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Mobile emulation, which creates full-fledged software mobile devices on a physical PC/server, is pivotal to

the mobile ecosystem. Unfortunately, existing mobile emulators perform poorly on graphics-intensive apps

in terms of efficiency and compatibility. To address this, we introduce graphics projection, a novel graphics

virtualization mechanism that adds a small-size projection space inside the guest memory, which processes

graphics operations involving control contexts and resource handles without host interactions. While

enhancing performance, the decoupled and asynchronous guest/host control flows introduced by graphics

projection can significantly complicate emulators’ reliability issue diagnosis when faced with a variety of

uncommon or non-standard app behaviors in the wild, hindering practical deployment in production. To

overcome this drawback, we develop an automatic reliability issue analysis pipeline that distills the critical

code paths across the guest and host control flows by runtime quarantine and state introspection. The re-

sulting new Android emulator, dubbed Trinity, exhibits an average of 97% native hardware performance and

99.3% reliable app support, in some cases outperforming other emulators by more than an order of magnitude.
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1 INTRODUCTION

Mobile emulation has been a keystone of the mobile ecosystem. Developers today typically debug
their apps on generic mobile emulators (e.g., Google’s Android Emulator, or GAE for short) rather
than on heterogeneous real devices. Also, various dedicated mobile emulators (e.g., Bluestacks [15]
and DAOW [80]) are used to detect malware in app markets [29, 63, 79], to enable mobile gaming
on PCs [15, 80], and to empower the emerging notion of cloud gaming [49].

Motivation. To create software mobile devices on a physical PC/server, mobile emulators
usually adopt the classic virtualization framework [44, 57, 64, 66] where a mobile OS runs in a
virtual machine (VM) (i.e., the guest), hosted on a PC/server (i.e., the host). However, traditional
virtualization techniques are initially designed to work on headless servers or common PCs
without requiring strong UI interactions within the VM, while real-world mobile apps are highly
interactive [50] and thus expecting mobile emulators to have powerful graphics processing capa-
bilities (as provided by real mobile phones) [80]. This capability gap is further aggravated by the
substantial architectural differences between the graphics stacks of desktop and mobile OSes [16].

Over the years, several approaches have been proposed to fill the gap. Perhaps the most intuitive
is solely relying on a CPU to carry out a GPU’s functions. For example, as a user-space library re-
siding in mobile OSes (e.g., Android), SwiftShader [35] helps a CPU mimic the processing routines
of a GPU. This achieves the best compatibility since any mobile app can thus seamlessly run under
a wide variety of environments even without actual graphics hardware, but at the cost of poor
efficiency since a CPU is never suited to handling the highly parallel (graphics) rendering tasks.

To improve the emulation efficiency, a natural approach is multiplexing the host GPU within
a PC/server through API remoting [22, 72], which intercepts high-level graphics API calls at the
guest and then executes them on the host GPU with dedicated RPC protocols and guest-host I/O
pipes. Unfortunately, the resulting products (e.g., GAE) cannot smoothly run many common apps,
let alone “heavy” (i.e., graphics-intensive) apps for AR/VR viewing and 3D gaming. This short-
coming stems from frequent VM Exits to the host to execute API calls, introducing a considerable
“tromboning” effect [25] on the control and data flows. This results in additional idle waiting at
the guest, as it must wait not only for the API call to complete, but also for the added process of
exiting to the host and returning back to the guest.

To mitigate the issue, device emulation [20] moves the virtualization boundary from the API
level to the driver level. It forwards guest-side graphics driver commands to the host with a shared
memory region inside the guest kernel to realize their effects with the host GPU. Compared to
high-level APIs, driver commands are much fewer, more capable, and mostly asynchronous [20], so
device emulation effectively reduces guest-host control/data exchanges and idle waiting. However,
the translation from API calls to driver commands degrades critical high-level abstractions such
as windows and threads to low-level memory addresses and register values. Due to the loss of
high-level information, driver commands must be sequentially executed at the host, degrading
guest-side multi-threaded rendering to host-side single-threaded rendering. Hence, the resulting
emulators (e.g., QEMU-KVM) can smoothly run regular apps but not heavy ones.

Another approach is to break guest-host isolation by removing the virtualization layer so
apps can directly use the GPU, as embodied in DAOW [80]. This requires manually translating
Linux system calls used by Android to Windows ones. Unfortunately, many apps cannot run on
DAOW because many (∼46%) system calls are not translated due to the huge engineering efforts
required for full system calls’ translation. Also, the supported apps must run under the protection
of additional sophisticated security defenses to compensate for the lack of guest-host isolation.

We present Trinity, a novel mobile emulator that simultaneously achieves high efficiency,
compatibility, and reliability. Our guiding principle is to decouple the guest-host control and data

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 6. Publication date: September 2024.



Trinity 6:3

Fig. 1. Basic workflow of Trinity.

exchanges and make them as asynchronous as possible when multiplexing the host GPU under
the virtualization framework, so that frequent VM Exits for synchronous host-side execution of
API calls can be largely reduced. For this purpose, we propose to add a projection space inside the
guest memory, where we selectively maintain a “projected” subset of control contexts (termed
shadow contexts) and resource handles. Such contexts and handles are derived but different from
the real ones required by a physical GPU to perform rendering, so as to reflect and reproduce the
effects of guest-side graphics operations (i.e., API calls). Thus, the vast majority (99.93%) of API
calls do not need synchronous execution at the host, while consuming less than 1 MB memory
for even a heavy 3D app.

Concretely, when an Android app wants to draw a triangle on a physical phone, it sequentially
issues three types of graphics API calls: context setting (Type-1), resource management (Type-2),
and drawing (Type-3). Type-1 prepare the canvas and bind resource handles; Type-2 populate the
handles’ underlying resources with the triangle’s vertex coordinates, filling colors/patterns, and so
on; Type-3 instruct the GPU to render and display the triangle. In contrast, as shown in Figure 1,
when the app runs in Trinity, Type-1 and Type-2 calls are first executed only in the projection
space, that is, their effects are temporarily reflected on the shadow contexts and resource handles.
Later upon drawing calls (Type-3), their effects are delivered to the host to realize actual rendering.

Combined with graphics projection, an elastic flow control algorithm is devised to orchestrate
the control flows at both the guest and host sides. Regarding the guest-host data flows, we find
that the major challenge of rapidly delivering them lies in the high dynamics of system status and
data volume (e.g., bursty data flows common in graphics workloads). To this end, we find that the
dynamic situations follow only a few patterns, each of which requires specific data aggregation,
persistence, and arrival notification strategies. Therefore, we implement all the required strategies,
and utilize static timing analysis [13] to estimate which strategy is best suited to a data flow.

While graphics projection is able to decouple the guest and host control flows to enhance
performance, it also significantly increases the complexity of emulators’ bug analysis, especially
when facing a variety of reliability issues (e.g., functional failures, app crashes, and system hangs)
incurred by uncommon, non-standard, or even erroneous behaviors of mobile apps in the wild.
Under the graphics projection framework, reliability issues usually manifest in a cross-layer
manner, that is, the symptoms and code paths are often distinct and hard to correlate at the guest
and host sides, making the debugging space prohibitively large. Without an effective method to
diagnose and debug, the deployment of graphics projection in production is extremely difficult.
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To tackle the abovementioned difficulty and benefit other modern virtualization systems which
widely adopt cross-layer design (e.g., paravirtualization-based device emulation) for optimizing the
virtualization efficiency, we develop an automatic analysis pipeline to effectively diagnose cross-
layer reliability issues. Our key idea is to capture host-side and guest-side rendering code flows
responsible for a reliability issue at run time, and then “quarantine” them as standalone programs
that can help us effectively reproduce the issue. Concretely, we compare the host-side runtime
states (i.e., control contexts and graphics resources) with those of the guest app; the uncovered
state differences then act as key indicators of Trinity’s internal bugs. This is enabled by Trinity’s
role of graphics API provider and the projection space that manages guest-side runtime states,
which make guest apps’ API calls and relevant states highly introspectable, even without the apps’
source code. Thereby, we can distill the critical code paths (that essentially lead to reliability issues)
by strategically altering the parameters of the API calls related to the states and checking whether
the failure scene is affected in the meantime. With this root cause analysis method, we are able to
efficiently pinpoint the root causes of all the reliability issues of Trinity reported during its beta
testing before production deployment, and effectively resolve all of them.

Evaluation. Similar to GAE, Trinity is also implemented atop QEMU and hosts the Android
OS, with 120K lines of C/C++ code. We evaluate its efficiency, compatibility and reliability using
standard graphics benchmarks, the top-100 3D apps from Google Play, and 10K apps randomly
selected from Google Play. We also compare the results with six mainstream emulators: GAE,
QEMU-KVM, Windows Subsystem for Android (WSA), VMware Workstation, Bluestacks,
and DAOW. The evaluation shows that Trinity can achieve 75%∼111% (averaging at 97%) native
hardware performance, outperforming the other emulators by 1.4× to 20×. For compatibility and
reliability, Trinity can run the top-100 3D apps and 99.3% of the 10K randomly selected apps. To
our knowledge, Trinity is the first and the only Android emulator that can smoothly run heavy
3D apps without losing compatibility.

Software/Code/Data Availability. The binary, code, and measurement data involved in this
work are released at https://TrinityEmulator.github.io/.

2 UNDERSTANDING MOBILE GRAPHICS API

We first delve into the three types of APIs in OpenGL ES, the de facto graphics framework of
Android (Section 2.1), and then measure real-world 3D apps to obtain an in-depth understanding
of their graphics workloads (Section 2.2).

2.1 Background

Figure 2 shows a basic OpenGL ES program for drawing a triangle. The program first creates a
graphics buffer in a GPU’s graphics memory using a Type-2 API—glGenBuffers, then populates
the buffer with the coordinate data of the triangle’s vertices through a Type-1 API—glBindBuffer
and a Type-2 API—glMapBufferRange, and finally instructs the GPU to draw the triangle using a
Type-3 API—glDrawArrays.

Type-1: Context Setting. To manipulate or use the allocated graphics buffer, instead of pass-
ing the buffer’s handle to every API call, the program first calls glBindBuffer, which binds the
handle to a thread-local context, that is, the transparent, global state of the thread. Then, all the
subsequent buffer-related API calls (e.g., the buffer population call glBufferData and the drawing
call glDrawArrays that uses the buffer data to draw) will be directly applied to the bound buffer,
without needing to specify the buffer handle in their call parameters.
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Fig. 2. OpenGL ES code snippet for drawing a triangle.

