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Abstract— Cyber search engines, such as Shodan and Censys,
have gained popularity due to their strong capability of indexing
the Internet of Things (IoT). They actively scan and fingerprint
IoT devices for unearthing IP-device mapping. Because of the
large address space of the Internet and the mapping’s mutative
nature, efficiently tracking the evolution of IP-device mapping
with a limited budget of scans is essential for building timely
cyber search engines. An intuitive solution is to use reinforcement
learning to schedule more scans to networks with high churn
rates of IP-device mapping. However, such an intuitive solution
has never been systematically studied. In this paper, we take
the first step toward demystifying this problem based on our
experiences in maintaining a global IoT scanning platform.
Inspired by the measurement study of large-scale real-world
IoT scan records, we land reinforcement learning onto a system
capable of smartly scanning IoT devices in a principled way. We
disclose key parameters affecting the effectiveness of different
scanning strategies, and real-world experiments demonstrate that
our system can scan up to around 40 times as many IP-device
mapping mutations as random/sequential scanning.

Index Terms— Internet of Things (IoT), adaptive algorithms,
IP networks, cyberspace.

I. INTRODUCTION

IN RECENT years, cyber search engines, such as Shodan
[1], Censys [2], [3], and ZoomEye [4], have gained pop-

ularity among the security community due to their strong
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capability of indexing the Internet of Things (IoT) like
webcams and routers. They actively scan IoT devices with
fingerprints of various devices for unearthing IP-device map-
ping, offering publicly available search engine services. One
can simply access these services using a browser and obtain
IP-device mapping results by host names, IP addresses,
certificates, or device-specific keywords. These search engines
can also be used to effectively find IoT devices with certain
(possible) vulnerabilities on the Internet [5], [6], [7]. In the
short term, cyber search engines render attacks against IoT
devices easier while offering a public channel for device
owners (especially those with higher security requirements)
to be informed of the exposure and protect the network from
invaders accordingly. More importantly, in the long run, they
would force IoT device manufacturers to make the best efforts
to improve the security of their devices [8], [9].

We propose a method that can be used as a plug-in for
existing cyber search engines to schedule scans to the large
address space of the Internet smartly so that more IP-device
mutations can be captured. Consequently, cyber search engines
would become more timely. Because of the large address space
of the Internet and the mutative nature of IP-device mappings,
efficiently tracking the evolution of IP-device mapping with
a limited budget of scans is essential for building timely
cyber search engines. Specifically, our method learns the
IP-device mutation intensity matrix through the scan record
history. It assigns more scans to IP addresses that may have
mutations in the next time slot to capture more mutations.
Capturing more mutations is helpful for building a timely
engine. High-rate scanning, in spite of the timeliness, usually
induces excessive noises and thus may be blocked by firewalls.
On the contrary, low-rate scanning is not noisy but not timely.
As a result, the data obtained from cyber search engines would
be generated a long time ago, rather than the up-to-date IoT
devices on the Internet that are far more valuable.

Scanning IoT devices in a principled way to meet the
timeliness requirement with a limited budget of scans depends
on two major aspects. One is the resource investment, and the
other is the scanning strategy. The former includes the number
of servers, the servers’ processing power, the bandwidth,
etc. The latter concerns how to schedule scans encapsulating
fingerprints of IoT devices across all IP addresses from the
temporal perspective. Since the resource investment for cyber
search engines is relatively stable, we only focus on the latter
aspect. Existing cyber search engines, such as Censys, divide
the protocol into different categories, and for each category,
the scanning frequency is manually defined [3]. For example,
Censys scans HTTP daily and SSH biweekly. Apparently,
manually scheduling scans cannot maximize the timeliness of
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cyber search engines because it does not consider IP-device
mapping dynamics in different networks.

Despite its conceptual simplicity, how to design a system
capable of smartly scheduling scans for IoT devices has never
been systematically investigated. An intuitive solution is to
use reinforcement learning to flexibly schedule more scans to
networks with high churn rates of IP-device mapping, as can
be learned from historical scanning records. However, there
are two major challenges to applying reinforcement learning
to designing the system. First, an immediate challenge is that
designing such a system necessitates large-scale real-world
IoT scanning records to have insights into IP-device mapping
dynamics all over the Internet. However, no publicly available
data is available for gaining insights and facilitating the design.
Second, the IP-device mapping dynamics are driven by hidden
factors that are hard to infer (e.g., which networks have the
same IP assignment policy and can be characterized by similar
mapping dynamics). This hurdle is further compounded by
the Internet’s tremendous and time-evolving nature, making it
challenging to design the system.

