
Providing Hierarchical Lookup Service for P2P-VoD Systems

TIEYING ZHANG, XUEQI CHENG

Institute of Computing Technology, Chinese Academy of Sciences

JIANMING LV

South China University of Technology

ZHENHUA LI

Peking University

and

WEISONG SHI

Wayne State University

Supporting random jump in P2P-VoD systems requires efficient lookup for the “best” suppliers, where “best” means

the suppliers should meet two requirements: content match and network quality match. Most studies use a DHT-
based method to provide content lookup; however, these methods are neither able to meet the network quality
requirements nor suitable for VoD streaming due to the large overhead. In this paper, we propose Mediacoop, a
novel hierarchical lookup scheme combining both content and quality match to provide random jumps for P2P-VoD

systems. It exploits the play position to efficiently locate the candidate suppliers with required data (content match),
and performs refined lookup within the candidates to meet quality match. Theoretical analysis and simulation results
show that Mediacoop is able to achieve lower jump latency and control overhead than the typical DHT-based method.
Moreover, we implement Mediacoop in a BitTorrent-like P2P-VoD system called CoolFish and make optimizations

for such“total cache” applications. The implementation and evaluation in CoolFish show that Mediacoop is able to
improve user experiences, especially the jump latency, which verifies the practicability of our design.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Data communica-
tions; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Retrieval models; search
process

General Terms: Design, Performance

Additional Key Words and Phrases: Peer-to-Peer, Video-on-Demand, Distributed Lookup, Hierarchical Overlay

1. INTRODUCTION

In recent years, Peer-to-Peer Video-on-Demand (P2P-VoD) systems have attracted enormous at-
tention from both industries and academic institutions. As a popular data intensive Internet ap-
plication, P2P-VoD desperately demands capturing and accessing data effectively and fast so as
to support free user interactivities, especially random jump operations. However, in a P2P-VoD
system, a requester fetches data directly from the streaming buffer of suppliers, so the random jump
operations often make the current suppliers useless. As shown in Fig. 1, when a peer jumps to a
new position within the video, it should find some suppliers who can provide the new data. Hence,
a key goal when designing P2P-VoD systems is to efficiently find the “best” suppliers whose buffer
stores the required data (content match) with sound network quality (quality match).
The goal involves two aspects. One is content match, which means the suppliers we found can

provide the required data block. This content match requirement is the baseline for the lookup
results. The other is quality match, which means the suppliers should be of good network properties,

Author’s address: T. Zhang, X. Cheng, Institute of Computing Technology, Chinese Academy of Sciences, Bei-
jing China; Email: zhangtiey@software.ict.ac.cn; J. Lv, South China University of Technology, Guangzhou, China;
Email: jml@scut.edu.cn; Z. Li, Peking University, Beijing, China; Email: lzh@net.pku.edu.cn; W. Shi, Wayne State
University, Detroit, MI 48202; Email: weisong@wayne.edu.

ACM Transactions on Multimedia Computing, Communications and Applications.

2 · T. Zhang et al.

2 3 16 17 21 n1

Requester

Data block of the video (1 to n)

Suppliers of block2

How to find the new suppliers?

Jumps from block2 to a new position within the video

Fig. 1. An example of jump in P2P-VoD. When a peer jumps to a new position within the video,
it should find some suppliers who can provide the new data.

such as high upload bandwidth and low end-to-end delay to the requester. Quality match is not
only an optimization but also a critical factor for on-demand streaming services, as suppliers are
often unable to provide enough data in time to satisfy the requester due to their network properties
[Huang et al. 2008; Pucha et al. 2007; Hefeeda et al. 2003]. Two important metrics for measuring
network properties are delay and bandwidth [Zhou et al. 2008]. In this paper, we use delay as the
quality performance for supplier lookup, while bandwidth is used for supplier “select” rather than
lookup (“select” means to choose good peers after connection establishment, and “lookup” means
to find good peers before connection establishment). The details will be given in Section 2 and 4.1.
Until recently, most existing methods mainly focus on the content lookup for P2P-VoD system.

A typical approach is using distributed hash table (DHT) based network (e.g., PROP [Guo et al.
2004], PROMISE [Hefeeda et al. 2003] and VMesh [Yiu et al. 2007]), periodically publishing the
information of streaming buffer to DHT. However, the content of the buffer changes constantly as
playing, and peers have to continuously update the DHT accordingly, which results in large state
update overhead. Although VMesh considers the network properties and put locality information
into the DHT search keys, how to compute the distance between the multi-dimensional keys is
challenging. The method in PROMISE also explores peers’ network properties, but it does not
aim at random jump, and can not handle the interactive operations. OBN [Liao et al. 2006] and
RINDY [Cheng et al. 2007] propose non-DHT methods to avoid publishing overhead. However, they
maintain a loose relationship between peers and can not locate the target accurately. Further more,
they do not exploit the network properties of peers either.
In this paper, we propose Mediacoop, a hierarchical lookup method combining both content

and quality match to provide random jump service for P2P-VoD systems. The lookup process in
Mediacoop is divided into two stages. In the first stage, we use unchanged playpoint distance to
locate the candidate suppliers with the required data block. Here unchanged means the viewers of
the same video are expected to playback continuously and thus their playpoint distances do not
change. If one viewer performs VCR operations (e.g., jump, stop and pause) or network churn
happens, new playpoint updates will be triggered. In the second stage, we index the candidates into
a novel tree-like sub-overlay. Refined search is performed within the sub-overlay to efficiently find
the “best” suppliers.
Our contributions can be summarized as follows:

(1) We propose an efficient hierarchical lookup scheme combining both content and quality match
function to provide random jump service. Our scheme is a general solution, independent of
cache volume and data replacement.

(2) For content match, unlike previous DHT-based methods, our approach does not publish content
sharing messages to avoid large overhead. To meet quality match, we design a tree-like structure
to index candidate suppliers as a sub-overlay, which provides efficient quality match lookup.

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 3

(3) Theoretical analysis and simulation results show that compared with traditional methods, Me-
diacoop can significantly reduce jump latency while improving playback continuity and startup
time with less overhead.

(4) We have implemented Mediacoop scheme into a BT-like P2P-VoD system called CoolFish
[CoolFish 2011] and make improvements for such “total-cache” system. The results demonstrate
that Mediacoop can achieve 40% reduction of jump latency than the old version of CoolFish.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 gives
a system model for Mediacoop, followed by design details in Section 4. In Section 5, we evaluate
the performance of Mediacoop through theoretical analysis and simulations. Section 6 presents our
empirical study of Mediacoop in a real-world system. Finally, this paper is concluded in Section 7.

2. RELATED WORK

In this section, we briefly review and discuss the previous efforts on distributed lookup for P2P-VoD
systems.
P2P-VoD systems can be categorized into two groups: 1) tree-based and 2) mesh-based according

to their organization topologies. The techniques of searching providers (parents) are largely different.
Two typical tree-based systems are P2Cast and P2VoD. P2Cast [Guo et al. 2003] uses patching

technique to stream video, while relying on unicast connections among peers. However, the single
parent delivery model is not efficient enough in a heterogeneous network. Moreover, it is difficult to
maintain a tree structure in a dynamic environment. P2VoD [Do 2004] organizes each video session
tree into layers. Peer departure is handled by finding another parent in the upper layer and new
client can join the lowest layer of the tree or creating a new layer. However, P2VoD does not provide
any mechanism for random jump.
Due to its fine resilience to network churn and peer heterogeneity, the mesh-based paradigm has

currently become the mainstream P2P-VoD design model. The few structured lookup methods for
P2P-VoD are mostly built on such mesh-based systems. The typical approaches are based on the
DHT networks (e.g., Chord [Stoica et al. 2001], Tapestry [Zhao et al. 2004]), where peers publish
the hash value of their sharing file name to the closest peer. PROP [Guo et al. 2004] uses a DHT to
provide VoD service. In PROP, when a peer gets a video block, it publishes the information to the
DHT. If another peer wants to fetch a block, it searches in the DHT for a supplier. A problem of
this approach is that continuously receiving data brings high publishing overhead. Another problem
is when a peer moves on and discards some blocks from its buffer, it needs to send deleting messages
to update the DHT. If the deleting messages can not be received in time, it will cause the node
failure problem in the figure table. PROMISE [Hefeeda et al. 2003] exploits network bandwidth to
provide peer selection. It uses the actual media data to probe available bandwidth during the peer’s
playing. This method cannot handle random jump in VoD because its probe process is performed
after connection establishment. This is why the above method is called supplier “select” rather than
“lookup”. OBN [Liao et al. 2006] and RINDY [Cheng et al. 2007] introduce the idea of attribute
lookup. OBN considers the DHT update problem. It uses the buffer relationship between peers to
construct a non-DHT overlay. Nevertheless, how to compute the distance between peers accurately
is not discussed in the paper. Furthermore, OBN does not exploit the network quality of peers.
RINDY uses a similar approach to construct a multi-ring lookup network. A requester firstly finds
the ring containing the target peers. Then these peers can be located through the gossip protocol.
However, the loose relationship between peers can not locate the target accurately. Without a clear
definition of distances between peers, we will not know how to perform the lookup operation or locate
the accurate routing peers. Additionally, using gossip protocol in RINDY is costly when the ring
contains a large number of peers and it does not consider the network properties either. Recently Yiu
et al. propose VMesh [Yiu et al. 2007] which integrates three mechanisms, i.e., scheduling, storage
and lookup, into one solution. For the lookup method, media content is divided into large segments

ACM Transactions on Multimedia Computing, Communications and Applications.