The above process is called context setting, which configures critical information of the current
thread’s context. This programming paradigm avoids repeatedly transferring context information
from the main memory to the GPU, particularly when the information is rarely modified. In
general, the context information that requires setup includes the current operation target, render
configurations, and resource attributes. The operation target identifies the object that subsequent
API calls will affect, for example, in Figure 2 the buffer handle becomes the operation target
of subsequent API calls after it is bound to the context. Render configurations define certain
rendering behaviors, for example, whether to perform validation of pixel values after a frame is
rendered. Resource attributes correspond to resources’ internal information, for example, formats
of images and data alignment specifications.

Type-2: Resource Management. Resources involved in graphics rendering include graphics
buffers that store vertice and texture data (“what to draw”), shader programs that produce special
graphics effects such as geometrical transformation (“how to draw”), and sync objects that set time-
wise sync points (“when to draw”). Graphics buffers hold most of the graphics data and thus require
careful management. To populate a buffer with graphics data, there are mainly two approaches—
immediate copy and latent mapping.

With regard to immediate copy, data are passed into the glBufferData API’s third call param-
eter and copied from the main memory to the bound graphics buffer, that is, the buffer pointed
by vertex_buffer_handle. This approach is easy to implement but involves synchronous,
time-consuming memory copies. In contrast, Figure 2(a) shows the latent mapping approach,
where glBufferData is called but no data are passed to it; instead, glMapBufferRange maps
the graphics buffer to a main memory address, that is, vtx_mapped_buf. The data can then be
directly stored in the mapped main memory space, without needing to synchronously trigger
memory-to-GPU copies. Finally, when the data are ready, glUnmapBuffer is called to release
the address mapping, and then the data are asynchronously copied to the graphics buffer by
the GPU’s hardware copy engine (a DMA device), which turns out to be more flexible and
efficient.

Type-3: Drawing. After the contexts and resources are prepared, the drawing phase is usually
realized with just a few API calls, for example, glDrawArrays as shown in Figure 2(b). Such APIs
are all designed to be asynchronous in the first place, so that the graphics processing throughput
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of a hardware GPU can be maximized. When a drawing call is issued, the call is simply pushed
into the GPU’s command queue rather than being executed synchronously.

Apart from the above operations for rendering a single frame, graphics apps often need to render
continuous frames (i.e., animations) in practice. To this end, a modern graphics app usually follows
the delta timing principle [18] of graphics programming, where the app measures the rendering
time of the current frame (referred to as the frame’s delta time) to decide which scene should be
rendered next. For example, when a game app renders the movement of a game character, the
app would measure the delta time of the current frame to compute how far the character should
move (i.e., the character’s coordinate change) in the next frame based on the delta time and the
character’s moving speed.

Graphics APIs beyond OpenGL. While the above descriptions focus on OpenGL (ES), we find
that the API semantics of other existing graphics frameworks (such as Vulkan) have similar char-
acteristics. Their APIs can also be categorized into the aforementioned three types. For example,
in Vulkan VKInstance is used for managing context information, vkCreateBuffer is called for
allocating buffer resources, and vkCmdDraw issues drawing commands.

This is not surprising, but stems from a common GPU’s internal design. Like a CPU, a GPU
usually leverages dedicated state registers for determining the current operation targets and pa-
rameters (i.e., contexts), based on which an array of computation cores perform rendering and
computing tasks in parallel. Special high-bandwidth graphics memory is often embedded in a GPU
for holding a large amount of graphics resources (e.g., vertex and texture), therefore mitigating
the memory wall issue observed in a CPU [77], that is, the speed disparity between memory ac-
cesses and computations. Correspondingly, the three types of graphics API calls are then used for
manipulating these essential hardware components throughout a rendering thread’s lifecycle.

2.2 Real-World Graphics Workloads

To obtain a deeper understanding of modern graphics workloads in terms of both control flow
and data flow, we measure the top-100 3D apps (which are all game apps) from Google Play as of
05/14/2023 [75] by examining the distributions of their API calls and the sizes of their generated
graphics data. We instrument vanilla Android 11’s system graphics library to log the API calls and
count the graphics data of a test app during its run time. For each game app, we play a full game
set (whose specific operations depend on the app’s content) to record the runtime API invocation
data. The experiments are conducted on a (middle-end) Google Pixel 5a device, which is equipped
with a Qualcomm Snapdragon 765G SoC, 6 GB memory, 128 GB storage, and 1080p display.

Figure 3 shows that an average of 2,187 API calls are issued for rendering a single frame. For most
(88%) of the frames, the number of API calls is larger than 1,000. Figure 4 depicts the percentages of
specific types of API calls. As shown, the distribution is quite skewed—Type-1 and Type-2 occupy
the vast majority (around 94% on average), while Type-3 take up merely 6% on average. Addition-
ally, we find that despite being the majority, most Type-1 and Type-2 calls do not have immediate
effects on the final rendering results until Type-3 calls are issued. For example, graphics data stored
in a graphics buffer are usually not used by the GPU before certain drawing calls are issued.

With respect to data flow, there also exists considerable disparity in the graphics data amount
generated per second, as indicated in Figure 5. While 90% of the graphics data generated per second
are less than 60 MB in size, the peak data rate can be as high as 1.06 GB/second, revealing significant
data rate dynamics in real-world graphics workloads.

2.3 Implications for Mobile Emulation

Type-1 and Type-2 calls are relatively cheap when executed natively, but this may not be the case
in a virtualized environment. If a Type-1 or Type-2 call is synchronously executed on the host GPU,
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Fig. 3. Number of API calls issued for
rendering a single frame.

Fig. 4. Percentages of different
API calls for the top-100 3D apps.

Fig. 5. Graphics data generated
per second by top-100 3D apps.

it can be expensive to first exit the guest, then wait for the host to execute the call, and then return
back to the guest. This “tromboning” process adds substantial latency to what might otherwise be
an inexpensive call, especially when Type-1 and Type-2 calls are very frequent.

To mitigate the problem, an intuitive approach is using a buffer to batch void API calls, that is,
calls that do not return any values, so that not only the void Type-1 and Type-2 calls are delayed, but
the asynchronous nature of Type-3 calls (which are all void calls) can also be exploited. However,
the resulting efficiency improvement is limited by the proportion of void API calls, that is, only
41.4% according to our measurement. Thus, it is no wonder that GAE, which takes this approach
to improve efficiency, cannot smoothly run many common apps.

In hopes of fundamentally addressing the problem, we make the following key observation—
resource-related operations (involving all Type-2 and most Type-1 operations) are fully handle-
based. That is to say, these operations only interact with indirect, lightweight resource handles
in the main memory, rather than the actual resources lying in the GPU’s graphics memory. As
demonstrated in Figure 2, a resource handle is merely an unsigned integer. In hardware GPU envi-
ronments, this greatly facilitates the manipulation of graphics resources (without actually holding
them in the main memory), thus avoiding frequently exchanging a large volume of graphics data
between the main memory and the graphics memory. Note that the two memories are isolated
hardware components connected via a relatively slow PCI bus.

We can exploit this key insight to accelerate mobile emulation, given that guest and host are
also isolated by virtualization. We “project” a selective subset of contexts and resource handles,
which are necessary for realizing actual rendering at the host GPU, onto the address spaces of
guest processes; the resulting contexts after projection are termed shadow contexts. With the help
of shadow contexts and resource handles, most (void and non-void) APIs can be asynchronously
executed at the host. Moreover, certain Type-1 and Type-2 API calls (mostly used for querying
context and resource information) can be directly accomplished within the projection space,
completely eliminating their execution at the host.

3 SYSTEM OVERVIEW

Figure 6 depicts Trinity’s system architecture. It uses virtualization to isolate guest and host
execution environments to retain strong compatibility and security. At the heart of Trinity
lies a small-size graphics projection space, which is allocated inside the memory of a guest
app/system process. Within the space, we maintain a special set of shadow contexts and resource
handles which correspond to a subset of control contexts and resources inside a hardware GPU
(cf. Section 4).

Once Type-1 or Type-2 API calls issued from a guest process are executed in the projection
space, the shadow contexts and resource handles will reflect and preserve their effects. Control
flow then returns to the guest process for executing its next program logic without synchronously
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Fig. 6. Architectural overview of Trinity.

waiting for host-side execution of the API calls (as conducted by API remoting). Meanwhile, the
host contexts are asynchronously aligned with the shadow contexts; mappings are asynchronously
established between resource handles and host resources.

Since synchronous host-side API execution is avoided, rather than exiting to the host to deliver
data, the host can choose to asynchronously fetch the guest data required for API execution from
the guest memory space through polling (cf. Section 6.0.1), thus reducing frequent VM Exits. Later
when the guest process issues Type-3 API calls, they are also asynchronously executed at the host
as they are designed to be asynchronous. In this manner, the originally time-consuming guest-
host interactions can be effectively decomposed into interleaved and mostly asynchronous guest-
projection interactions and projection-host interactions.

For example, when running the program in Figure 2, Trinity directly generates a buffer handle
upon the Type-2 API call glGenBuffers, which is then sent to the host. When the program finishes
sending the handle, its control flow continues; meanwhile, the host asynchronously allocates a
buffer and its handle by also calling glGenBuffers in a dedicated host rendering thread using the
host-side desktop OpenGL library, whose APIs are a superset of OpenGL ES APIs.

The relation between the host handle and the guest one is recorded in a hash table at the host.
When glBindBuffer (Type-1) is called with the guest handle, Trinity adjusts the shadow context
information of the currently bound buffer handle, and then sends the bound guest handle to the
host. When the guest finishes sending the handle, the host asynchronously looks up the corre-
sponding host handle in the hash table, and then calls glBindBuffer at the host to bind the host
buffer (handle) in the rendering thread.

When glMapBufferRange (Type-2) is called, Trinity allocates a guest memory space and returns
it to the guest program. When glUnmapBuffer (Type-2) is called, Trinity transfers the data in
the guest memory space to the host, as no further modifications can be made to the data then.
At the host side, the real buffer is then asynchronously populated with the data also through
glMapBufferRange. Finally, upon glDrawArrays (Type-3), Trinity asynchronously executes it at
the host rendering thread, so as to instruct the host GPU to realize actual rendering with the
graphics buffer’s data.
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To sum up, Trinity’s projection space provides two key advantages. First, it helps to avoid
synchronous host-side execution of APIs (as in API remoting), even for non-void calls (such as
glGenBuffers) that need to be processed immediately, so that expensive VM Exits can also be re-
duced. Second, it can resolve the API calls for querying context and resource information, such as
glGetBufferParameteriv in Figure 2, without sending them to the host. Quantitatively, 99.93%
calls do not need synchronous host-side API execution, among which 26% are directly resolved
at the guest (cf. Section 9.3). Although the projection space can involve processing certain calls
twice—once at the guest and once at the host, this is done with relatively cheap operations whose
extra costs are more than outweighed by the savings from reduced synchronous host-side execu-
tion of the APIs and the accompanied VM Exits.