To address these challenges, we carry out both measurement
studies and system design for smartly scheduling scans for
IoT devices. First, we perform large-scale measurements of
IP-device mapping dynamics using our global IoT scanning
platform. The measurement enables us to collect real-world
IoT scanning records, quantify the IP-device mapping dynam-
ics, and analyze factors affecting the dynamics. Second,
inspired by the measurement study, we design a novel system
that lands reinforcement learning onto guiding the smart scan-
ning by exploiting the observation that the IP-device mapping
dynamics in different networks may vary significantly.

Our system makes automatically learning IP-device map-
ping dynamics across different networks as a built-in feature
for continuous scanning decision making, enabling the encour-
agement of scans to networks with high churn rates of
IP-device mapping dynamic mapping and the discouragement
of scans to those with low churn rates. To our best knowledge,
we are the first to explore principled ways to scan IoT devices
based on real-world measurement studies [10]. Our major
contributions are summarized as follows.
• We perform measurements based on large-scale real-

world IoT scanning records (consisting of 5,241,566 IP
cameras) by scanning the entire IPv4 space for about
40 days, and quantify the IP-device mapping dynamics.
The results reveal that both the IoT device types and IP
address pools affect the dynamics.

• We land reinforcement learning onto a system capa-
ble of smartly scanning IoT devices. The system
can encourage scans to networks with more dynamic
IP-device mapping while impeding scans to those with
less dynamic mapping. It consists of two novel strategies
for scheduling scans based on online learning and batch
learning. It could temporally schedule scans through
continuous scanning decision making in consideration of
historic IP-device mapping dynamics, and the hierarchi-
cally learned (spatial) IP address pools.

• Through extensive experiments, we demonstrate that our
system could generally capture more IP-device mapping

mutations than random and sequential scanning. We dis-
close the two key parameters affecting the effectiveness
of different scanning strategies, i.e., the scan rate and the
proportion of IoT devices to IP addresses. Real-world
scanning experiments show that our system can scan up
to around 40 times as many IP-device mapping mutations
as random/sequential scanning.

Roadmap: Sec. II presents the literature. Sec. III performs
measurement studies using real-world data. Sec. IV introduces
system overview, Sec. V details system design, and Sec. VI
reduces the computational complexity. Sec. VII conducts
simulation-based evaluation and Sec.VIII performs real-world
scanning experiments. Finally, we conclude in Sec. X.

II. RELATED WORK

In the past few years, there has been a lot of research on
Internet scanning. Salient scanning tools include Nmap, Zmap,
Masscan, etc [3], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23]. Nmap is rich in functions, such as
port scanning and device fingerprinting, but it is heavyweight
and thus not suitable for large-scale scanning [18]. Zmap
and Masscan use stateless scanning (e.g., no TCP three-way
handshakes), achieving fast scanning [17].

Several studies focused on device identification [9], [18],
[19], [22], [24], [25]. Nmap OS fingerprinting works by send-
ing up to 16 specially designed packets to find the ambiguities
in the standard protocol [18]. Miettinen et al. proposed a
framework using software-defined networking for confining
traffic of vulnerable devices [24]. Kohno et al. fingerprinted
devices using clock skew in device hardware [19]. Feng et al.
used automatically generated rules to inspect the application
layer and identify devices [22]. Bezawada et al. used hand-
crafted features and Gradient boosting to classify device types
[25]. Ma et al. leveraged machine learning methods to identify
IoT devices by passively analyzing traffic [9]. Unlike these
studies, our study focuses on the optimal scheduling of scans
when actively probing devices for identification.

In the last decade, there have been cyber search engines
using scanning technologies, such as port scanning, banner
grabbing, and service fingerprinting [3], [15], [16]. Generally,
these scanning technologies enable a cyber search engine to
scan the IPv4 space periodically to collect information on
connected devices, such as a device’s hostname, IP address,
open ports, and installed software. As the collected infor-
mation grows, the cyber search engine can open a query
interface on the Web to users using keywords like hostnames,
IP addresses, and certificates. These engines help security
practitioners discover, monitor, and analyze devices accessible
from the Internet, thereby facilitating continuous monitoring
of attack surfaces [2].