4 · T. Zhang et al.

(up to 5-minute video), and a segment is published after completely downloaded. Nevertheless,
which segment should be stored depends on a complicated data cache and replacement mechanism.
This mechanism is based on popularity design and must utilize hard disk to store large segments. On
the contrary, our method is a general solution, independent of cache mechanism and cache volume.

3. SYSTEM MODEL

Now we describe the system model of Mediacoop. Essentially, a distributed lookup is built on the
P2P network overlay, which indexes the peers using routing information. Then, the lookup operation
can be performed along the network overlay. Therefore, how to construct an efficient overlay is the
fundamental framework to provide lookup service. In Mediacoop, two problems need to be solved.
One is how to provide content match lookup efficiently; the other is how to find close peers with low
delay. To address these two issues, we divide the lookup process into two stages along hierarchical
overlays. The basic idea of these two overlays is depicted in this section.

3.1 Playpoint Overlay

The content of a video is segmented into M blocks and each block corresponds to a playpoint. We
group peers with the same playpoint into one swarm (see Fig. 2(a)). In view of the fact that the
distance of playpoints is unchanged due to the constant playback rate for a given movie, our idea
in the first stage is to utilize the distance of playpoints to index all swarms on a ring (Fig. 2(b)).
Therefore, every swarm is acquainted with the status of each other even though they are moving on.
A requester can easily find peers according to a Chord-like structured overlay [Stoica et al. 2001].
The difference is that we use the distance of playpoint rather than hash value, and the unchanged
distance leads to no requirement for state update messages, which reduces communication overhead.

This swarm’s playpoint is block 10.

Play Distance Play Distance

2 4 9 11 14103 15 16

time

P1

P2

P3

P28

P19

… …

0

P14P15

1
2

8
910

12

16

5

6

11

14

7

4

13

15

Peer

Block

P4
P5

P6
P7

P8

P9

P24

P19 P13

3

Time

P1 P2

P3

P28
P0

(b) Playpoint overlay where every

swarm corresponds to a playpoint.
(a) Play distance is unchanged unless some peers perform VCR

operations or network churn happens.

Fig. 2. An example of playpoint overlay. Peers with the same playpoint are grouped into one swarm.
All swarms are indexed on a ring.

3.2 Sub-Overlay: Indexed Swarm

The results of the first stage are a series of seed peers, from which our goal is to find some peers
who have low delay with the requester (quality match). Inspired by the delay detection approach
which can get the AS level or IP prefix level delay table [Ren et al. 2006] (a global delay table), in
the second stage, we index all the peers in the target swarm using their IP prefixes as a sub-overlay.
The target IP prefixes with low delay can be picked up from the global delay table (such as Table
I). Then we can find the peers within the target IP prefixes along the sub-overlay using IP-prefix
information stored on each peer. The details about how to get the delay table without ISPs’ help
will be explained in the following section.

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 5

4. DESIGN OF MEDIACOOP

In this section, we first address the importance of the end-to-end delay for P2P-VoD and give the
method of how to obtain the delay in Section 4.1. Then we present the finger tables utilizing the
distance of playpoint and IP prefix in Section 4.2. How to conduct lookup operation using the finger
table is shown in Section 4.3. Finally, in Section 4.4 we describe the maintenance of Mediacoop.

4.1 Exploit Network Properties

In real-time media systems, lower end-to-end delay leads to less waiting time and hence improves
the interactivity [Liu 2007; Noh et al. 2008; Ren et al. 2006]. Especially in VoD services, the user
interactivity frequently happens [Huang et al. 2008], and the large delay between peers results in
long response time. Therefore, the end-to-end delay is adopted to measure the network property of
supplying peers. One might argue how to get the exact value of the end-to-end delay, because it
varies with time. In practice, we only need to record the average delays for different candidates, and
choose the smaller ones as suppliers. So we do not require the exact value of the delay. Then the
question is how to get the end-to-end delay. The Internet is composed of many Autonomous Systems
(ASes). Peers within one AS are usually close to each other and inter-AS routing is specified by
Border Gateway Protocol (BGP). Thus, we only need to know the AS-AS delays or cluster level
delays and choose suppliers from those clusters whose delay is the least with the initiator. We use
the method proposed in [Ren et al. 2006] to construct the AS topology and obtain AS-AS delays.
A sketch of the method is briefly described as follows (cf. [Ren et al. 2006] for more details).
Firstly, we collect a large number of public BGP routing tables and BGP updates, such as those

from RouteViews [RouteViews 2010] and RIPERIS [RIPERIS 2010]. From these routing tables, we
build an AS graph and group IPs with the same longest prefix into one cluster. Then, we randomly
choose one IP out of each cluster as the cluster delegate. A delay measurement between each pair of
cluster delegates can be estimated by the tool King [Gummadi et al. 2002]. Finally, we obtain two
tables: (1) IP to cluster mapping table (ICMT); (2) Cluster to cluster delay table (CCDT). From
ICMT, a peer can learn about its own cluster, and get the target clusters from CCDT, which has
the least delay with itself. Fig. 3 illustrates the work procedure of the delay detector, and Table
I shows a CCDT example in CoolFish [CoolFish 2011]. In Mediacoop, the delay detector program
runs and updates ICMT and CCDT all the time. When a peer joins the system, it gets ICMT and
CCDT from the probing server. In order to prevent frequent requests in normal lookup operations,
the peers will ask the server to update ICMT and CCDT at intervals. Now, the key problem is how
to organize these clusters to provide efficient lookup.

IP prefix
extraction

King tool
(C C D T)

Cluster-Cluster delay table

(I C M T)
IP-Cluster mapping table

IPs in P2P network

BGP tables & updates

Fig. 3. Cluster (IP prefix) level delay detector. Using this detector we can get the global tables: ICMT and CCDT.

Table I. CCDT of CoolFish. Time: 15:00, 2/9/2009.

Delay from X to Y 159.226.40.* 202.127.200.* 210.72.15.* . . .

159.226.40.* 0 31(ms) 8(ms) . . .

202.127.200.* 31(ms) 0 58(ms) . . .

210.72.15.* 8(ms) 58(ms) 0 . . .

.

ACM Transactions on Multimedia Computing, Communications and Applications.

6 · T. Zhang et al.

In our approach, clusters are organized into a binary tree, among which each leaf node represents
a cluster. Therefore, the number of leaf nodes K is equal to that of the clusters. Every leaf node
is annotated with the network address (IP prefix) which is represented by its prefix code. The
distance between the leaves node1 and node2 is calculated by the XOR operation of their prefix
codes. Specifically, the distance is defined as follows:

DIPprefix(n1, n2) = Prefixn1 ⊕ Prefixn2 (1)

Some might argue why we use the leaf nodes of a binary tree to organize the IP prefixes. The reason
is that the distance between the leaf nodes with prefix code is consistent with the measurement of
XOR operation.

1
2

3

5

7

P14

Peer

4

6

8
910

11

12

P13
Swarm3

P15
P17

P1
P2

P3

Block

13

14

15
16

P13

210.77.*

0 0 0 01 111

202.112. *

P14 P15 P16 P17

0 0 11

0 1

Swarm 3

159.103. *

This Cluster’s IP
prefix is 159.102. *

Peers playing the same block
are indexed by IP-Prefixes

Swarm2

Swarm1

Fig. 4. Illustration of binary tree overlay. Each swarm on the ring corresponds to a binary tree
overlay. A leaf node is annotated with the IP prefix which is represented by the prefix code. Peers
in the swarm is assigned with corresponding leaf nodes according to their IP prefixes.

