks, but exhibits more dynamics, thus leading to new
opportunities and challenges in mobile crowdsensing [46],
[55], [57]. Since this paper belongs to the category of incen-
tivizing vehicular crowdsensing [45], we review its related
studies in terms of non-MOD vehicles (such as private cars)
and MOD vehicles.
Incentivizing non-MOD vehicular crowdsensing. As one
of the earliest works about incentivizing vehicular crowd-
sensing, He et al. [37] design a participant recruitment
strategy, jointly leveraging both the current location and the
predictable mobility pattern of vehicles. Since reference [37]
does not consider the uncertainty of vehicle mobility, Wang
et al. [43] study both the deterministic and probabilistic
trajectory models and propose two efficient vehicle recruit-
ment algorithms. Zhu et al. [44] use RNN to predict the
future vehicle mobility, which is used to select vehicles to
maximize their coverage with limited budget. Moreover, re-
garding the selfish drivers who may strategically misreport
their costs, Xiao et al. [45] present a reverse-auction-based
truthful incentive mechanism design for non-deterministic
vehicular crowdsensing. Fan et al. [27] propose Hector, a
novel joint scheduling and incentive mechanism of vehic-
ular crowdsensing, which is proved truthful, individual-
rational, computation-efficient, and close-to-optimal. Fur-
ther, accounting for the uncertain task delay, Chen et al. [46]
propose a truthful budget utility maximization auction
scheme. To sum up, the above works focus on common vehicles
without concerning the special tasks of MOD vehicles, i.e., picking
up passengers.
Incentivizing MOD vehicular crowdsensing. The incen-
tive mechanism design for MOD vehicular crowdsens-
ing differs significantly from that for non-MOD vehicular
crowdsensing, since the MOD drivers are also concerned
with passenger missions which typically dominate their
earnings. For example, He et al. [47] propose a new adaptive
pricing scheme called CAPRICE, which uses the proactive
pricing signals to incentivize MOD drivers to balance the
supply-demand in picking up passengers. Xu et al. [48]
design an effective order dispatching algorithm which con-
siders both the immediate passenger satisfaction and the
expected future income of drivers. Ke et al. [49] propose a
passenger-driver matching scheme empowered by convex

combinatorial optimization and deep reinfocement learning
to help reduce the average pick-up time of drivers. Never-
theless, both of them only account for the pick-up profit of
MOD drivers and neglect their extra incomes of executing
crowdsensing tasks. In contrast, a recent work called iLO-
CuS [26], highly related to this paper, proposes a hybrid in-
centive mechanism, which combines the monetary rewards
from executing sensing tasks and the non-monetary hidden
incentives (i.e., the passenger’s requests at the task’s zone)
from picking up passengers. Xu et al. [50] also combined
both monetary and non-monetary rewards as incentives to
motivate drivers to achieve high-quality sensing coverage in
a target sensing area. Nevertheless, both of them neglect the
in-depth demands of MOD drivers for short-term and long-
term profits, inefficient in encouraging the drivers. Xiang et
al. [58] propose a sensing task allocation scheme based on
the deep reinforcement learning, achieving a near optimal
solution with a factor which depends on the maximal and
minimal costs of all the sensing tasks. Contrarily, this work
uses the greedy local search to achieve a (1 − e−2)/2-
approximation ratio, thereby having more robustness in
the real applications with different settings. Additionally,
in the conference version of this paper [1], we present an
operation model to resurrect the market of MOVE-CS, based
on the assumption that the acceptance probability of each
driver is unchanged and previously known. However, in
real applications, each driver’s acceptance probability varies
with the tasks and the context. To this end, this paper de-
velops an effective acceptance probability estimation model
to estimate the acceptance probability of MOD drivers by
leveraging their predictable mobility.
Summary. As illustrated in Table 2, on the one hand,
existing works focus on incentivizing non-MOD vehicles
and neglect the special pick-up jobs of MOD drivers, thus
discouraging the MOD drivers from participating in crowd-
sensing. On the other hand, parts of works take into account
both the pick-up profits and the sensing task’s incomes in
the incentive mechanism design. Nevertheless, they fail to
consider MOD drivers’ explicit and implicit needs. Distin-
guished from them, based on user studies and dataset-based in-
depth analysis, we uncover that MOD drivers have an explicit
preference for short-term, immediate gains and implicit rationality
in pursuit of long-term, stable profits. Moreover, motivated by the
findings, we propose a novel driver-oriented incentive mechanism
that satisfies the MOD drivers’ explicit and implicit needs and
considers the platform’s profit.

8 CONCLUSION

In this paper, motivated by findings in drivers’ survey
and the dataset-based MOD driver behavior analysis, we
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propose LSTAloc , a new driver-oriented incentive mech-
anism for MOVE-CS to satisfy drivers’ explicit and im-
plicit needs and consider the platform’s profit. Behind
it lies a spatial-temporal differentiation-aware task alloca-
tion scheme empowered by submodular optimization. It
involves pick-up heatmap prediction based on RNN, the
differentiation-aware sensing reward design, the acceptance
probability estimation based on drivers’ mobility model,
and the submodularity-based task allocation algorithm. The
emulation reveals that LSTAloc guarantees not only positive
profits for drivers, but also a near-optimal profit for the
platform, hence incentivizing MOD drivers effectively to
resurrect MOVE-CS.
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