To maximize Trinity’s graphics processing throughput, all the above guest-side and host-side
operations are coordinated by an elastic flow control algorithm (Section 5). Furthermore, the
projection-host interactions are accomplished via a data teleporting method (Section 6) that at-
tempts to maximize the data delivery throughput under high data and system dynamics.

4 GRAPHICS PROJECTION

We present the construction and maintenance of shadow contexts (Section 4.0.1) and resource
handles (Section 4.0.2), that is, the key data structures that format the projection space.

4.0.1 Shadow Context. In Section 2.1, we have introduced that Type-1 APIs are usually used to
manipulate three types of context information: 1) operation target, 2) render configurations, and
3) resource attributes. Apart from the above, as shown in Figure 6, context information in a real
GPU environment also includes 4) rendered pixels and 5) execution status. Here, rendered pixels
refer to the rendered pixels stored in graphics memory, and execution status is the current status
of the GPU’s command queues.

For a shadow context, we carefully select to maintain the following three types of context in-
formation: 1) operation target, 2) render configurations, and 3) resource attributes. Consequently,
with the above information, subsequent reads of context information can be directly fulfilled with
the shadow contexts without resorting to the host. The shadow context is maintained based on
Type-1 calls issued by a guest process. For example, when the process calls glBindBuffer (as
shown in Figure 2) to bind a buffer handle (vertex_buffer_handle) as the current operation tar-
get, the operation target maintained in the shadow context (usually an integer) will be modified
to the buffer handle.

The other two pieces of context information we choose not to maintain, that is, rendered pixels
and execution status, are related to a hardware GPU’s internal states. Managing such information
requires frequent interactions with the host GPU, thus incurring prohibitively high overhead. If
such information is actually required, it will be retrieved from the host synchronously. Fortunately,
such cases occur with a pretty low (0.07% on average) probability during an app’s rendering (ac-
cording to our measurement in Section 2.2). Even when such cases occur, we make considerable
efforts to minimize the incurred time overhead by carefully designing the data teleporting method,
which will be detailed in Section 6.

Similar to a CPU context, a rendering context is tightly coupled with the thread model of an
OS. At any given point of time, a thread is bound to a single rendering context, while a rendering
context can be shared among multiple rendering threads of a process to realize cooperative ren-
dering. Thus, in the graphics projection space of a process, we maintained shadow contexts on a
per-thread basis, while keeping a reference to the possible shared contexts.

4.0.2 Resource Handle. As introduced in Section 2.1, resources involved in graphics rendering
include graphics buffers, shader programs and sync objects. Compared to contexts, the allocation of
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resource handles and management of actual resources often require more judicious data structure
and algorithm design, as well as guest-host cooperation, since they can easily induce inefficient
memory usage and implicit synchronization, thus impairing system performance.

Handle Allocation. As mentioned before, all the graphics resources are managed through re-
source handles by modern GPUs. Guided by this, when a guest process requests for a resource
allocation, we directly return a handle generated by us, which is not backed with a real host GPU
resource upon handle generation. Then, after the control flow is returned to the guest process,
the host will perform actual resource allocation in a transparent and asynchronous manner, and
record the mapping between the guest handle and the host one in a host-side hash table. To make
the guest-side handle allocation efficient, we adopt a bitmap for managing each type of resource
handle, with which all the resource creation and deletion can be done inO(1) time complexity, and
we can maintain good memory density through handle recycling.

Resource Management. After allocating resource handles for a guest process, we also need to
properly manage the actual resources underlying the allocated handles. In particular, the manage-
ment of buffer resources is critical to system performance as they hold most of the graphics data.
As discussed in Section 2.1, there are two approaches to populating a graphics buffer with data,
that is, immediate copy and latent mapping.

For the former, developers would call glBufferData and pass the data’s memory address
to the API to initiate copying the data from the main memory to the graphics buffer. In this
case, we need to immediately transfer the data (upon the API call) to the host as required by
the API. For the latter, as discussed in Section 3, the data transfer is conducted when the guest
memory space is unmapped (i.e., glUnmapBuffer is called) by the guest process. When the data
are transferred to the host, we need to populate the actual host-side graphics buffer with the
data. To this end, we first ensure that the host context is aligned with the shadow context so that
the correct buffer is bound and populated. Then, to efficiently populate the buffer, we copy the
data to a graphics memory pool we maintain at the host, which maps a pre-allocated graphics
memory space to a host main memory address also using latent mapping. In this way, modern
GPUs’ DMA copy engine can still be fully utilized to conduct asynchronous graphics buffer
population without incurring implicit synchronization (Section 2.1). After the above operations
are completed, the allocated guest memory space will be released, avoiding redundant memory
usages.

5 FLOW CONTROL

With the guest and host control flows becoming mostly decoupled with the help of the projection
space, their execution speeds also become highly uncoordinated. This is because a guest process’
operations at the projection space usually only involve lightweight adjustments to the shadow con-
texts and resource handles, thus being much faster than host-side operations (i.e., actual rendering
using the hardware GPU).

At first glance, this should not raise any problems since guest API calls that require (synchronous
or asynchronous) host-side executions can simply queue up at a guest blocking queue—if the queue
is filled up, the guest process would block until the host render engine finishes prior operations.
However, we find that in practice this could easily lead to control flow oscillation. From the guest
process’ perspective, a large amount of API calls are first quickly handled by the projection space
when the data queue is not full. Soon, when the queue is filled up, a subsequent call would suddenly
take a significantly longer time to complete as the queue is waiting for the (slower) host-side actual
rendering. The long processing time further leads to a long delta time of the current frame as
discussed in Section 2.1. As a result, the guest process may generate abnormal animations following
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the delta timing principle, for example, a game character could move an abnormally long distance
in just one frame due to the long delta time, leading to poor user-perceived smoothness.

To resolve this problem, instead of solely relying on a blocking queue, we orchestrate the
execution speeds of control flows at both the guest and host sides. Our objective is the fast
reconciliation of the guest-side and host-side control flows, so that the overall performance of
Trinity can be staying at a high level. To this end, we design an elastic flow control algorithm
based on the classic MIMD (multiplicative-increase/multiplicative-decrease) algorithm [42] in the
computer networking area, which promises fast reconciliation of two network flows. To adapt
MIMD to our graphics rendering scenario, we regulate control flows’ execution speeds at the fine
granularity of each rendered frame.

In detail, when a guest rendering thread finishes all the graphics operations related to a frame’s
rendering, we let it sleep forTs milliseconds and wait for the host GPU to finish the actual render-

ing. Ts is then calculated as Ts =
N ′

N
× |Th −Tд |, where N ′ is the current difference in the number

of rendered frames between the guest’s and host’s rendering threads, N is the desirable maximum
difference set by us (N is currently set to 3 in Trinity as we use the widely-adopted triple buffering

mechanism for smooth rendering at the host), Th is the host’s average frame time (for executing

all the graphics operations related to a frame) for the nearest N frames, andTд is the guest’s aver-

age frame time also for the nearest N frames. Th and Tд are calculated by counting each frame’s
rendering time at the host and the guest sides.

Specifically, if N ′ > N (i.e., the guest is too fast),Ts will be multiplicatively increased to a longer
time to approximate the host’s rendering speed. Otherwise, Ts will be multiplicatively decreased,
striving to maintain the current frame number difference at the desirable value. Typically, Ts lies
between several milliseconds and tens of milliseconds depending on the guest-host rendering
speed gap. In this way, Trinity can quickly reconcile the guest-side and host-side control flows.

6 DATA TELEPORTING

Fast guest-host data delivery is critical for keeping projection-host interactions efficient. To realize
this, we first analyze system and data dynamics (Section 6.0.1) that constitute a major obstacle to
the goal, and then describe the workflow of our data teleporting method (Section 6.0.2), which
leverages static timing analysis to accommodate the dynamic situations.

6.0.1 System and Data Dynamics. When control flows are synchronously accompanied by data
flows, the guest-host data delivery mechanism can be very simple. For example, in API remoting,
VM Exits/Enters are leveraged to achieve control handover and data exchange at the same time. In
Trinity, however, data flows are decoupled from control flows (thanks to the graphics projection
space), so we are confronted with complicated situations as well as design choices. Among these
data flows, projection-host data exchanges are the most likely to become a performance bottleneck
due to their crossing the virtualization boundary.

By carefully analyzing the projection-host data exchanges when running top-100 3D apps,
we find that the major challenge of rapidly delivering them lies in the high dynamics of system
status and data volume (abbreviated as system dynamics and data dynamics respectively). With
regard to system dynamics, the major impact factors are the available memory bandwidth and
current CPU utilizations, which are not hard to understand. As to data dynamics, call data of APIs
that require synchronous host execution are sensitive to end-to-end latency (i.e., the delay until
host-side executions of the calls), while asynchronous ones require high processing throughput.
Further, we pay special attention to distinct data sizes and bursty data exchanges (i.e., bulk data
exchange during a short period of time) which are common in modern graphics workloads as
shown in Figure 5. In general, we can classify the dynamic situations into ∼16 patterns, roughly
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corresponding to the combinations of 1) high/low CPU utilization, 2) high/low available memory
bandwidth, 3) synchronous/asynchronous API call data, and 4) large/small data sizes.

To accommodate the dynamic situations, our key observation is that the guest-host data delivery
process can be decomposed into three stages, that is, data aggregation, data persistence, and arrival
notification, as the data travel through the guest user space, the guest kernel space and the host.
Moreover, in each of the stages, we find that there are mainly two different data delivery strategies,
which make opposing tradeoffs under different dynamic situations as discussed below.

— Data Aggregation. As exercised in GAE, aggregating non-void API calls with a user-space
buffer can usually reduce the frequency of user/kernel switches. This is also the case for
Trinity since host-side execution of API calls is mostly asynchronous. However, if the data
to be transferred are particularly large (e.g., in bursty data exchanges), memory copies during
data aggregation could bring larger time overhead compared to user/kernel switches; hence,
the data should be delivered to the kernel as early as possible without any aggregation.

— Data Persistence. For the data of a guest rendering thread, we need to ensure their persistence
until they are fetched by the host. To this end, a simple strategy is blocking the thread’s
control flow until the data delivery is done (as adopted by GAE). In Trinity, we realize that
there is an alternative strategy by using a special persistent space (e.g., in the guest kernel)
to maintain the guest thread’s data, so that there is no need to block the thread’s control
flow. Intuitively, this strategy is most suited to small data delivery, which does not incur
long-time memory copies.

— Arrival Notification. To notify the host to fetch the data that have arrived, we can simply
leverage the VM Exit-based strategy (adopted by GAE), whose incurred delays can be as
low as tens of microseconds. This, however, can lead to the guest core’s being completely
stopped. Alternatively, for asynchronous data fetching, we can utilize a data polling-based
strategy at the host, which does not incur the guest world’s stopping but would introduce
millisecond-level delay due to the thread sleeping and CPU scheduling delays of a common
time-sharing host OS.