4.2 Peer State

How to perform distributed lookup depends on the routing information stored by each peer. In
this section we discuss the detailed structure of peers’ figure table. Mediacoop performs the lookup
operations along hierarchical overlays. Accordingly, every peer has two finger tables: 1) Playpoint
finger table, and 2) IP prefix finger table.
Playpoint finger table (PPFT). PPFT stores playpoint information about other swarms. It

has logM (M is the number of blocks) entries. For each entry i (0 ≤ i < logM), it keeps information
for k peers of playpoint (play block) distance between 2i and 2i+1 from itself. The distance from p1
to p2 is defined as the number of hops from p1 to p2 in clockwise direction along the ring:

Dplaypoint(p1, p2) = ((PPp2 − PPp1) +M) mod M (2)

where M is the number of blocks, PPpi is pi’s playpoint. Fig. 5(a) presents the structure of PPFT.
Every entry records k peers (in our system we set k to 2) whose playpoint is within the distance
interval [2i, 2i+1). If the number of peers in the interval is larger than k, we only record k peers’
information according to LRU (Least Recently Used) replacement strategy. Fig. 6 shows an example
of PPFT. p0’s playpoint is block2. It has 4 entries in its PPFT and each entry is responsible for an
interval as shown as the red dash line. Each interval records 2 routing peers.
In addition, for every peer (with playpoint of PPpi), it records a successor whose playpoint just

follows PPpi . For example, as shown in Fig. 6, p0’s playpoint is block2, and the first following
swarm is the one playing block3. Thus, p1 or p2 or p3 in this swarm can be the successor of p0.
For another example, p19’s playpoint is block10, but there is no peer playing block11. So the first
following swarm is the one playing block13. Thus, p24 in this swarm can be the successor of p19.

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 7

Such successor design plays an important role to find the “real closest” peers, which is discussed in
Section 4.3.

[2logM-1~2logM

Playpoint

IP prefix finger table

Finger Table

Playpoint finger table

(a) Playpoint finger table

Distance Routing Peer

[20~21)

…

P1(IP:Port),P2(IP:Port)

……

……

[21~22)

Successor

Ps

The first following swarm on the ring

Ps1

Ps2

Ps3

Psn

…

Successor-queue to handle failure
……

IP-Prefix
Routing Peer

Distance

[20~21) P1(IP:Port),P2(IP:Port)

(b) IP prefix finger table[21~22) ……

……

…

[2logK-1~2logK) ……

Fig. 5. Finger table. Peer’s Finger table includes two sub-tables: playpoint finger table (a) and IP prefix finger table
(b). There is a successor in playpoint finger table. Successor-queue is designed for failure handling.

IP prefix finger table (IPFT). IPFT records the IP prefixes of other peers within the same
swarm. IPFT has logK (K is the number of the leaf nodes) entries. For each entry j (0 ≤ j < logK),
it keeps information for the peers of distance between 2j and 2j+1 from itself. The distance is
calculated according to Equation (1). Fig. 5(b) shows the structure of IPFT. Because the distance
calculation of IP prefix is different from that of playpoint, it is not necessary to design successor for
IP prefix finger table. The detailed reasons are discussed in the following section.

4.3 Lookup along Hierarchical Overlays

Content Match Lookup. This is the first stage lookup along the playpoint overlay. A recursive
algorithm is employed starting from the initiator p. On receiving a lookup message, the recipient
firstly calculates the distance Dcontent from itself to the required block according to Equation (2).
Then, the recipient picks the closest peer from its PPFT and relays the message to it. This algorithm
terminates when the closest peers are found. That is to say, the termination is when Dcontent is
equal to 0 or there is no routing peers’ distance smaller than Dcontent. Then the recipient itself is
the closest peer according to Equation (2).
However, the “closest” peer we found above is probably not the real closest one. For example, in

Fig. 6 when the lookup target is block12, but there are no peers playing block12. According to the
lookup procedure, we finally find p19 as the “closest” peer. However, apparently, the more suitable
peer is p24, because p24 is only one block away from the target. Actually, according to Equation
(2), the closest peers are in the first swarm that most closely precedes or equals to the target, which
we refer as to predecessor, such as predecessor(block12)=p19. If the predecessor has a long distance
from the target, it probably can not provide the required data. Such problem mainly stems from
the buffer length and the download speed of a peer. Again, take an example of Fig. 6. Although
p19 has a relative long distance with the target of block12, if its download speed is high, it could
have more “prefetched” data and probably have block12. On the other hand, assume that if a peer
could cache all the data it has watched, every swarm after block12 could meet the “content match”
to provide the required data of block12. Unfortunately, different P2P-VoD systems employ a variety
of cache mechanisms.

ACM Transactions on Multimedia Computing, Communications and Applications.

8 · T. Zhang et al.

P13

Time 1
2

3

8
910

12

16

5

6

11

14

7

4

13

15

Peer

Block

P1
P2

P3

P4
P5

P6
P7

P8
P9

P19
P15 P14

P0

P24

P28

Target

This swarm (viewing
block13) should be the
closest one to the target

But this swarm (viewing
block10) is returned without
the “successor” help

Successor(P19) = P24

Playpoint
Distance

Routing Peer

[20~21) P1(IP:Port),P2(IP:Port)

[21~22)

[23~24)

Successor

P1

P2

P3

P7
[23~24)

Playpoint Finger Table of P0

P5(IP:Port),P6(IP:Port)

P8(IP:Port),P9(IP:Port)

P24(IP:Port),P28(IP:Port)

Fig. 6. Content match lookup with the successor’s help. Successor(p) is a peer in the first swarm following p clockwise
on the ring. When p19 is found at the end of content match lookup, in order to get the real closest peers, its successor

p24 is also returned.

As a general solution, we design a “successor” scheme to find the real closest peers. In our scheme,
peer pk with playpoint PPpk

records a peer in the first swarm whose playpoint just follows PPpk
in

the playpoint overlay. This peer is called the successor of pk, denoted by successor(pk). Because the
playpoint overlay is represented as a circle of numbers, successor(pk) should be a peer in the first
swarm clockwise from pk. In Fig. 6, p19’s successor can be any peer playing block13. In this case,
we set successor(p19)=p24. When the content lookup completes based on Equation (2), the peers
we find and their successors are all returned. In this example, when p19 is found, its successor p24
is also returned. Therefore, we get the closest peers around the target. The closest peers returned
are used as the seed peers for the second stage lookup.
Quality Match Lookup within the Candidate Swarm. After the initiator p obtains the

seed peers from the first stage, p gets α target IP prefixes which have the least delay from itself
in CCDT, where α is a system parameter (in simulation we set α = 3). Then, p sends an IP
prefix lookup message to the seeds. Each seed relays the message to the closest peers in its IPFT.
The distance Dquality is calculated according to Equation (1). The relay peers perform the same
operation recursively until there are no routing peers with closer distance than itself. Therefore, if
there are no peers matching the target IP prefixes, the lookup will return the peers who have the
closest IP prefixes with the target.
Note that the terminate condition is different from that of content match lookup. In the content

match lookup, when Dcontent is equal to 0, the procedure will terminate. However, in the quality
match lookup, any peer that meets quality match should be returned, even if Dquality is 0. That is to
say, the lookup will continue until there are no routing peers with Dquality equal to 0. Furthermore,
quality match does not have the “real closest” problem involved in content match. So it is not
necessary to design “successor” in IP prefix finger table.
Someone might argue that whether we can use a global peer list to contain all peers within a

swarm rather than using IPFT to lookup. According to our practical experience, some swarms are
very large (100,000∼400,000 peers), such as in BitTorrent. Therefore, we must design structured
lookup mechanism (IPFT) for such large amounts of peers.
An example. Fig. 7 shows an example of the whole lookup process from p0. In Fig. 7(a), p0 initi-

ates a lookup with the goal to find suppliers who can provide block8. It calculatesDplaypoint(p0, block8)
= 6 and sends the “content match” lookup message to the closest neighbor p8. In the same way,
p8 calculates D = 1 and finds that p13 belongs to the candidate swarm. Therefore, p13 and its
successor p19 are returned to the initiator as seeds. Then, p0 looks up its CCDT, and picks out the
target IP prefix 210.77.* which has the least delay from p0. Next, p0 sends the IP prefix lookup
message to p13 and p19 to start the second stage (see Fig. 7(b), we do not show p19 in the second
stage because it is similar with p13). On receiving the message, p13 looks up IPFT and relay it to
p16 which is the closest one. In the same way p16 relays the massage to p17 and finally finds the

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 9

target peers within cluster 210.77.*.

Swarm is indexed
by peer IP prefixes

P13

Time 1
2

3

8
910

12

16

5

6

11

14

7

4

13

15

Peer

Block

P1
P2

P3

P4
P5

P6
P7

P8
P9

P19

P15P14

P0

0 0 11

210.77.*

0 0 0 01 111

202.112. *

P13 P14 P15 P16 P17

This Cluster’s IP
prefix is 159.102. *

(a) The first stage lookup. (b) The second stage lookup.

Destination

P24

P28

P16

Fig. 7. An example of hierarchical lookup. P0 firstly finds p13 playing block8. Then, from p13 refined
lookup is conducted along the swarm (block8)

4.4 Maintenance

The maintenance of Mediacoop includes three components: peer joining, peer state updating, and
failure handling.