Published in 2009, Shodan provides information on about
500 million devices every month, including operating systems,
hostnames, versions, and so forth [16]. Censys is another
cyber search engine similar to Shodan [2]. It first uses ZMap
to scan the entire IPv4 address space and then uses an
application scanner called ZGrab to collect the handshake
information of various protocols. Censys artificially defines
protocol-dependent scanning frequencies and posts a timetable
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of the scheduling strategy on its website [3], [17]. Some
studies have indicated that Censys has a faster scanning and
website update speed than Shodan [5], [26].

Cyber search engines can also help organizations iden-
tify and mitigate vulnerabilities in their systems. Durumeric
revealed the presence of many vulnerable RSA and DSA
keys due to the widely used insecure random number gener-
ators [13]. Genge et al. developed a vulnerability assessment
function based on Shodan and disclosed 3,922 known vul-
nerabilities on 1,501 services. O’Hare et al. found 12,967
potential known vulnerabilities on 2,571 services [27]. Unlike
existing studies, we focus on scanning scheduling strategies
based on modeling IP-device mapping dynamics so to scan IoT
devices in a principled way smartly. Our work complements
existing studies and could be incorporated into a wide range
of scanning tools.

III. UNDERSTANDING IP-DEVICE MAPPING DYNAMICS

A. Background

There are usually three ways to configure the IP address
for a device, namely, Dynamic Host Configuration Protocol
(DHCP), Point-to-Point Protocol (PPP), and static IP config-
uration [28], [29], [30]. Both DHCP and PPP will cause IP
address changes frequently.

The DHCP server controls a pool of IP addresses. When
connecting to the network, a client can be automatically
assigned an IP address from the pool by the DHCP server.
The client can keep the IP address within the lease duration
(configured by the network manager). Upon the lease dura-
tion expiration, the client can send a message to the DHCP
server to extend its lease for the same IP address [28]; if the
client does nothing, the address will be revoked.

PPP can be encapsulated in data link layer protocols like
PPP over Ethernet (PPPoE) and PPP over Asynchronous
Transfer Mode (PPPoA). PPP first establishes a session
between the client and the server. Then, the Internet Protocol
Control Protocol (IPCP) is used to configure the client device’s
IP address. IPCP does not have a lease duration. The IP
address is released when the PPP session ends [29], [30], [31].

In both DHCP and PPP, if the session of the device
continues, the IP address will not change. IP address mutations
can be triggered by both the client and the server. On the
client side, once the device re-establishes the PPP session,
a new IP address will be assigned to the device; if a DHCP
client is offline for a period of time that exceeds the lease
duration and then reconnects the DHCP server, its IP address
will change. On the server side, Padmanabhan et al. found that
some ISPs may limit the session duration (typically a multiple
of 24 hours), and the IP address will change periodically [32].

B. Measuring IP-Device Mapping Dynamics

To understand IP-device mapping dynamics, one needs to
perform large-scale scans encapsulating fingerprints of IoT
devices globally and collect detailed scanning records. Despite
the prevalence of IoT fingerprinting techniques [18], [19],
[22], no public scanning record is available to facilitate the
study.

To this end, we take the first step to measure real-world
IP-device mapping dynamics by performing large-scale scan-
ning campaigns using our globally deployed (commercial)
IoT scanning platform. Specifically, we scanned the entire
IPv4 space to identify IP cameras, the most popular type
of IoT device on the Internet. The scanning campaign was
repeated four times, starting on June 5, June 15, June 26,
and July 6, 2021, respectively. The scanning campaign
lasted about 10 days at each time, resulting in 2,896,824,
3,089,436, 3,093,510, and 3,076,343 successful scanning
records, respectively.

Note that the traffic fingerprints of these IP cameras are
extracted from their banner text that commonly describes
device types explicitly. We have been manually maintaining
and labeling a database of IoT fingerprints with the aid of
machine learning. For more details, the reader can refer to [33].