6.0.2 Workflow. Given that there is no single strategy that can accommodate every dynamic
situation, we implement in Trinity all the combinations of strategies. Almost all of them are im-
plemented at the guest side, except that data polling is realized by the host.

To decide the proper strategy during each stage of data delivery, we adopt the static timing
analysis [13] method, which calculates the expected delay of each timing step (i.e., stage) incurred
by different data delivery strategies. As mentioned before, the stages include data aggregation,
data persistence, and arrival notification. Suppose a guest app wishes to deliver a data chunk of
size Sdata , the current copy speed of the guest memory is Vдuest , the current copy speed of the
host memory is Vhost . Below we elaborate on the workflow of data teleporting which selects the
suitable strategy in each data delivery stage based on static timing analysis.

Data Aggregation. As shown in Figure 7, if the data to be delivered are asynchronous API call
data (i.e., call data of APIs that do not need synchronous host-side execution), we can aggregate
them in a user-space buffer to reduce projection-host interactions. However, aggregating the data

in the buffer incurs a memory copy, resulting in a delay of Sdat a

Vдuest
. Otherwise, an individual write

system call will be invoked to write the data to our kernel character device driver (cf. Section 8),

whose time overhead isTwrite . Obviously, if Sdat a

Vдuest
< Twrite , we choose to aggregate the data; else,

we choose not to.
In contrast, for synchronous API call data we should always avoid data aggregation since syn-

chronous calls should be immediately delivered to the host for executions. Then, along with these
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Fig. 7. Workflow of data teleporting.

non-aggregation data, the aggregation buffer will also be written to our kernel driver and then
cleared. We next enter the data persistence stage.

Data Persistence. In this stage, our kernel driver will decide whether to block the guest app’s
control flow, or utilize an additional persistent space for ensuring the persistence of a guest
thread’s data until the data are fetched by the host. Unlike the user-space data aggregation buffer
that serves to reduce the frequency of entering the kernel and interacting with the host, the kernel
persistent space allows the app’s control flow to quickly return to the user space for executing
its next logic. In practice, if we resort to the control flow blocking strategy, the blocking time
will consist of four parts: 1) the delay of adding the data to a ring buffer shared by the guest and
the host for realizing data delivery—Tr inд , 2) the delay of host notification—Thn , 3) the time for a

host-side memory copy to fetch data (detailed later in Data Fetching)— Sdat a

Vhost
, and 4) the delay of

host-to-guest notification through interrupt injection for returning the control flow to the guest
app—Tдn . Here, the ring buffer does not directly store the data; instead, to transfer a large volume
of data, it holds a number of (currently 1,024) pointers, each of which points to another ring buffer
of the same size, whose buffer item stores the data’s physical addresses. Therefore, the blocking

strategy’s time overhead Tblockinд is the sum of them: Tblockinд = Tr inд +Thn +
Sdat a

Vhost
+Tдn . Here,

we encounter a challenge: Thn is dependent on the arrival notification strategy, which we have
not decided yet. Fortunately, we find that when the control flow blocking strategy is adopted,
the app thread’s execution flow has already stopped. Thus, a VM Exit’s side effect no longer
matters in this case, but its advantage of short delay makes it an appropriate choice. We then
naturally take the VM Exit-based arrival notification strategy, soThn generally equals the delay of
a VM Exit.

On the other hand, if we choose to leverage a kernel persistent space for data persistence, the
time overhead comes from 1) a memory copy to the persistent space and 2) adding the data to the

ring buffer, that is,Tpersistent =
Sdat a

Vдuest
+Tr inд . After the above are finished, the guest app’s control

flow is immediately returned to its user space for executing its next program logic, while the host
asynchronously polls for data arrival and fetches data (as to be detailed later).

Based on the calculatedTblockinд andTpersistent , we can then choose the data persistence strat-
egy with a smaller delay. Also, for synchronous API call data, we directly choose the blocking
strategy because during synchronous calls the control flow is naturally blocked until host-side
executions. With respect to the parameters used in the above analysis, they can be either directly
obtained (e.g., Sdata ) or statistically estimated by monitoring their recent values and calculating
the average (e.g., Vдuest and Vhost ).
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Arrival Notification. After the data are added to the ring buffer, we then need to choose a proper
strategy for notifying the host of data arrival. In practice, we find that the arrival notification
strategy is closely related to the data persistence strategy. Specifically, control flow blocking is
particularly sensitive to the arrival notification delay, and thus should be coupled with VM Exits.
On the contrary, the persistent space-based strategy allows arrival notification and data fetching to
be asynchronous, and thus the polling-based strategy should be selected; the polling is performed
by a host-side data fetching thread (referred to as Data Fetcher) every millisecond.

Data Fetching. When Data Fetcher is notified of data arrival, it would read the ring buffer to
acquire the data. If the data are contiguous in the guest physical memory (and thus contiguous in
the host virtual memory), the data can be directly accessed without further memory copy; other-
wise, they should be copied to a contiguous host buffer. The fetched data are then distributed to
the host render engine’s rendering threads for realizing actual rendering.

7 RELIABILITY ISSUE ANALYSIS PIPELINE

While improving performance, the decoupled and asynchronous nature of graphics projection
has significantly complicated the control flows of Trinity, making it easily subject to considerable
reliability issues, especially when facing a variety of uncommon or non-standard app behaviors
in the wild. To facilitate the deployment and maintenance of Trinity in production, in this section,
we present the design of an automatic diagnosis pipeline in Trinity for complex reliability issues.

7.1 Understanding Cross-Layer Reliability Issues

With the introduction of graphics projection, we find that in practice it is hard to diagnose and
address reliability issues such as functional failures, app crashes, and system hangs. In most cases,
the direct failure sites are both spatially and temporarily distant from the root causes, for example,
failures occurring at the guest side may stem from an incorrect state of the host (who does the
actual rendering work) and may only manifest when the faulty state asynchronously propagates
to the guest at a later time, due to the decoupled control and data flows of the projection space.
As a result, the symptoms and the event call stacks of such an issue are often distinct and hard
to correlate at the guest and the host sides. In this work, we refer to these issues as cross-layer
reliability issues.

Figure 8 demonstrates a typical cross-layer reliability issue in Trinity. As shown, due to the
architectural differences between the mobile GPU and PC/server GPU, mobile-specific features
supported by the mobile graphics shader languages (used by the guest app) may be missing in
the PC/server graphics shader languages (used by Trinity’s host-side render engine), leading to
compilation errors when the host attempts to compile the shader sources of the guest app. Such
errors will not immediately result in failures at the host side, and thus the host will continue to
establish a mapping between the shader handle produced by the projection space and the erro-
neous host shader (as described in Section 4). However, when the guest app invokes shader APIs
dependent on mobile-specific features via the projection space, the errors will finally manifest
themselves as failures at the guest side, significantly misleading debugging and diagnosis efforts.
The proprietary and closed-source nature of most commercial apps further hinders problem
analysis.

7.2 Design Overview

To address the above problem, we develop an automatic root cause analysis pipeline for diagnosing
cross-layer reliability issues in Trinity. Our pipeline not only helps considerably boost Trinity’s
reliability in operational environments, but also provides key experiences for diagnosing and
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Fig. 8. A typical cross-layer reliability issue in Trinity.

debugging modern virtualization systems, where cross-layer design (e.g., paravirtualization-based
device emulation) is widely adopted to optimize system efficiency.

Our key insight regarding cross-layer reliability issues is that they stem from state discrepancies
between the guest and the host, which are context and resource value differences caused by the
different behaviors and the same API at the guest and host sides. For example, the failure shown
in Figure 8 roots in the handle discrepancy of shader resources caused by different shader creation
and compilation API behaviors at the guest and host. The latent discrepancies can be (sometimes
randomly) triggered by the guest or the host, resulting in temporal and spatial displacements of
the failures from their root causes. Based on the insight, our idea of diagnosing reliability issues
is to introspect and differentiate the states of the guest-side and host-side contexts and resources,
so that we can detect discrepancies related to the issue in a timely and local fashion.

Realizing this in our cross-layer graphics virtualization system cannot be easily achieved with
existing diagnosis tools. For instance, a variety of virtual machine introspection (VMI) systems
have been developed to probe the internal states of a VM from the host at run time. VMI systems
typically record guest OSes’ low-level status such as CPU instructions [78], system calls [19], I/O
activities [60], and memory data [65] to identify problematic control and data flows. However, it is
difficult to reconstruct high-level guest application states from the low-level instructions/memory
bytes. To overcome the semantic gap, prior work mainly focuses on the specific characteristics
of a target runtime, for example, DroidScope [78] analyzes the Android Java VM’s memory and
instruction characteristics to correlate them with low-level information, while Virtuoso [19] learns
the correlation by tracing the CPU instructions produced by the system calls/APIs of a target OS.
Unfortunately, we are not aware of any VMI methods that are able to bridge the gap for the mobile
graphics system. Also, porting existing VMI methods is challenging because various rendering
states are not present in the CPU or memory controlled by the VM but live within the GPU, and
thus are hard to directly introspect. Further, VMI methods require frequently pausing the guest
VM to achieve introspection, raising performance concerns.

There also exist several tools that perform in-app method tracing, such as Android Systrace [7],
Firebase [36], AppInsight [67], and Hubble [53]. In practice, they are useful for debugging app-
level performance issues by logging the method/API execution time and identifying the critical
path. In theory, they can also be adapted to log all calls to APIs that manipulate state and data
in the projection space to realize state introspection. However, we find that the static logs can be
confusing when multiple state differences are recorded during apps’ execution (which is common
in practice), and thus still require nontrivial manual analysis efforts.
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Fig. 9. Workflow of our root cause analysis pipeline.

A plausible alternative is deterministic record and replay (R and R) [17, 23, 24, 47, 48, 59],
which can fully capture the failure scene by logging nondeterministic events like user inputs,
shared memory accesses, scheduling events, and so on. at run time. R and R enables more insightful
debugging practices like cyclic and speculative debugging. However, similar to VMI, prior R and
R methods focus on the low-level instruction/data flows that are hard to correlate with high-level
rendering states. Also, their generic designs can incur high overhead if directly applied to graph-
ics systems (e.g., incurring large data copies), due to their unique control and data characteristics
(Section 6.0.1).

To account for these challenges, we develop an efficient runtime quarantine technique which
replicates and isolates the control and data flows of the guest and the host. The quarantined con-
trol and data flows then intrinsically contain the information and changes of all rendering states,
therefore enabling us to achieve state introspection later in an offline manner without modifying
or heavily impacting the critical code path of the guest and the host. The high-level goal of our
method is similar to R and R but we address critical challenges in virtualized graphics systems
based on the unique opportunity of mobile graphics frameworks.