4.4.1 Peer Joining. To join the network, a peer p must contact an already existing peer j. p
inserts j’s information into its own finger table. Then p performs a peer lookup for its own attributes
(playpoint and IP prefix). After that, p gets the closest neighbors: predecessor pa and successor ps.
obviously, p’s finger table is the same as that of its predecessor. So p refreshes its fingers further
away than pa with pa’s finger table. During the refreshes, p also inserts itself into others’ finger
tables. Also the successor relationship should be changed. If p and pa are not in the same swarm,
p notifies pa the successor should be changed to p. At the same time, p assigns ps as its successor.

4.4.2 Peer State Updating. When a peer p performs VCR operations, such as pause, stop and
jump, p will notify its neighbors (in both finger tables) of its new playpoint and its neighbors will
update the information.

4.4.3 Failure Handling. The ability to detect, handle and recover from failures is important for
any distributed system. Usually, failures are an expected part of normal operations rather than
a set of special case failure handlers. The cache information are updated by periodic refreshment
messages as appearing in Tapestry [Zhao et al. 2004] and Berkeley Service Discovery Service [Hodes
et al. 2002]. To detect peer failures during normal operations, each Mediacoop peer sends periodic
heartbeats on UDP packets to peers including the successor in its finger table. By checking the
status of each peer when a message arrivs, we can quickly detect the failures and replace the failure
peers via ordinary gossip messages or by searching some new peers.
In addition, peer failures must not be allowed to disrupt queries especially when they are in

progress. We use surrogate or replication to handle this. Each entry in the finger table stores m
backup neighbors (m is 2 in our system implementation) in addition to the primary routing peers,
which is similar to Plaxton [Plaxton et al. 1997]. When the primary routing peers fail, we turn to
the alternate peers in a sequential order until a correct route is found.
To handle the successor failure, each Mediacoop peer maintains a “successor-queue” of its n

nearest successors (n is 3 in our system implementation) on the ring, as shown in Fig. 6. If a peer
notices that its successor has failed, this peer replaces the fail successor with the first live entry in
its successor-queue. The maintenance of successor-queue can be done through the normal failure
detection and replacement discussed above.

ACM Transactions on Multimedia Computing, Communications and Applications.

10 · T. Zhang et al.

5. PERFORMANCE EVALUATION

In this section, we first analyze the lookup efficiency of our method, followed by the simulation
results based on the NS2 simulator.

5.1 Theoretical Analysis

Our method includes two-stage lookups. Accordingly, we model the performance as follows:

P (M,K) = PFirstStage(M) + PSecondStage(K)

where P (M,K) is the total lookup hop counts of Mediacoop; PFirstStage(M) and PSecondStage(K)
is the hop counts of the first and second stage respectively; M is the number of blocks and K is the
number of clusters.
Firstly, we analyze PFirstStage(M). Mediacoop is a structured method and the lookup procedure

is similar to the DHT protocols like Chord. What is different is that we use playpoint (play block)
instead of peer identifier in DHTs. Therefore, the performance is related to not only the traditional
O(logN) in DHTs, but also the number of playpoints (i.e., the number of blocks):

PFirstStage(M) = min {O(logM), O(logN)}

where N is the total number of peers. In general, the number of peers for a popular P2P system
is large. In contrast, the number of blocks for a video is severely limited. For example, according
to our experience, 720 blocks are enough for a common 2-hour movie. That is, M ≪ N , and thus
PFirstStage(M) = min {O(logM), O(logN)} = O(logM).
For the second stage, the lookup procedure is essentially a binary search along the search tree.

Therefore, the lookup performance of the second stage is equal to the time-complexity of the binary
search:

PSecondStage(K) = O(logK)

where K is the number of valid IP clusters. Invalid IP clusters mean that they are empty with no
peers within them and will not be taken into consideration. In fact, the second stage is conducted
in the target swarm with the number of peers n = N

M (we can assume that all peers are uniformly
distributed among play blocks). Thus, K is actually equal to or less than n, where n is the maximum
value of K when each cluster only has one peer. Therefore, the total complexity of our hierarchical
lookup method is:

P (M,K) = PFirstStage(M) + PSecondStage(K)

≤ O(logM) +O(log
N

M
) = O(logN)

that is

P (M,K) ≤ logN.

That is to say, in no more than O(logN) hops, we can find out the peers meeting both content
and delay requirements through only one lookup operation.

5.2 Simulation Model

5.2.1 Churn Model. A number of properties of Mediacoop under different network churns are
evaluated. The network churns include network congestion, varied streaming rates and peer churns.
Usually, the primary source of inconsistencies is peers’ joining and online time. Guo et al. [Guo
et al. 2005] prove that the user arrival follows an exponentially decreasing rule rather than Poisson
distribution assumed in the previous studies. Therefore, we set the exponentially decreasing of the
peer arrival rate as:

λ(t) = λ0e
− t

τ (3)

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 11

where λ0 is the initial arrival rate when the video is published, and τ is the attenuation parameter.
Accordingly, we set average inter-arrival time as 5s.
As for peers’ online time, several previous studies use Pareto distribution to model it [Leonard

et al. ; Sen and Wang 2004] and some others use Weibull [Atalla et al. ; Stutzbach and Rejaie]
and exponential [Li et al. ; Rhea et al.] distributions. Exponential distribution is adopted in this
paper to model peers’ online time due to its convenient calculation of mean value, which is used as
the parameter in the simulation experiments. The simulations are divided into several groups with
different online time (detail results are shown in Section 5.3).

5.2.2 Simulation Configurations. In the simulation, we generate a transit-stub topology includ-
ing 860 routers using GT-ITM [Zegura et al. 1996]. And we randomly select 100 stub nodes as the
IP prefix cluster routers 1. The delay between any two nodes is 10ms∼60ms. We generate 8,000
peers attached to IP cluster routers following uniform distribution.
The NS2 simulation program was performed on our super computing cluster called Dawning

4000A [Xu 2007], which has 640 nodes and 2,560 AMD Opteron processors connected by Myrinet
2000 with 5TB main memory.

5.3 Basic Performance Evaluation

In this section, we first discuss the finger tables under peer churns and varied streaming rates. Then,
the lookup failures are considered. Finally, we evaluate the packet loss in Mediacoop’s routing
under network congestion. In order to compare Mediacoop with the traditional DHT methods, we
implement PROP [Guo et al. 2004], a representative DHT-based VoD system. We do not implement
the replica servers in PROP, because it is out of the scope of this paper.

5.3.1 Finger Table Status. In this experiment, we evaluate the finger tables of Mediacoop (MC)
and PROP (PR).

50 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average online time (second)

N
um

be
r

of
 p

ee
rs

 in
 fi

ng
er

 ta
bl

e
(n

or
m

al
iz

ed
)

Optimal
Failure
Missing

 MC|PR MC|PR MC|PR MC|PR MC|PR MC|PR MC|PR MC|PR

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Streaming rate (Kbps)

N
um

be
r

of
 p

ee
rs

 in
 fi

ng
er

 ta
bl

e
(n

or
m

al
iz

ed
)

Optimal
Failure
Missing

 MC | PR MC | PR MC | PR MC | PR MC | PR

Fig. 8. Quality of the finger tables under different online
time. The higher peer failures in PROP (PR) due to the
frequency of publishing messages.

Fig. 9. Quality of the finger tables with different streaming
rates. High streaming rate causes high frequency of publish-
ing which results in high probability to fail in PROP (PR).

Fig. 8 shows the quality of the finger table with different online time. We set the video time =
1200s with playback rate = 600Kbps, and a block is 256K Bytes. The download bandwidth is 1Mbps
and any peer has the ability to serve one stream. Each entry in the finger table stores two peers with
status update every 60 seconds. The “quality” of finger table includes three levels: Optimal, Failure
and Missing. Optimal means that finger table is full and every peer in the finger table is available;
Failure means the peer is in the position but failed; Missing means that the position in finger table

1GT-ITM does not have the function to separate transit nodes from stub nodes, so we develop a tool to support this.

ACM Transactions on Multimedia Computing, Communications and Applications.

12 · T. Zhang et al.

is empty. Because PROP has only one finger table, we accumulate the results of playpoint finger
table and IP prefix finger table in order to compare with PROP.
The results show that Mediacoop always outperforms PROP. The quality of finger table tends to

improve with the online time increasing. When the average online time is larger than 300 seconds,
the finger table status of both Mediacoop and PROP becomes stable, and “Optimal” takes up more
than 92% in Mediacoop while less than 82% in PROP. That is because in PROP when a peer
moves on and discards some blocks from its buffer, it needs to send deleting messages to update the
DHT. Furthermore, the packet loss is higher as background traffic increases (see Fig. 11), and if the
deleting messages can not be received in time under network congestion, it will cause peer failures
in the figure table.
Fig. 9 shows the quality of the finger tables with different streaming rates. The simulations are

divided into 5 groups with streaming rate from 200Kbps to 1,000Kbps. The average online time
is 60 seconds and the block size is still 256K Bytes. The results are shown in Fig. 9. We can see
that the number of peers in finger table is similar between Mediacoop and PROP. However, with
the increase of streaming rate, the quality is stable for Mediacoop while decreasing for PROP. The
reason is that high streaming rate leads to high frequency of old block deleting messages. High
frequency has high probability to fail. In addition, high steaming rate will cause increased network
congestion which blocks the deleting messages in turn. All the reasons result in high peer failures
in PROP.

5.3.2 Lookup Failures. In this experiment, we evaluate the lookup ability of Mediacoop with
respect to peers’ online time. As in [Lv et al. ; Castro et al. 2004; Stoica et al. 2001], lookup
operations are generated according to a Poisson process at a rate of one per second. Mediacoop
peers use ping messages to estimate reliability of the next-hop. A failed lookup is the one that
can not be forwarded, i.e., if the forwarded entry is empty or the peers in this entry are all failed,
the lookup fails. In addition, the simulator does not retry queries. Thus, the results given in this
section can be viewed as the worst-case for the lookup failures. We also set two peers in one entry
and updates all finger table entries every 60 seconds. In the simulation, we examine content lookup
and quality lookup separately with PROP.

25 50 100 200 400 800 1600 3200
0

0.05

0.1

0.15

0.2

0.25

Average online time (second)

F
ai

le
d

lo
ok

up
 (

fr
ac

tio
n

of
 to

ta
l)

IP Prefix Match
Content Match
PROP

Fig. 10. Lookup failures with different online time.

Fig. 10 plots the average failure rates with different peers online time. Intuitively, the lookup
failure should be the same as the rate of peer failures if every entry has one peer, since this is just
the fraction of routing peers expected to be lost due to the failure of the responsible peers. We
conclude that there is no significant lookup failure in the Mediacoop network. For example, when
the average online time is 200 seconds, there should be 19% peer failures in Mediacoop and 28% in

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 13

PROP (Failure + Missing, as shown in Fig. 8). Our results do not show this, suggesting that peer
redundance is useful when deploying real system and we also find that Mediacoop is more robust
than PROP due to the lower peer failures.

5.3.3 Packet Loss. This experiment demonstrates the packet loss in the Mediacoop network.
Mediacoop peers use ping messages to estimate reliability of the neighbor links in the finger table
and pick out the winner as the next-hop. In our simulation, we generate the background traffic as
follows: any two peers transferring a stream at a rate between 400Kbps ∼ 1500Kbps. As the average
background packets increases, router queues begin to overflow and packet loss increases. Fig. 11
shows the simulation results of packet loss as average background traffic increases on the network.
We found that Mediacoop significantly reduces the packet loss as the packets route around congestive
regions. Furthermore, the reduced packet loss results in fewer retransmissions and overall higher
throughput. This result is useful for the deployment of the real-world system, since the routing
optimization is not complicated (just using ping messages).

500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Background traffic (Kbps)

P
ac

ke
t l

os
s

(f
ra

ct
io

n
of

 to
ta

l)

Mediacoop
without−Mediacoop

Fig. 11. Packet loss. Mediacoop has low packet loss because it estimates reliability of the next-hop using ping

messages.

5.4 Comparisons with Popular Systems

In order to compare Mediacoop with the popular approaches, besides PROP based-on the DHT, we
also simulate a typical “cache and relay” system, P2VoD [Do 2004], to compare with our approach.
We choose P2VoD because it also uses playpoint to divide peers into layers. Peers in upper layer
deliver data to the lower ones, organized in a tree-like structure. We add random jump function
and peer search along parents and siblings. We have evaluated two versions of Mediacoop using
the NS2 simulator. The first one is Mediacoop (no-DA), which does not include delay-awareness
(DA); the second is Mediacoop(DA) with “DA”. Thus, Mediacoop(no-DA) actually does not have
IPFT. Instead, it employs gossip protocol to exchange the information of peers. We separate DA in
simulations in order to study the performance of the proposed mechanisms in two stages respectively.
In our simulations, we set the video time = 3600s with playback rate = 500Kbps, and the time of a
block is 10s. The average peer on-line time=1800s. The download bandwidth is 1Mbps and any peer
has ability to serve two streams. The startup and jump periods both buffer 5-second media data. 5
seconds is quite short, which is sensitive to examine our scheme. The simulations are divided into
12 groups with peers from 100 to 8,000 and the total run time is 4 days on our super computer.
We evaluate Mediacoop using the following performance metrics:

(1) Average number of hops - the average number of routing hops for a complete lookup process.

ACM Transactions on Multimedia Computing, Communications and Applications.

14 · T. Zhang et al.

(2) Control overhead - all control message overhead including the messages of joining, jump, data
scheduling and content publishing.

(3) Server stress - the outgoing bandwidth required at the media server to support the whole system.
We use the peak stress to examine the system scalability.

(4) Playback continuity - the ratio of pieces that arrive before or on the playback deadlines.

(5) Startup latency - the latency from the moment a user sends a request for a video to the moment
it starts playing the required video, after buffering 5-second data.

(6) Jump latency - the time from the moment a user launches a jump operation to the moment it
starts playing the video from the jump position after buffering 5-second data.

In this section, we present the simulation results. In summary, compared with the typical DHT-
based method, Mediacoop(DA) decreases about 50% in the jump latency and 27% in the startup
delay. Furthermore, the overhead is reduced by about 55% on average. Compared with the tra-
ditional tree-based method, our mechanism has considerable advantages. The detailed results are
presented as follows.

0 2000 4000 6000 8000
3

4

5

6

7

Total number of overlay peers

A
ve

ra
ge

 N
um

be
r

of
 h

op
s

PROP

Mediacoop(no−DA)

Mediacoop(DA)

100 500 1000 2000 4000 8000
0

200

400

600

800

Total number of overlay peers

C
on

tr
ol

 o
ve

rh
ea

d
(B

yt
es

 p
er

 s
ec

on
d)

Mediapcoop(DA)

Mediacoop(no−DA)

PROP

100 500 1000 2000 4000 8000
0

200

400

600

800

1000

Total number of overlay peers

P
ea

k
st

re
ss

 o
n

se
rv

er
 (

M
bp

s)

Mediacoop(DA)

Mediacoop(no−DA)

PROP

P2VoD

Fig. 12. Average number of hops for
varying overlay sizes.

Fig. 13. Control overhead for varying
overlay sizes.

Fig. 14. Peak stress on media server
for varying overlay sizes.

100 500 1000 2000 4000 8000
0

0.2

0.4

0.6

0.8

1

Total number of overlay peers

P
la

yb
ac

k
co

nt
in

ui
ty

Mediacoop(DA)

Mediacoop(no−DA)

PROP

P2VoD

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

Simulation time (second)

P
la

yb
ac

k
C

on
tin

ui
ty

Mediacoop(DA)

Mediacoop(no−DA)

PROP

P2VoD

100 500 1000 2000 4000 8000
0

2

4

6

8

Total number of overlay peers

S
ta

rt
up

 ti
m

e
(s

ec
on

d)

Mediacoop(DA)

Mediacoop(no−DA)

PROP

P2VoD

Fig. 15. Playback continuity for vary-
ing overlay sizes.

Fig. 16. Playback continuity against
simulation time with the overlay
size=4000.

Fig. 17. Startup time for varying over-
lay sizes.

0 0.5 1 1.5 2 2.5

x 10
4

3

4

5

6

7

Simulation time (second)

S
ta

rt
up

 ti
m

e
(s

ec
on

d)

Mediacoop(DA)

Mediacoop(no−DA)

PROP

P2VoD

100 500 1000 2000 4000 8000
0

2

4

6

8

10

Total number of overlay peers

Ju
m

p
la

te
nc

y
(s

ec
on

d)

Mediacoop(DA)

Mediacoop(no−DA)

PROP

P2VoD

0 0.5 1 1.5 2 2.5

x 10
4

1

2

3

4

5

6

7

8

9

Simulation time (second)

Ju
m

p
la

te
nc

y
(s

ec
on

d)

Mediacoop(DA)

Mediacoop(no−DA)

PROP

P2VoD

Fig. 18. Startup time against simula-
tion time with the overlay size=4000.

Fig. 19. Jump latency for varying over-
lay sizes.

Fig. 20. Jump latency against simula-
tion time with the overlay size=4000.