Figure 9 illustrates the workflow of our root cause analysis method, which works in a three-stage
fashion. First in the runtime quarantine stage, the target guest app is launched while the guest-
side runtime replicator begins recording its API usages and resource data. Upon the occurrences
of failures, the replicator would stop and output the replicated runtime as standalone, executable
programs, which are leveraged to reproduce the failures and facilitate diagnosis later. With this,
we then enter the replay and introspect stage where we execute the replicated runtime natively
and outside of the emulation environments. During replaying, we locate any state discrepancies
occurring before the failures by differentiating the values of key context and resource states (i.e.,
those managed by the projection space) between the guest-side and host-side runtime. Finally, in
the code analysis stage, we distill the critical code paths (that essentially lead to reliability issues)
by perturbing the parameters of the API calls related to the states and checking whether the failure
scene is affected in the meantime. We next describe the specific designs of each stage.

7.3 Runtime Quarantine

To realize runtime quarantine, we exploit the projection space’s role as the graphics API provider
of the guest OS, which sits between guest apps and the underlying emulator and handles all guest
apps’ graphics API invocations and graphics resources. Based on this special opportunity, our
basic idea is to perform in-memory tracing of a guest app’s graphics API invocations (i.e., control
flows, including the invocation timestamp) and the data passed to the APIs (i.e., data flows) during
the app’s execution. As the API provider, we do not require invasive and inefficient API hooking
techniques used by commercial debugging tools for graphics rendering (e.g., RenderDoc [69]) to
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realize this, as well as any knowledge of guest apps’ source code. Also, it avoids retrievals or
modifications of any context/resource states, thereby faithfully preserving the failure scenes. Most
importantly, the quarantined control/data flows enable us to perform more informed and active
runtime behavioral analysis of the code, as to be detailed in Section 7.4.

Runtime Replicator Design. Nevertheless, blindly recording all API invocations and involved
data can easily incur non-trivial overhead. Our experiments (detailed hardware/software configu-
rations are listed in Section 9.1) also show that preserving all the API traces and the corresponding
data consumes up to ∼1 GB memory and ∼50% CPU for a heavy 3D app, which can severely im-
pact the performance and hinders the debugging of failures that require a long execution time to
produce. In particular, we find that over 95% of the consumed memory and CPU are leveraged to
store and process the large volumes of resource data of 3D apps.

To effectively reduce the overhead, we make three-fold efforts in both the design and implemen-
tation of our runtime replicator by taking advantage of the characteristics of mobile graphics APIs
(Section 2), especially those related to resource data management. First, we design the replication
of resource data to be lazy and intelligent, that is, the resource data uploaded (through resource
management APIs) by a guest app are only replicated and serialized by us when they are used by
the app. Also, we identify resource data shared by multiple rendering contexts (by comparing their
memory addresses) to avoid redundant replications in practice. These are based on our finding that
only a small portion (∼10% on average according to our measurements) of resource data uploaded
to the GPU memory by an app are actually used during the rendering of a specific scene, because
modern 3D apps tend to actively use available memory space for caching large resource data (e.g.,
textures and vertexes) upon launch time to maximize their performance during rendering.

Second, we recognize context/resource creation and deletion API calls to further reduce over-
head. In graphics APIs, when a rendering context (or resource) is unbound and destroyed, its re-
lated API calls and resources become obsolete and thus are safe to discard to save memory and
computation, unless the context is previously shared by other contexts. This often occurs during
rendering scene transitions, for example, from the welcome screen of a 3D game to the actual
game scene. Therefore, by safely removing destroyed contexts and resource data, we can avoid the
excessive overhead for recording rendering operations that are not related to the problem.

Third, we build the runtime replicator atop a special lock-free ring buffer that allows simul-
taneous reads and writes without synchronizations, enabling asynchronous compression of the
replicated data and background flushing to the disk. Similar to typical lock-free data structures
used by Linux kernel [51] and other highly-parallel software like DPDK [21], our ring buffer uti-
lizes atomic CPU instructions to achieve concurrent reads and writes. During an app’s execution,
tracing data are written into the ring buffer and the data’s tail is referenced by a pointer. In the
meantime, a background serialization thread periodically reads the data from the buffer and flushes
them to the disk in a frame-by-frame manner (i.e., the tracing data of a frame is atomically read
out and flushed) to ensure the data integrity of a whole rendering frame; the read position is also
referenced by a pointer to realize the lock-free mechanism. Upon serialization, texture data (which
are generally image data) are encoded into the PNG format to save space, while vertex data (which
are numeric array data) are compressed with the state-of-the-art Zstandard algorithm [26].

Assembling the above designs, we can efficiently realize runtime quarantine for the control and
data flows of guest apps. To complete the design, we also need to quarantine the corresponding
host-side control/data flows to achieve state introspection and differentiation. Fortunately, with the
guest-side runtime replicator, this is straightforward to implement as we only need to capture the
related projection-host interactions (which are mostly remote procedural calls from the projection
space to the host) when a graphics API is invoked. For the data flows, resource data normally do not
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require additional replications as they are the same as those of the guest-side data flows, except
when data are corrupted due to memory overflow or incorrect data encoding in the projection
space. We can identify such corruptions through the lightweight hashing of the data.

Runtime Replicator Implementation. We implement the runtime replicator into three major
components as shown in Figure 9 in the projection space, that is, API tracer, runtime data manager
and data serializer. API tracer directly interfaces with the graphics API layer of the projection space
by automatically instrumenting the APIs. When a guest app invokes a graphics API to conduct ren-
dering, API tracer passes the API’s ID (i.e., a unique unsigned integer assigned to each API by us),
the invocation timestamp, its parameter data, and the corresponding projection-host interactions
to the runtime data manager. Based on our designs described above, the runtime data manager
then decides how to handle the data, for example, whether the data should be lazily replicated; if
the data should be replicated, it then copies the data to the lock-free ring buffer for in-memory
preservation. Meanwhile, the data serializer, which runs in a separate thread, periodically and
asynchronously reads the buffer and writes the compressed data to disk as described above. Our
implementation only requires modifications to the APIs’ entry points to realize instrumentations,
which are uniformly realized at API definitions, while the other components are largely decou-
pled from the original code base. In this way, we can easily isolate the failures in Trinity from our
analysis pipeline.

Overhead Analysis. We measure the runtime overhead incurred by the runtime replicator using
the top-100 3D apps from Google Play and the software/hardware setups described in Section 9.
On average, our runtime replicator can achieve efficient runtime quarantine with 5% CPU and
14 MB memory overhead for the apps. The average delay to a frame’s rendering (which should be
16.67 milliseconds for an app with 60 Hz refresh rate) is less than 1 millisecond, therefore does not
incur noticeable performance penalty on the execution of the apps. In the worst-case scenario, we
observe 12% CPU and 63 MB memory usage for a heavy 3D app. In practice, the overhead is still
acceptable by causing only up to 1.5 milliseconds of delay per frame.

7.4 Introspection-Guided Code Analysis

With the efficient runtime quarantine infrastructure, we preserve the runtime of failure scenes
and enable active state introspection as well as dynamic behavioral analysis off the “hot path”
of the guest rendering tasks, therefore avoiding heavily interfering with the original runtime.
We next describe the detailed design of our root cause analysis method based on runtime state
introspection.

Quarantined Runtime Replay. Recall that state discrepancies of contexts and resources
between the guest and host is the major characteristic of cross-layer reliability issues. Based on
the finding, our idea is to compare the runtime states of the guest and the host, so as to pinpoint
the root causes and facilitate problem resolution. To realize this, we replay the quarantined
guest-side and host-side runtime (i.e., control and data flows) in native environments, that is,
native machines running the guest system (Android) and the host system (Windows or macOS),
respectively. In general, this is done by executing each API traced by us with the associated data.
Also, we strictly ensure the original execution order of APIs (acquired via the API invocation
time), so as to faithfully reproduce the failure scenes, particularly those related to data races.

However, not all APIs can be verbatim executed with the recorded parameter data, due to
inevitable differences in the execution contexts between the original runtime and the quarantined
runtime, for example, their memory layouts. To adapt to this, we rewrite the API data that are
subject to the problem, which involve two kinds of APIs—resource creation APIs and resource
upload APIs.
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For the resource creation APIs, we find that the values of the resource handles generated by
them can vary significantly among different executions and are mostly unpredictable, because
they are decided by the underlying GPU drivers over which we have no control. As a result, when
running the quarantined runtime, the generated resource handles’ values may be distinct from
those produced in the original runtime. Directly using the original handle values is therefore
error-prone. We thus establish a mapping between the original handle values and the new values
produced when executing the quarantined runtime, and rewrite all the parameter data that
contain the original values to their quarantined counterpart.

For the resource upload APIs that transfer resources from the main memory to the GPU
memory, their parameter data include main memory addresses pointing to the resources in
the memory, whose layout, however, has completely changed when executing the quarantined
runtime. To account for this, we first need to complement the runtime by adding instructions
that allocate memory spaces and store the corresponding resources in them. We then rewrite
the original addresses to the allocated addresses to correctly perform resource uploads to the
GPU.

State Introspection and Code Analysis. Having been able to replay the quarantined runtime,
we then differentiate the critical states of contexts and resources between the guest and the host,
so as to reveal the state discrepancies that result in failures. To achieve this, during the execution of
the quarantined runtime, we compare key data structures maintained by the guest-side projection
space regarding context/resource states with those of the host GPU when running the host-side
quarantined runtime, including bound buffers, resource specifications, and shader status. Note that
we only perform introspections when APIs that modify the concerned states are invoked, and only
the modified states and their relevant states (rather than all states) are examined.

In practice, there can exist multiple discrepancies (up to 38 in practice) upon failure occur-
rences, while a large portion of them are in fact irrelevant to the problem, for example, certain
context/resource states may be initialized to different values at the guest and the host by their
respective drivers but are later reset to be the same, and thus are not responsible for the failure. To
locate the true culprit, we perform introspection-guided code analysis at the quarantined runtime.
Specifically, for an uncovered state discrepancy of a failure event, we first extract the API that first
modifies the state (at the guest side or the host side) and incurs the discrepancy. We then perturb
the API’s behavior to check whether the failure occurrence is affected (i.e., whether the failure
scene is changed), so that we can infer the causality between the API/state and the failure and rule
out non-essential state discrepancies.