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 15

5.4.1 Average Number of Hops. For this metric, we do not consider the gossip stage in Mediacoop
(no-DA), because the purpose of comparing hops is only for structured methods. We do not mention
P2VoD either due to its unstructured overlay. Fig. 12 shows the average number of routing hops
as a function of the overlay sizes from 100 to 8000 with 12 groups. The results show that PROP
takes “logN” rule as the traditional DHT-based methods. Both versions of Mediacoop perform
better than PROP, because the lookup hops in our method are related to the number of blocks and
clusters. We have 3600

10 = 360 blocks and 8000
360 ≈ 22 peers for each block. Accordingly, the number

of valid clusters for each block are less than 22, reducing the routing hops subsequently.

5.4.2 Control Overhead. In order to compare the update overhead of DHT-based methods, we
compare our scheme with PROP. As shown in Fig. 13, because Mediacoop(no-DA) adopts gossip
protocol, which brings extra control messages, there are more control traffic than Mediacoop(DA)
as network expands. In PROP, the overhead is considerable because peers continuously send the
publishing and deleting messages. In contrast, Mediacoop(DA) can reduce the overhead by about
40 - 70%. The overhead of Quality Match Lookup accounts for about one-fifth of the total. Because
the proportion varies little with the number of peers, we do not show it in the figure.

5.4.3 Server Stress. There is a media content server with 1000 Mbps upload bandwidth in the
system to support unsatisfied peer requests. If a peer has not received the required data when
timeout occurs, or there are no suppliers to serve it, it will ask the server to send data. We use
peak stress (Mbps) on the server as the metric of system scalability. Fig. 14 shows the peak stress
against different overlay sizes from 100 to 8000. Mediacoop(no-DA) achieves higher server stress
than Mediacoop(DA). This is because some suppliers in Mediacoop(no-DA) cause higher delays,
which leads to the urgent requests timeout. Then the server is asked to send the missing data again.
For PROP, with buffer moving on, the published blocks are discarded. This causes the requests for
these blocks unsatisfied, which results in higher server stress than Mediacoop. In P2VoD, server
stress increases linearly with the size of network. This is because the system is organized in a tree-
like structure, with upper-level peers providing data to lower-level ones. Therefore, the parents are
so lacking that most peers directly request data from server which makes the server stress so high.

5.4.4 Playback Continuity. Firstly, we track the playback continuity with different overlay sizes
in Fig. 15. Then we examine it against simulation time with 4000 peers, as shown in Fig. 16. Our
schemes perform better than the other two systems (P2VoD and PROP) and improve the playback
continuity much closer to 1.0. Besides the factor explained in Server Stress, another reason is that
the DHT methods must wait to publish the sharing messages until the data block is completely
downloaded. This waiting leads to lower sharing level of the available data resources.

5.4.5 Startup and Jump latency. Actually, these metrics involve two parts: the lookup latency
and the buffering time. The first part is explained in Average Number of Hops. The second part
depends on the quality of suppliers, which is also the critical factor for Playback Continuity. Note
that Mediacoop(DA) could find close suppliers and hence fill up its buffer more quickly. Fig. 17, 18,
19 and 20 illustrate the results. For the 5-second buffering time, Mediacoop(DA) only needs about
3.5 seconds for startup time and 2 seconds for jump latency on average.

6. EMPIRICAL STUDY IN COOLFISH

We implement Mediacoop in the current version of our real-world P2P-VoD system called CoolFish
[CoolFish 2011]. In this section, we first give the system overview of CoolFish, then we discuss the
optimization of Mediacoop for BT-like system, and finally the comparison results are presented.

6.1 System Overview

CoolFish is the first P2P-VoD system deployed in China Science & Technology Network (CSTNet),
one of the four major ISPs in China. From Oct. 2008 to July. 2010, there had been over 4.9 million

ACM Transactions on Multimedia Computing, Communications and Applications.

16 · T. Zhang et al.

user visits and the number of recent daily visits has exceeded 7000. In the hot time, there are 700
simultaneous online viewers. CoolFish is able to support an average video bit rate of 700Kbps,
which is about 50% higher than that of most commercial P2P-VoD systems with a video bit rate
less than 450Kbps [PPStream 2011; Liu et al. ; Huang et al. 2008; Cheng et al. 2008]. The details
of CoolFish are presented in the Appendix.

6.2 Adaptive Mediacoop for BT-like P2P-VoD Systems

When implementing Mediacoop in CoolFish, we observed Mediacoop could be optimized in dealing
with the “total-cache” system. Total-cache means all the data blocks will be cached in the users’
disk space, typically used by BT-like systems. Actually, CoolFish is a BT-like P2P-VoD system,
where peers cache the played-out data in their disk space. In such systems, the playpoint is not
adequate to represent a supplier’s contents. For example in Fig. 6, if p0 wants to find out some
peers who hold block12, using Mediacoop p19 with playpoint of block10 and its successor p24 will
be returned as the closest peers according to our general design. However, returning P24 is not
enough because all the peers follows block12 clockwise on the ring are likely to provide the data. If
we return more peers, there would be more opportunities to select “good” suppliers for the upper
layer software.
Driven by the above observations, we improved Mediacoop in its implementation on CoolFish:

Mediacoop should return y peers whose playpoint follows the target in clockwise direction, not only
the peers whose playpoint is the closest to the target. These y peers can be obtained through
the successor-queue. We call this optimization of Mediacoop as adaptive Mediacoop for BT-like
P2P-VoD systems. The notable thing is that our original Mediacoop design is still practical and
applicable for most applications as a general solution. Therefore it is unnecessary to modify it in
Section 4.

6.3 Evaluation on Finger Tables

In the real-world system, we can not control user behaviors such as online time and access frequency.
Therefore, we take the inter-arrival time between two consecutive peers as the access frequency and
record the quality of finger tables under different inter-arrival time. Because CoolFish is not a
large-scale system and the peak online number of peers is about 700, this will cause some entries
empty in the finger tables. Therefore we only consider the Failure and Optimal scenarios. Fig. 21
shows the results. We can see that the finger tables have high quality even under small inter-arrival
time (such as 1s and 2s), and the quality is stable (Optimal takes up more than 95%) with different
inter-arrival time.

1 2 5 10 20 40 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter−arrival time (second)

N
um

be
r

of
 p

ee
rs

 in
 fi

ng
er

 ta
bl

e
(n

or
m

al
iz

ed
)

Optimal
Failure

Fig. 21. Finger tables under different inter-arrival time (in CoolFish). The quality is high even under small inter-
arrival time (such as 1s and 2s).

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 17

The most important reason for such high quality of finger tables is shown in Fig. 22. This figure
plots the PDF of inter-arrival time and the corresponding average online time. We can see that
the average online time is distributed between 30 and 75 minutes uniformly, although the PDFs
of inter-arrival time are different. Furthermore, the simulation results in Fig. 8 demonstrate that
when the online time is larger than 500 seconds, the quality of finger tables will exceed 95%. The
simulations also proves the results in the real-world system (CoolFish).

0 100 200 300 400 500 600
0

0.003

0.006

0.009

0.012

0.015

0.018

P
D

F
 o

f i
nt

er
−

ar
riv

al
 ti

m
e

Inter−arrival time (second)

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

A
ve

ra
ge

 o
nl

in
e

tim
e

(m
in

ut
e)

Inter−arrival time
Average online time

Fig. 22. PDFs of inter-arrival time are different while the average online time uniformly distributes between 30 and
75 minutes.

6.4 Comparison of User Experience

In this experiment, we show the comparison results between Mediacoop and without-Mediacoop
in CoolFish. After the implementation of Mediacoop on CoolFish, we find that the sever stress
are nearly the same with that in without-Mediacoop. Therefore, sever stress is not referred in
comparison. Instead, we mainly focus on the evaluation of user experience. User experience is
the most important metric to examine the real-world P2P-VoD system. As defined in Section 5,
user experience includes three aspects: A. playback continuity, B. startup time and C. jump latency.
Although the goal of Mediacoop is mostly to decrease jump latency, it is necessary to examine playback
continuity and startup time. In this Section, we present the user experience comparisons between
the current version of CoolFish (Mediacoop) and the old version of CoolFish (without-Mediacoop).
We collect one-month (30 days) log data for both old CoolFish and current CoolFish. From Fig.
27 (in Appendix), we can see that the system scales are similar for these two versions in these
two months (we only represent the system scale in one week for clarity), so the comparison is fair.
In order to further guarantee the fairness of comparison, we did not add any other functions or
improvements into the system.
Note that CoolFish is a well-deployed system rather than an experimental platform, and the old

version of CoolFish was able to select close neighbors with less delay (quality match). Hence in our
comparison, the results only reflect the performance of “content match” of Mediacoop.

6.4.1 User Experience over Running Time. We track the user experience during the system
running time. In our system, the mean value of user experience (continuity, startup time or jump
latency) is recorded every 30 minutes.
Fig. 23(a) plots the playback continuity over the running time. We observe that, in general, both

curves have similar playback continuity, mostly between 0.9-1.0. However, for without-Mediacoop,
the playback continuity decreased sharply when the tracker shutdown happened (purple dash lines).
The first shutdown happened in the 14th day (18:41 p.m. - 21:03 p.m.), and the second one is in the

ACM Transactions on Multimedia Computing, Communications and Applications.

18 · T. Zhang et al.

22th day (17:24 p.m. - 23:55 p.m.). In contrast, tracker shutdown did not incur abnormal fluctuation
in Mediacoop (green dash lines: the first one lasted for 10 hours and the second is 8 hours). The
reason is: without Mediacoop, although peers are still able to connect to Media Server when the
Tracker runs into downtime, the system degenerates to C/S architecture and the Media Server can
not support so many peers. However, in Mediacoop peers are able to get “good” neighbors during
the Tracker downtime.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30−
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Running time (day)

P
la

yb
ac

k
co

nt
in

ui
ty

Mediacoop
without−Mediacoop

Tracker shutdown in
Mediacoop

Tracker shutdown in
without−Mediacoop

(a) Playback continuity.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30−
0

5

10

15

20

25

30

Running Time (day)

S
ta

rt
up

 ti
m

e
(s

ec
on

d)

Mediacoop
without−Mediacoop

Tracker shutdown in
without−Mediacoop

Tracker shutdown in
Mediacoop

(b) Startup time.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30−
0

5

10

15

20

25

Running Time (day)

Ju
m

p
la

te
nc

y
(s

ec
on

d)

Mediacoop
without−Mediacoop

Tracker shutdown in
without−MediacoopTracker shutdown in

Mediacoop

(c) Jump latency.

Fig. 23. User experience over running time. Mediacoop avoids the negative effects of Tracker failure (dash circle) and

decreases jump latency by 40% than without-Mediacoop.

Fig. 23(b) represents the startup time over running time. Again we find the tracker shutdown
problem in old CoolFish (without-Mediacoop). The reason is similar as explained above. We can see
the difference of startup time between Mediacoop and without-Mediacoop is negligible. In CoolFish,
the media data for startup is cached on every peer, so whether we use Mediacoop does not matter.
Fig. 23(c) shows jump latency over running time. Different from startup time, we find that during

Tracker downtime Mediacoop has far less jump latency (6.1s on average) than without-Mediacoop
(10.2s on average). The reason is that Mediacoop could find “good” suppliers when jumping to
a new position. However, without Mediacoop the peers returned by Tracker might not have the
required data.
In general, Mediacoop not only significantly decreases jump latency (40%) but also avoids the

negative effects of Tracker failure.

6.4.2 User Experience over Movie Popularity. To understand the performance of Mediacoop
more deeply, we examine the user experience over different movie popularities (the number of viewers
for a movie).
Fig. 24(a) shows the playback continuity over different popularities. Mediacoop does not show

big advantage because both curves have high playback continuity from 0.94 to 1.0. However, the
curve of without-Mediacoop fluctuates more greatly. This is because without Mediacoop, peers can
only rely on the Tracker. But the peers randomly returned by the Tracker cannot guarantee they
have the required data.
Fig. 24(b) plots startup time over movie popularity. The difference of startup time between

Mediacoop and without-Mediacoop is slight. The reason is similar to that of Fig. 23(b), that is in
CoolFish, the data for startup is cached on every peer viewing the same movie, so whether we use
Mediacoop or not does not matter.
Obvious differences of jump latencies are shown in Fig. 24(c). Mediacoop performs better than

without-Mediacoop, especially when the popularity is large. That is because if there are more viewers
watching the same video, Mediacoop has more choice to find out “good” suppliers. On the contrary,

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · 19

0 20 40 60 80 100 120 140 160
0.9

0.92

0.94

0.96

0.98

1

Movie popularity

P
la

yb
ac

k
co

nt
in

ui
ty

Mediacoop
without−Mediacoop

(a) Playback continuity.

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

Movie popularity
S

ta
rt

up
 ti

m
e

(s
ec

on
d)

without−Mediacoop
Mediacoop

(b) Startup time.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

Movie popularity

Ju
m

p
la

te
nc

y

without−Mediacoop
Mediacoop

(c) Jump latency.

Fig. 24. User experience over movie popularity. Mediacoop can reduce the jump latency by about 40% (Fig. 24(c)),
and it also guarantees the playback continuity and startup delay (Fig. 24(a)(b))

more viewers means more random peer return for without-Mediacoop. When the popularity is larger
than 90, jump latency is stable for both Mediacoop (4.8s) and without-Mediacoop (8s-8.5s).

7. CONCLUSIONS

While lookup service for random jump is an essential function in P2P-VoD systems, its content
match and quality match requirements need to be satisfied effectively. The proposed Mediacoop
scheme, represented by its hierarchical lookup, provides both content and quality match satisfaction
in a single lookup. It leverages the efficiency of structured method but avoids the state update
overhead. In addition, it exploits the end-to-end delay and constructs a tree-like sub-overlay to find
high quality suppliers. With these novel features, Mediacoop is able to achieve low startup and
jump latency with high playback continuity. Both theoretical and simulation results confirm the
effectiveness of Mediacoop. Compared with the typical DHT-based method, Mediacoop achieves
50% reduction in the jump latency and 27% in the startup delay. Furthermore, the overhead is
reduced by about 55% in average. The implementation and evaluation in the real-world system also
show the practicability of our design. The running results demonstrate that Mediacoop is able to
achieve 40% reduction of the jump latency than the old version of CoolFish.

REFERENCES

Analytics, G. 2010. http://www.google.com/analytics.

Atalla, F., Miranda, D., Almeida, J., Gonçalves, M. A., and Almeida, V. Analyzing the impact of churn and
malicious behavior on the quality of peer-to-peer web search. In Proceedings of the 2008 ACM symposium on

Applied computing. SAC ’08.

Castro, M., Costa, M., and Rowstron, A. 2004. Performance and dependability of structured peer-to-peer
overlays. In Proceedings of the 2004 International Conference on Dependable Systems and Networks.

Cheng, B., Jin, H., and Liao, X. 2007. Supporting vcr functions in p2p vod services using ring-assisted overlays.
In ICC ’07. 1698–1703.

Cheng, B., Stein, L., Jin, H., Liao, X., and Zhang, Z. 2008. Gridcast: Improving peer sharing for p2p vod. ACM
Trans. Multimedia Comput. Commun. Appl. 4, 4, 1–31.

CoolFish. 2011. http://www.cool-fish.org.

CSTNet. 2010. http://www.cstnet.net.cn/bill.jsp.

Do, T. T. 2004. P2vod: Providing fault tolerant video-on-demand streaming in peer-to-peer environment. In
Proceedings of the IEEE Int. Conf. on Communications 2004. 1467–1472.

Gummadi, K. P., Saroiu, S., and Gribble, S. D. 2002. King: estimating latency between arbitrary internet end
hosts. In IMW ’02: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment.

Guo, L., Chen, S., Ren, S., Chen, X., and Jiang, S. 2004. Prop: a scalable and reliable p2p assisted proxy streaming
system. In Proceedings of IEEE ICDCS ’04. 778–786.

ACM Transactions on Multimedia Computing, Communications and Applications.

20 · T. Zhang et al.

Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., and Zhang, X. 2005. Measurements, analysis, and modeling of
bittorrent-like systems. In IMC ’05. USENIX Association, Berkeley, CA, USA, 4–4.

Guo, Y., Suh, K., Kurose, J., and Towsley, D. 2003. P2cast: peer-to-peer patching scheme for vod service. In
WWW ’03. ACM, New York, NY, USA, 301–309.

Hefeeda, M., Habib, A., Botev, B., Xu, D., and Bhargava, B. 2003. Promise: peer-to-peer media streaming using
collectcast. In MULTIMEDIA ’03. ACM, New York, NY, USA, 45–54.

Hodes, T. D., Czerwinski, S. E., Zhao, B. Y., Joseph, A. D., and Katz, R. H. 2002. An architecture for secure

wide-area service discovery. Wireless Networks 8, 2-3, 213–230.

Huang, Y., Fu, T., Chiu, D., Lui, J., and Huang, C. 2008. Challenges, design and analysis of a large-scale p2p-vod

system. ACM SIGCOMM Computer Communication Review 38, 4, 375–388.

Leonard, D., Rai, V., and Loguinov, D. On lifetime-based node failure and stochastic resilience of decentralized
peer-to-peer networks. In Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems. SIGMETRICS ’05.

Li, J., Stribling, J., Morris, R., Kaashoek, M., and Gil, T. A performance vs. cost framework for evaluating
dht design tradeoffs under churn. In INFOCOM 2005.