To this end, if the concerned APIs are invoked by the guest (or the host), we can adjust the pa-
rameter data of the APIs based on the context value of the host (or the guest) to align the context
states between the guest and the host; if the states are not explicitly set by the APIs (e.g., default
state values), we can insert additional API calls to align the states, while carefully maintaining
the execution order of the original APIs. However, in a small portion of cases such API behavior
perturbations cannot successfully align the states because the discrepancies root in deeper causes
which cannot be directly addressed by resetting the states, for example, the discrepancy shown
in Figure 8 is incurred by platform incompatibility, which cannot be aligned by adjusting the pa-
rameters or recreating the shader program. When these cases occur, we should always pay special
attention to them and determine them as possible sources of failures.

Finally, after the above analysis, we can obtain a small set of state discrepancies (usually less than
5) that are highly likely to be the causes of the failure event. Our pipeline then extracts the code
paths that modify the states (which can also be obtained from the above analysis) from Trinity’s
code base to facilitate further manual analysis, significantly reducing the debugging space for us.
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7.5 Case Study

We leverage the failure event shown in Figure 8 as an example use case of our analysis pipeline.
We first execute the problematic program with the runtime replicator turned on to trace the API
and data flows at the guest and host sides. After the program crashes, we perform introspection-
guided code analysis which pinpoints the shader error status value discrepancy after shader
compilation at the guest-side and host-side quarantined runtime, and further extracts the code
path glCreateShader→glShaderSource→glCompileShader that is responsible for shader cre-
ation/compilation as one of the possible root causes of the failure. After that, manual analysis can
easily discover the compilation errors at the host. We will demonstrate the practical effectiveness
and applications of our pipeline in Section 7.6.

7.6 Analysis Effectiveness and Reliability Enhancements

In November 2022, we applied the developed analysis pipeline to all the cross-layer reliability
issues captured in production testing and reveal their major root causes, for which we provide
solutions that yield impacts beyond the scope of Trinity. In particular, our experiences show that
the analysis pipeline can narrow down the scope of problematic code to an average of 10 lines,
largely facilitating the root cause analysis and bug fixing. Most importantly, manual analysis of the
problems shows that the pipeline can correctly retrieve all the state discrepancies and problematic
code paths that result in the concerned failures, while introducing only 8% false positives, that is,
discrepancies that are not related to the failures. Such false positives are mostly state discrepancies
incurred by API behavioral distinctions between the guest and host GPU platforms, which do not
manifest as failures in the events but can still result in other issues such as inconsistent rendering
effects.

7.6.1 Root Causes. Our analysis pipeline and manual analysis pinpoint three-fold major
root causes: 1) inconsistent context and resource lifecycle between the projection space and the
host GPU (46%), 2) non-standard API usages by guest apps (33%), and 3) incorrect API behavior
definitions in the OpenGL document (21%). A typical case of the first root cause occurs when the
guest app finishes the execution of all API calls for a rendering Surface, and submits the Surface
to the SurfaceFlinger system service in Android for compositions. Due to the asynchronous
rendering of the projection space and the asynchronous relationship between the guest app
and SurfaceFlinger, when the host begins actual compositions (upon receiving the API calls
from SurfaceFlinger), the Surface’s lifecycle may have already ended, that is, destroyed by
the guest app, leading to illegal memory access at the host side. Similar problems often occur
during the multi-threaded/process rendering of recent game engines (such as Unity and Unreal
Engine), where contexts and resources shared by multiple rendering threads/processes can easily
lead to inconsistent lifecycle at the guest and host sides, causing considerable data race and
corruption.

On the other hand, the latter two root causes are surprisingly not incurred by Trinity but stem
from the bugs of guest apps and the OpenGL API standard. For example, we find that a popular
3D gaming app tested by us often maps a graphics buffer to the main memory to modify the data
in the buffer by calling glMapBufferRange with the flag set to GL_MAP_WRITE_BIT, meaning that
the buffer is mapped for writing/modification. However, although the app only modifies a portion
of the buffer data, it maps the entire buffer to the memory. This incurs undefined behaviors in
OpenGL (ES) APIs, because for GPUs with dedicated memory, the original data of the buffer will
not be read to the main memory when the mapping is flagged as GL_MAP_WRITE_BIT, so that
unnecessary GPU-to-memory data transfer can be avoided. Therefore, when the entire buffer is
mapped, the mapped space in fact does not contain the original buffer data. Consequently, if the
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guest app only writes a portion of the data to the mapped memory space, the other part of the
data in the space will still be uninitialized; when the mapped memory space is again written to the
GPU’s graphics memory, the buffer data are then corrupted by the uninitialized data and lead to
failures.

7.6.2 Reliability Enahancements. Targeting the above root causes, we develop practical en-
hancements to Trinity’s design and beyond, successfully resolving all the uncovered reliability
issues in production testing.

Lifecycle Barrier Instruction. To address the first (also the largest) root cause, our key obser-
vation is that such data races and corruptions among multiple threads mainly occur during critical
lifecycle stages of the contexts and resources, for example, creation and destruction. We thus
propose to extend the original OpenGL APIs by adding special “lifecycle barrier” instructions for
concerned contexts and resources, which resemble the memory barrier instruction for out-of-order
CPU pipelines. When the instructions are triggered, we enforce a lightweight synchronization
between the projection space and the host. In this manner, we ensure that the APIs invoked before
and after a critical lifecycle APIs are executed at the host in their original order, so that lifecycle
misalignment can be avoided. Finally, we identify the context/resource lifecycle APIs in the
projection space and insert the barrier instructions to fix the issues. Also, we find that for certain
high-level OpenGL resources (like Surface), their multiple instances in fact correspond to the same
low-level Android component (like GraphicBuffer). We thus identify the underlying component
during the related resource creation stage to avoid excessive and duplicate synchronization.

API Behavior Alignment. For the second root cause, we deal with it by adapting Trinity’s
guest-side API behaviors to accommodate guest apps’ non-standard API usages. For example, we
adjust the processing logic for apps calling glMapBufferRange with the GL_MAP_WRITE_BIT flag
by populating the mapped buffer with the original data if the mapped range does not match the
write range. For the third root cause (i.e., incorrect API behavior definitions in the OpenGL docu-
ment), we not only handle them by adjusting our own API implementations, but also report the
problematic API definitions to Khronos, the authoritative organization that manages the OpenGL
standard, to benefit other OpenGL implementations, for example, SoC vendors’ GPU drivers. The
bug reports [74] have been confirmed, and the suggested fixes are currently going through reviews
before being merged into the official OpenGL document.

8 IMPLEMENTATION

To realize Trinity, we make multiple modifications to the guest Android system and QEMU. First,
we find that Android (as well as many UI-centric systems) clearly separates its versatile user-level
graphics frameworks/libraries [6, 71] from the underlying system graphics library that realizes
actual rendering. This enables us to effectively delegate every graphics API call by customizing
only the system graphics library. At the guest user space, we replace the original system graphics
library (i.e., libGLES) with our customized one, which maintains the projection space and conducts
flow control. The library exposes the standard OpenGL ES interfaces to apps, allowing them to
seamlessly run without modifications.

To execute the delegated Type-1 and Type-2 APIs in the projection space, we implement all of
them in the system graphics library, involving a total of 220 Type-1 APIs, 128 Type-2 APIs and 10
Type-3 APIs, which fully cover the standard OpenGL ES APIs from OpenGL ES 2.0 to the latest
OpenGL ES 3.2. Additionally, we implement all the 54 Android Native Platform Graphics Interface
(EGL) [5] functions to interface with the Android native window system. In practice, many APIs
have similar functions, simplifying their implementations, for example, glUniform has 33 variants

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 6. Publication date: September 2024.



6:22 H. Lin et al.

used for data arrays of different sizes and data types, such as glUniform2f for two floats and
glUniform3i for three integers.

At the guest’s kernel space and the host, we realize data teleporting via a QEMU virtual PCI
device and a guest kernel driver. As a typical character device driver, our kernel driver mounts a
device file in the guest filesystem, where the user-space processes can read from and write to so
as to achieve generic data transferring. With this, API calls that require host-side executions are
compacted in a data packet and distributed to our host-side render engine. The render engine then
leverages the desktop OpenGL library to perform actual rendering using the host GPU.

Trinity is implemented on top of QEMU 5.0 in 118K lines of (C/C++) code (LoC). In total, the
projection space, flow control and data teleporting involve 113K LoC, 220 LoC and 5K LoC, re-
spectively. Among all the code, only around 2K LoC are OS-specific, involving kernel drivers and
native window system interactions.

Trinity hosts the Android-x86 system (version 9.0). Since our modifications to QEMU and
Android-x86 are dynamic libraries and additional virtual devices, they can be easily applied to
higher-version QEMU and Android. Trinity can run on most of the mainstream OSes (e.g., Win-
dows 10/11 and macOS 10/11/12) with both Intel and AMD x86 CPUs. It utilizes hardware-assisted
technologies (e.g., Intel VT and AMD-V) for CPU/memory virtualization. For the compatibility
with ARM-based apps, Trinity incorporates Intel Houdini [40] into the guest system for dynamic
binary translation.

Finally, to continuously improve Trinity’s reliability, we implement our runtime quarantine in-
frastructure of the proposed reliability issue analysis pipeline into the projection space as an on-
demand component, which can be activated by developers to capture failure scenes and perform
in-depth analysis in the future.

9 EVALUATION

We evaluate Trinity with regard to our goal of simultaneously maintaining high efficiency,
compatibility, and reliability. First, we describe our experiment setup in Section 9.1. Next, we
present the evaluation results in Section 9.2, including 1) Trinity’s efficiency measurement with
standard 3D graphics benchmarks, 2) Trinity’s smoothness situation with the top-100 3D apps
from Google Play, and 3) Trinity’s compatibility and reliability on 10K apps randomly selected
from Google Play. In particular, we compare the results before (still referred to as Trinity) and
after (Trinity 2.0) applying our reliability enhancements. Finally, we present the performance
breakdown in Section 9.3 by removing each of the three major system mechanisms—projection
space, flow control and data teleporting.

9.1 Experiment Setup

To understand the performance of Trinity and Trinity 2.0 in a comprehensive manner, we compare
them with six mainstream emulators, including GAE, QEMU-KVM, VMware Workstation, Blues-
tacks, and DAOW, as well as WSA—a Hyper-V-based emulator released in Windows 11. Their
architectures and graphics stacks are shown in Table 1. We use their latest versions as of May.
2023.

Software and Hardware Configurations. Regarding the configurations of these emulators, we
set up all their instances with a 4-core CPU, 4 GB RAM, 64 GB storage, and 1080p display (i.e.,
the display width and height are 1920 pixels and 1080 pixels, respectively) with 60 Hz refresh
rate. However, since WSA does not allow customizing configurations, we use its default settings
which utilize the host system’s resources to the full extent. For other options (e.g., network) in the
emulators, we also leave them as default.
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Table 1. Comparison of the Evaluated Emulators

Mobile Emulator System Architecture Graphics Stack

GAE [32]
x86 Android on

customized QEMU
API remoting

WSA [58]
x86 Android on

Windows Hyper-V
API remoting

QEMU-KVM [66]
Android-x86

on QEMU
Device emulation

VMware
Workstation [76]

Android-x86 on
VMware Workstation

Device emulation

Bluestacks [15]
Android-x86

on VirtualBox
Proprietary

DAOW [80]
Direct Android

emulation on Windows
API translation

with ANGLE [31]

Table 2. List of the Evaluation Benchmarks

ID Full Benchmark Name Benchmark App

3DMark#1 Slinghshot Extreme Test 1 3DMark

3DMark#2 Slinghshot Extreme Test 2 3DMark

3DMark#3 Slinghshot Test 1 3DMark

3DMark#4 Slinghshot Test 2 3DMark

GFX#1 Aztec 4K GFXBench

GFX#2 Aztec 2K GFXBench

GFX#3 Aztec 1080p GFXBench

GFX#4 Manhattan 3.1 2K GFXBench

GFX#5 Manhattan 3.1 1080p GFXBench

GFX#6 Manhattan 3.0 GFXBench

Benchmarks belonging to a same app are sorted by their workloads, i.e., the

top benchmark has the heaviest workload.

Our evaluation is conducted on a high-end PC and a middle-end PC. The former has a 6-core
Intel i7-8750H CPU @2.2 GHz, 16 GB RAM (DDR4 2666 MHz), and a NVIDIA GTX 1070 MAX-
Q dedicated GPU. The latter has a 4-core Intel i5-9300H CPU @2.4 GHz, 8GB RAM (DDR4 2666
MHz), and an Intel UHD Graphics 630 integrated GPU. Their storage devices are both 512 GB
NVME SSD. Regarding the host OS, we run most of the abovementioned emulators on Windows
11 (latest stable version) given that WSA, Bluestacks, and DAOW are Windows-specific. However,
since QEMU-KVM is Linux-specific, we run it on Ubuntu 22.04 LTS which is also the latest stable
version as of May. 2023.

Workloads and Methodology. We use three different workloads to drive the experiments, in
order to dig out the multi-aspect performance of Trinity. First, we use representative 3D graphics
benchmark applications: 3DMark [45] and GFXBench [43], both of which are widely used for
evaluating mobile devices’ GPU performance. Together they provide 10 specific benchmarks, as
listed in Table 2. These benchmarks generate complex 3D scenes in an off-screen manner, that is,
the rendering results are not displayed on the screen and thus is not limited by the screen’s refresh
rate, so the graphics system’s full potential can be tested. In detail, we run each benchmark on
every emulator and hardware environment for five times, and then calculate the average results
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Fig. 10. Benchmark results on the high-end PC.

together with the error bars. Also, since the benchmarks come with Windows versions as well,
we further run them directly on Windows to figure out the native hardware performance.

Second, to understand Trinity’s performance on real apps, we run the top-100 3D (game) apps
from Google Play as of 05/14/2023 [75], which are the same 100 apps discussed in Section 2.2.
Concretely, for each of the apps, one of the authors manually runs a (same) full game set on
every emulator, and repeats the experiment five times. During an app’s running, we log the
FPS (Frames Per Second) values of the app, which is a common indicator of a mobile system’s
running smoothness. We then use the average FPS value of the five experiments as the final FPS
value of the app. Generally, we find that for all the studied apps, the standard deviations of the five
experiments are all less than 4 FPS, indicating that the workloads are mostly consistent among
different experiments. Since all the apps adopt the V-Sync mechanism to align their framerates
with the screen’s refresh rate (which is 60 Hz), their FPS values are always smaller than 60.

Third, to further evaluate Trinity’s compatibility, we randomly select 10K apps from Google
Play in Trinity. We use the Monkey UI exerciser [33] to generate random input events for each app
for one minute, and monitor possible app crashes.

9.2 Evaluation Results

Graphics Benchmark. Figure 10 and Figure 11 illustrate the graphics benchmarks’ results ob-
tained on the high-end PC and the middle-end PC, respectively. Results of DAOW and WSA are
not complete because they cannot successfully run all the benchmarks due to missing graphics
APIs or abnormal API behaviors as complained by the benchmark apps. As shown, compared to
the other emulators, Trinity can achieve the best efficiency on all the three benchmarks with both
PCs.

Specifically, on the high-end PC that is equipped with a dedicated GPU, Trinity can outperform
DAOW by an average of 40.5%, and reach 93.3% of the high-end PC’s native hardware performance.
In particular, for Slingshot Test 1 (3DMark#3) we can achieve 110% native performance. This is
attributed to the graphics memory pool (Section 4.0.2) maintained by Trinity at the host which
can fully exploit the host GPU’s DMA capability. Instead, the native version of the benchmark
leverages synchronous data delivery into the GPU rather than a DMA-based approach, causing
suboptimal performance. Further on the middle-end PC, we observe that Trinity can outperform
the other emulators by at least 12.7%, indicating that Trinity can still maintain decent efficiency
even on an integrated GPU with much poorer performance.
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Fig. 11. Benchmark results on the middle-end PC.

Fig. 12. Average FPS of the top-100 3D apps across different emulators on the high-end and middle-end PCs.
The “Best” line represents the highest FPS among the evaluated emulators of each app. If an app cannot run
normally on an emulator, its corresponding FPS value is taken as zero.

Furthermore, we find that due to the enhanced reliability, Trinity 2.0 can now additionally run
seven benchmarks compared to the original Trinity, which cover all the standard OpenGL ES
benchmarks offered by the benchmark apps. In particular, Trinity 2.0 achieves an additional of
12.8% (26.2%) performance improvement over Trinity on the high-end (middle-end) PC, thanks to
better lifecycle management and resource aggregation. The improvement benefits the middle-end
PC more because the computation reduction brought by resource aggregation have more signifi-
cant effects on a less powerful CPU.

Top-100 3D Apps. Figure 12 depicts the average FPS of the top-100 3D apps from Google Play on
different emulator platforms, when the apps are ranked by their FPS values on the corresponding
emulator. Particularly, if an app cannot be successfully executed on (i.e., is incompatible with) an
emulator, its FPS value is taken as zero. Thus, the FPS values can reflect both the compatibility
and efficiency of different emulators. In this regard, the original Trinity outperforms the other
emulators by an average of 22.4%∼538% on the evaluated PCs, while Trinity 2.0 provides an
additional 0.3%−−5% improvement. We next look into the compatibility and efficiency aspects of
the evaluated emulators.
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For compatibility, the numbers of compatible apps of Trinity (and Trinity 2.0), DAOW, Blues-
tacks, GAE, WSA, VMware, and QEMU-KVM are 100, 82, 89, 91, 55, 35, and 36, respectively.
Delving deeper, we find that the root causes of other emulators’ worse performance vary signif-
icantly. In detail, VMware, and QEMU-KVM show the worst compatibility, mostly because their
guest-side graphics stacks are both built atop the open-source desktop Linux graphics library
Mesa [56], whose API behaviors sometimes differ from that of a typical Android graphics library.
For GAE, its incompatibility with apps in fact roots in its poor efficiency—many incompatible apps
become unresponsive for a long time during a game set, thus leading to Application Not Respond-
ing (ANR) [4]. For WSA, the problem is generally the same as GAE, as we find that WSA reuses
most of the GAE’s host-side and guest-side system components. Differently, its lack of Google
Play Service (essential for many apps’ running) in the guest system introduces more compatibility
issues. For Bluestacks, its stable version runs an outdated Android 7.0 guest system, and thus can-
not run some recent apps. Notably, despite the selective translation of system calls (cf. Section 1)
that compromises compatibility, DAOW’s compatibility with the 100 game apps is only slightly
worse than GAE, because it focuses on translating system calls frequently used by games [80].

For efficiency, we conduct a pairwise comparison between Trinity and each of the emulators
in terms of the FPS of the apps that Trinity and the compared emulator can both successfully
execute. On the high-end PC, Trinity outperforms DAOW, Bluestacks, GAE, WSA, VMware, and
QEMU-KVM in terms of the compatible apps by an average of 6.1%, 9.8%, 164.8%, 34.1%, 8.6%, and
132.2%, respectively. We observe a significant visual difference between Trinity and GAE, WSA,
and QEMU-KVM across all apps. We observe less visual difference between Trinity and DAOW,
Bluestacks, and VMware for many apps. However, the visual difference is very noticeable especially
on apps where Trinity performs more than 15 FPS better, for which there were 9, 12, and 5 apps
for DAOW, Bluestacks, and VMware, respectively. Regarding the average FPS values of individual
apps, we find that Trinity shows the best efficiency on 76 of the apps. For the 24 apps that Trinity
shows worse efficiency, we find that the differences in the apps’ average FPS values are all less
than 6 FPS, with 12 of them are in fact less than 1 FPS. On these apps, we find that there is not any
notable smoothness difference between Trinity and the emulators that yield the best FPS.

Similar situations can also be observed on the middle-end PC (as demonstrated in Figure 12(b)).
Trinity outperforms DAOW, Bluestacks, GAE, WSA, VMware, and QEMU-KVM on the middle-
end PC in terms of the compatible apps by an average of 4.9%, 16.1%, 168.7%, 84.6%, 17%, and
137.7%, respectively. Also, although there are more (42) apps where Trinity does not yield the
best efficiency, the FPS differences are still mostly insignificant, with 36 of them being less than
5 FPS. For the remaining 6 apps, DAOW has the best FPS and outperforms Trinity by 6 to 9 FPS,
though we could not perceive any visual difference between the two. Careful examination of the
apps’ runtime situations shows that they tend to heavily stress the CPU as its graphics scenes
involve many physics effects such as collisions and reflections, which require the CPU to perform
heavy computations such as matrix transformations. Thus, DAOW’s directly interfacing with the
hardware CPU without the virtualization layer allows it to perform better than Trinity (as well
as the other emulators), particularly given the middle-end PC’s rather weak CPU. In comparison,
Trinity performs better than DAOW for all the 6 apps on the high-end PC.

Compatibility and Reliability. To examine the compatibility and reliability of both Trinity
and Trinity 2.0, we conduct a series of rigorous tests with the 10K apps randomly selected from
Google Play. We leverage state-of-the-art model-based UI testing techniques [30, 54] to generate
input actions on the test apps to test the compatibility and reliability of Trinity and Trinity 2.0
when executing the apps. The test of an app lasts for 10 minutes and failure events (including
Java/Kotlin exceptions, native crashes, and application not responding events) are continuously
monitored during the process; when a failure event occurs, the test will be terminated.
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Fig. 13. Performance breakdown regarding the
top-100 3D apps with framerate restriction.

Fig. 14. Performance breakdown regarding the
top-100 3D apps without framerate restriction.