Liao, C.-S., Sun, W.-H., King, C.-T., and Hsiao, H.-C. 2006. Obn: Peering for finding suppliers in p2p on-demand
streaming systems. In 12th International Conference on Parallel and Distributed Systems. 235–242.

Liu, Y. 2007. On the minimum delay peer-to-peer video streaming: how realtime can it be? In MULTIMEDIA ’07:

Proceedings of the 15th international conference on Multimedia. ACM, New York, NY, USA, 127–136.

Liu, Z., Wu, C., Li, B., and Zhao, S. Uusee: large-scale operational on-demand streaming with random network

coding. In Proceedings of IEEE INFOCOM 2010.

Lv, J., Cheng, X., Jiang, Q., Ye, J., Zhang, T., Lin, S., and Wang, L. 2007. Livebt: Providing video-on-demand
streaming service over bittorrent systems. Parallel and Distributed Computing Applications and Technologies,
International Conference on 0, 501–508.

Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. Search and replication in unstructured peer-to-peer networks.
In Proceedings of the 16th international conference on Supercomputing. ICS ’02.

Noh, J., Mavlankar, A., Baccichet, P., and Girod, B. 2008. Reducing end-to-end transmission delay in p2p
streaming systems using multiple trees with moderate outdegree. In Proceedings of ICME 2008.

Plaxton, C. G., Rajaraman, R., and Richa, A. W. 1997. Accessing nearby copies of replicated objects in a

distributed environment. In SPAA ’97. ACM, New York, NY, USA, 311–320.

PPStream. 2011. http://www.ppstream.com.

Pucha, H., Andersen, D. G., and Kaminsky, M. 2007. Exploiting similarity for multi-source downloads using file

handprints. In Proc. 4th USENIX NSDI. 2007.

Ren, S., Guo, L., and Zhang, X. 2006. Asap: an as-aware peer-relay protocol for high quality voip. In ICDCS ’06.
IEEE Computer Society, Washington, DC, USA, 70.

Rhea, S., Geels, D., Roscoe, T., and Kubiatowicz, J. Handling churn in a dht. In Proceedings of the annual
conference on USENIX Annual Technical Conference 2004.

RIPERIS. 2010. http://www.ripe.net/projects/ris.

RouteViews. 2010. http://www.routeviews.org.

Sen, S. and Wang, J. 2004. Analyzing peer-to-peer traffic across large networks. IEEE/ACM Trans. Netw. 12.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. 2001. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM ’01. ACM, New York, NY, USA, 149–160.

Stutzbach, D. and Rejaie, R. Understanding churn in peer-to-peer networks.

Xu, Z. 2007. Hpc research at ict. In CHINA HPC ’07: Proceedings of the 2007 Asian technology information
program’s (ATIP’s) 3rd workshop on High performance computing in China. ACM, New York, NY, USA, 1–5.

Yiu, W., Jin, X., and Chan, S. 2007. VMesh: Distributed segment storage for peer-to-peer interactive video stream-
ing. IEEE journal on selected areas in communications 25, 9, 1717–1731.

Zegura, E., Calvert, K., and Bhattacharjee, S. 1996. How to model an internetwork. In In Proceedings of IEEE
INFOCOM. 594–602.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., and Kubiatowicz, J. D. 2004. Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications 22,

41–53.

Zhou, X., Ippoliti, D., and Zhang, L. 2008. Fair bandwidth sharing and delay differentiation: Joint packet scheduling

with buffer management. Comput. Commun. 31, 17, 4072–4080.

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · App–1

This document is the online-only appendix to:

Providing Hierarchical Lookup Service for P2P-VoD Systems
TIEYING ZHANG, XUEQI CHENG
Institute of Computing Technology, Chinese Academy of Sciences
JIANMING LV
South China University of Technology
ZHENHUA LI
Peking University
and
WEISONG SHI
Wayne State University

ACM Transactions on Multimedia Computing, Communications and Applications.

In this appendix, we give the detailed introduction of CoolFish system. The introduction mainly
focuses on the system overview, system architecture and system comparisons which is related to
this paper.

A. SYSTEM OVERVIEW

CoolFish is the first P2P-VoD system deployed in China Science & Technology Network (CSTNet),
one of the four major ISPs 2 in China. CSTNet is a nationwide network for the scientific and
technical communities, government departments and hi-tech enterprises, with more than 1.5 million
end users. It connects about 200 research institutes of the Chinese Academy of Sciences (CAS) and
four campuses with more than 58,000 students. From Oct. 2008 to July. 2010, there have been over
4.9 million user visits and the number of recent daily visits has exceeded 7000. In the hot time,
there are 700 simultaneous online viewers. CoolFish is able to support an average video bit rate of
700Kbps, which is about 50% higher than that of most commercial P2P-VoD systems with a video
bit rate less than 450Kbps [PPStream 2011; Liu et al. ; Huang et al. 2008; Cheng et al. 2008]. The
maximal bit rate supported by CoolFish is 2.5Mbps with high playback continuity (close to 1.0).
This should be largely owed to the good network bandwidth of CSTNet. We can see from TableII
that the majority of users are from CSTNet, with the maximal bandwidth of 24 Mbps [CSTNet
2010]. This result also indicates that Hi-Definition video can be provided by P2P technology under
good network conditions. Table II presents the main log statistics of the system.

B. SYSTEM ARCHITECTURE

The users of CoolFish are distributed over 28 provinces in China. TableI in Section 4 shows an
example of the CCDT of our system and the user IP prefix distribution is shown in Fig. 25 from
Google Analytics [Analytics 2010].
CoolFish is a mesh-based network just like BitTorrent system. Fig. 26 represents the general

architecture of the CoolFish system. The whole system includes a set of servers and peers (end
users). The function of each component can be understood by following the operation procedures
(the numberings labeled from 1 to 7 in Fig. 26) below.
Step1: Peers report their programs (movies) information to Program Server, including video

name, viewing progress, jump and pause position, startup and jump latency, and so on.

2The four major ISPs in China: China Telecom, China Netcom, CERNET, and CSTNet.

ACM Transactions on Multimedia Computing, Communications and Applications.

App–2 · T. Zhang et al.

Table II. CoolFish system statistics from Oct. 2008 to July. 2010.
Parameter Value

Total number of visited users ≈ 4,900,000

Peak number of online users > 700

Number of videos > 1500

Recent daily data volume ≈ 6.08 TB

Server upload bandwidth 100 Mbps

Average video bit rate 700 Kbps

Average video length 1.2 hours

Percentage of CSTNet users 78%

Percentage of NAT users 15%

Visits

1 258,361

Fig. 25. User IP prefix distribution in CoolFish (from
Google Analytics).

Fig. 26. CoolFish architecture. The numberings of the op-
eration procedures labeled from 1 to 7 are explained in the
text.

Step2: Program Server writes the information into Database.
Step3: Web Server reads the portal information from Database, shows the program list and online

peers on the web site.
Step4: Peers access the Web Server to browse the video information.
Step5: Peers register themselves to the Tracker and gets the peer list.
Step6: Media Server holds the full content of all the videos and provides them to the peers.
Step7: Peers conduct content lookup using Mediacoop.

C. SYSTEM COMPARISONS

Up to now, there have been two versions of CoolFish: 1) implementation without Mediacoop and
2) implementation of Mediacoop. The first implementation of CoolFish is based on our previous
P2P-VoD system [Lv et al. 2007] which only utilized the Tracker to provide lookup service. Then
we tried Mediacoop in the second version. Our current CoolFish release has fully implemented
Mediacoop with over 80,000 lines of C++ codes in total.
In order to evaluate the two versions of CoolFish, we collect one-month (30 days) log data for

both old CoolFish (without-Mediacoop) and current CoolFish (Mediacoop). From Fig. 27, we can
see that the system scales are similar for the two versions in these time intervals (we only represent
the system scale in one week for clarity). In order to further guarantee the fairness of comparison,
we did not add any other functions or improvements into the system.

Acknowledgment

We would like to thank Mrs. Yi Yi for her help in figure design, Prof. Huawei Shen for his
insightful advice, and Prof. Jiafeng Guo for his comprehensive help. This research is supported by

ACM Transactions on Multimedia Computing, Communications and Applications.

Providing Hierarchical Lookup Service for P2P-VoD Systems · App–3

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

Running time (day)

O
nl

in
e

nu
m

be
r

without−Mediacoop
Mediacoop

Fig. 27. Online number of users over running time. The CoolFishs of Mediacoop and without-Mediacoop have similar
system scales.

the National Basic Research Program of China (Grant No.2011CB302305), the National High-tech
R&D Program of China (Grant No.2010AA012500) and the National Natural Science Foundation
of China (Grant No.60933005, No.60873245 and No.61073015).

ACM Transactions on Multimedia Computing, Communications and Applications.