For the 10K apps randomly selected from Google Play, Trinity can successfully install all of
them and launch 97.2% of them. In comparison, Trinity 2.0 can launch 99.73% of them. For the
apps Trinity 2.0 cannot run, we find that 0.2% require special hardware that is still under develop-
ment, for example, GPS, NFC, and various sensors. Finally, the remaining 0.07% seem to actively
avoid execution in an emulator by closing themselves when they notice that certain hardware con-
figurations (e.g., the CPU specification in /proc/cpuinfo) are that of an emulator as complained
in their runtime logs. In particular, we find that all the cross-layer reliability issues reported in
production have been successfully addressed, indicating that both our analysis and enhancements
are effective.

9.3 Performance Breakdown

To quantitatively understand the contributions of the proposed mechanisms to Trinity’s efficiency,
we respectively remove each of the three major mechanisms of Trinity (i.e., projection space, flow
control and data teleporting), and measure the resulting efficiency degradations when running
the top-100 3D apps on the high-end PC. In detail, removing projection space degrades Trinity to
API remoting, whose guest-host control and data exchanges are still backed by our data teleporting
mechanism. Removing data teleporting disables all the static timing analysis logics apart from data
aggregation, which allows us to retain at least the data transferring performance of GAE since it
also adopts a moderate buffer to batch void API calls. For data persistence and arrival notification,
we adopt control flow blocking and VM Exit following GAE’s design.

Further, to fully demonstrate the efficiency impacts of the three mechanisms, we also measure
the performance breakdown when the maximum framerate restriction (which is 60 FPS) of the
apps is removed. Note that we do not remove this restriction when evaluating the top-100 3D apps
in Section 9.2 since this requires source code modifications to the emulators, while many of the
emulators are proprietary (e.g., DAOW and Bluestacks). Figure 13 depicts the average FPS values
of the top-100 3D apps in the breakdown experiments with the 60-FPS framerate restriction, while
Figure 14 shows the results without the framerate restriction.

Projection Space. After the projection space is removed, the average FPS drops by 6.1× (8.6×)
with (without) the framerate restriction, providing the most significant efficiency benefits. This
is not surprising as our in-depth analysis of the API call characteristics (by instrumenting our
system graphics library as discussed in Section 2.2 during the breakdown experiments) shows
that with the projection space, 99.93% of graphics API calls do not require synchronous host-side
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executions. The remaining 0.07% API calls are Type-1 calls related to the context information we
do not maintain in shadow contexts, including the rendered pixels and execution status of a GPU
(Section 4.0.1).

Among these asynchronously-executed calls, 26% are directly resolved at the projection space
(with our maintained context and resource information), fundamentally avoiding their needs
for any host-side executions. Such calls are mostly related to context manipulation and con-
text/resource information querying. For the remainder (74%), they involve APIs for resource al-
locations and populations, as well as drawing calls. We also measure the memory consumption
of the added projection space when running the top-100 3D apps by monitoring the maximum
memory consumed by our provided system graphics library at the guest side. We find that the pro-
jection space only takes an average of 466 KB (at most 1021 KB) memory for an app. The memory
consumption is small because the shadow contexts and resource handles are mostly small integers,
and our careful resource management has prevented redundant memory usages.

Flow Control. On the other hand, flow control contributes 2.7% (5%) FPS improvement on aver-
age with (without) the framerate restriction. This is because flow control mainly serves to mitigate
the control flow oscillation problem (cf. Section 5), thus contributing less to the running smooth-
ness as measured by FPS. To quantify the actual effects of flow control, we further measure the
occurrences of control flow oscillations during the apps’ running. As a result, without flow control,
control flow oscillation occurs 20× more frequently on average. When that happens, as discussed
in Section 5, the apps’ animations will look extremely unsmooth from users’ perspective since many
essential frames of the animations are skipped (i.e., not rendered) by the apps as dictated by the
delta timing principle, while the total number of frames rendered per second (i.e., FPS) remains
mostly unchanged.

Data Teleporting. Finally, when data teleporting is disabled, the fixed data delivery strategy
cannot adapt to system and data dynamics, leading to 1.7× (2.2×) FPS degradation with (without)
the framerate restriction. To demystify the efficiency gains brought by data teleporting, we further
examine its throughput under diverse system and data dynamics on the high-end PC. Specifically,
we develop a benchmark app that synthesizes data chunks ranging from 4 KB (a continuous
memory page space) to 128 MB, and doubles the size for each successive experiment. In each
experiment, the app writes the data chunk to our kernel character device file (cf. Section 8) to
transfer it to the host 1,000 times with one, two, three, or four threads; here the number of threads
varies from one to four (the number of the emulator’s CPU cores) to mimic different system dy-
namics. By measuring the time consumed for data transfer, we can calculate the final throughput
result.

In comparison, we conduct the same experiments on GAE’s guest-host I/O pipe goldfish-pipe,
which is GAE’s core infrastructure for sending API call data from the guest to the host and realizing
API remoting. To this end, we customize GAE to include a dedicated graphics API for throughput
measurement, which our benchmark app can call to transfer guest data to the host as described
above. This API is made to be a void API so that GAE’s buffer for batching void APIs can take
effect. Consequently, as shown in Figure 15 and Figure 16, data teleporting’s throughput clearly
exceeds that of goldfish-pipe under all the data and thread settings. On average, data teleport-
ing’s throughput is 5.3 times larger than that of goldfish-pipe.

Furthermore, we wish to know the effectiveness of static timing analysis. For this purpose, we
measure the performance of the data teleporting mechanism using the above experiments when
we adopt every possible strategy. Then, we compare the highest throughput produced by the above
strategy exhaustion with that produced by the static timing analysis. As shown in Figure 17 and
Figure 18, the throughput values produced by strategy exhaustion and static timing analysis are
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Fig. 15. Throughput of data teleporting and
goldfish-pipe, with one and two threads.

Fig. 16. Throughput of data teleporting and
goldfish-pipe, with three and four threads.

Fig. 17. Throughput of data teleporting using
strategy exhaustion and static timing analysis,
with one and two threads.

Fig. 18. Throughput of data teleporting using
strategy exhaustion and static timing analysis,
with three and four threads.

very close (4% average deviation). More in detail, static timing analysis can make the most suitable
strategy choice in 95.4% of the data delivery tasks.

10 RELATED WORK

Commercial Mobile Emulators. A plethora of commercial mobile emulators have similar
architectures to the ones we evaluate in Section 9. For instance, Anbox [3], which directly
runs Android’s Framework layer on a Linux PC, leverages the container technique to achieve
lightweight guest-host isolation, and reuses GAE’s graphics stack—all the guest-side graphics
operations are sent to a host-side daemon for execution, thus requiring synchronous inter-process
communications. Accordingly, its efficiency is similar to that of GAE.

LDPlayer [46], MEmu [55], NoxPlayer [61], and Genymotion [28] all adopt the AOVB (Android-
x86 on VirtualBox) architecture (as in Bluestacks). To realize graphics rendering, they also reuse
some of the graphics libraries of GAE, for example, libGLESv2_enc at the guest that encodes
OpenGL ES API calls into a data packet, and ANGLE [31] at the host that translates guest-side
OpenGL ES calls to desktop OpenGL or Direct3D calls. Prior measurements [14, 80] show that the
performance of such AOVB-based emulators is close to that of Bluestacks, probably due to their
similar architectures.
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GPU Virtualization. In PC/server virtualization, GPU multiplexing is typically achieved through
hardware-assisted GPU passthrough [1, 2] or mediated passthrough [38, 41, 62], which allow a
VM to directly access the host GPU by remapping its DMA channels and interrupts to the guest.
Differently, GPU passthrough monopolizes the host GPU, while the mediated approach allows
sharing the GPU among multiple VMs through GPU context isolation.

However, the substantial differences between the graphics stacks of desktop OSes and mobile
OSes significantly hinder their adoption by mobile emulators, as host GPUs’ drivers are missing in
mobile systems and developing them for mobile environments is extremely complicated (since
mainstream desktop GPUs’ specifications are often proprietary). Hence, we take a completely
different approach of graphics projection to address the problem of multiplexing the host GPU,
which is agnostic to the underlying hardware specifications and thus should also be beneficial to
PC/server GPU virtualization.

Cross-OS and Cross-Device Graphics Stacks. Trinity focuses on Android emulation on a PC,
while several researches have explored running iOS apps on Android graphics stacks based on
their similarities in OpenGL ES libraries [8, 9]. This suggests that Trinity’s graphics projection
mechanism might also be applicable to the emulation of iOS apps on a PC. Also, various approaches
remote graphics processing from one device to another over a network [10–12, 34, 68, 70]. For
them, data exchanges over network often constitute a major bottleneck, which is similar to the
bottleneck of frequent cross-boundary control/data exchanges in the virtualization setting. Thus,
our idea of decoupling guest/host control and data flows via graphics projection should also be
useful to relevant studies and applications, for example, cloud/edge gaming.

Cross-Layer and Cross-System Failures. Several recent studies [37, 52, 73] have paid special
attention to cross-layer and cross-system failures in cloud and networking systems, due to their
increasingly decoupled components and microservices. Tang et al. [73] conduct the first compre-
hensive study of cross-system interaction (CSI) failures in production cloud systems, which are
failures induced by faulty interactions among decoupled systems. They identify the major root
cause of CSI failures as the discrepancies in the systems’ control and data planes, and provide in-
sights for testing and preventing the failures. Liu et al. [52] also uncover that one of the major root
causes of cloud system failures is the inconsistent data format among interaction layers/systems.
These studies show that cross-layer and cross-system failures have become severe and prevalent
in practice. In this work, we focus on understanding and diagnosing a similar problem in our virtu-
alized graphics system, offering essential insights and experiences for other virtualization systems
and beyond.

11 CONCLUSION

In this article, we present the design, implementation, performance, and preliminary deployment
of the Trinity mobile emulator. It substantially boosts the efficiency of mobile emulation while
retaining high compatibility and security through graphics projection, a novel approach that min-
imizes the coupling between the guest-side and host-side graphics processing. This unique design,
together with strategic flow control and data teleporting, make Trinity a first-of-its-kind emulator
that can smoothly run heavy 3D mobile games (achieving near-native hardware performance) and
meanwhile retain comprehensive app support and solid guest-host isolation.

As part of a major commercial Android IDE, Trinity is expected to be used by millions of An-
droid developers in the near future, contributing vibrantly to the ecosystem. To meet the strict
production requirement of reliability, we develop a root cause analysis pipeline for diagnosing
cross-layer reliability issues that plague Trinity. Our pipeline helps identify major reliability is-
sues and facilitate problem fixing, which leads to strengthened runtime reliability and enhanced
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performance. We believe that many lessons and experiences gained from this work could also be
applied to (graphics-heavy) PC emulation and cloud/edge systems, as to be explored in our future
work.
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