The four scanning campaigns allow us to measure IP-device
mapping mutations by comparing scanning records. Suppose
we perform a scanning campaign at time t1 and the result
is St1 , the set of (successfully scanned) mapping between
IP addresses and device types. For example, we assume
that St1 = {(α1, “D-Link Camera” ), (α2, “TVT Camera” )},
where α1 and α2 are two IP address. St2 is the
result of the scanning campaign at time t2, and St2 =
{(α1, “D-Link Camera” )}. We employ Jaccard similarity to
measure the mapping mutations between t1 and t2:

J(t1, t2) =
|St1 ∩ St2 |
|St1 ∪ St2 |

. (1)

In this example, |St1 ∩ St2 | equals 1, |St1 ∪ St2 | equals 2,
and the Jaccard similarity equals 0.5. If there are no IP-device
mapping mutations between two scans, J(t1, t2) will equal 1.
As the mutations become significant, J(t1, t2) will approach
0. Note that, when J(t1, t2) equals 1, we cannot be 100% sure
that there are no mapping mutations, due to the possibility of
an IP address being re-assigned to a device of the same type
as the device that initially owns the IP address. However, the
probability of mapping mutations would be extremely small
and ignorable in such a case.

1) Device Types: In our scanning campaigns, we success-
fully find a cumulative number of 5,241,566 IP cameras.
Fig. 1 shows the average number of devices of the top
10 popular IP camera types across all campaigns. For a specific
device type, we calculate the mapping mutations between
every two successive campaigns using (1). Consequently, three
values of Jaccard similarity measuring mapping mutations are
derived, and we plot the average value in Fig. 1. It can be seen
that the Jaccard similarity between two successive scanning
campaigns differs significantly across IP camera types. For
example, the Jaccard similarity of the Samsung camera is
about 0.83, but that of the Hipcam camera is less than
0.45. This indicates that the IP-device mapping dynamics are
device-type-specific.

2) IP Pools: We consider an IP address pool as a set of IP
addresses (possibly) under the same IP management policy.
Different IP address pools may have different IP-device map-
ping mutation intensities because each has its configuration,
capacity, and occupancy. Padmanabhan et al. found that the
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Fig. 1. The number of cameras from different manufacturers and Jaccard
similarity between the two scans.

Fig. 2. The probability distribution of the Jaccard similarity between two
scans across all IP address pools.

frequency of IP address changes was related to geographic
location [32]. In other words, the IP-device mapping mutations
are related to the IP address pools.

To gain (coarse-grained) insights into IP-device mapping
mutations of large-sized IP pools, we define an IP address
pool as a class B IP space, and the IPv4 space is divided
into 65,536 IP address pools. For each pool, we derive (1)
between every two adjacent scanning campaigns and calculate
the average Jaccard similarity. Our calculation neglects the
IP address pools with less than 50 identified IP cameras for
statistical validity. Fig. 2 presents the probability distribution
of the average Jaccard similarity across all IP address pools.
Although there are two peaks when the Jaccard similarity
approaches 0.85 or slightly exceeds 0, the overall distribution
is dispersed. This implies that the IP-device mapping dynamics
depend on IP address pools.

IV. SYSTEM OVERVIEW

Since the IP-device mapping dynamics are related to device
types and IP address pools, we exploit this observation to
design a system capable of smartly scheduling scans for IoT
devices. Fig. 3 shows the architecture of our proposed system.

First, a priority matrix describing the IP-device scanning
tasks is fed into the system. Each matrix element is a
priority value (i.e., 1, 2, 3, . . .) specifying the order to
execute the corresponding scanning task defined by (device
type, IP address). Initially, the priority matrix is randomly
or sequentially defined. As the scanning proceeds, we will
collect more historical records consisting of (IP, device, last
scan time). Then, we derive a probability matrix quantifying
the probability of IP-device mutation. Each element of this
matrix denotes the probability that the corresponding IP-device
mapping mutations in the following scheduled scan. We keep
updating the probability matrix as new scanning records
arrive, while simultaneously returning probability ranking as
feedback to refresh the priority matrix. Finally, the tasks with

Fig. 3. The architecture of the proposed IoT scanning system.

larger values of mutation probability would be assigned higher
priorities in the task queue.

When we derive the probability matrix, not only do we use
scanning records but also an intensity matrix. The rationale
is that the IP-device mutation probability in the following
scheduled scan depends on both temporal and spatial factors.
The temporal factor is the time interval between the current
time and the last scan time (in scanning records). As the
time interval increases, the mutation probability grows because
of occurrences of events such as device replacement, and IP
reconfiguration. The spatial factor is the intensity matrix that
characterizes the overall likelihood of IP-device mutation in
individual IP address pools. Each pool is expected to be under
the management of the same IP assignment policy, and hence
devices in that range are statistically coherent in terms of
IP-device mutation. IP-device mappings belonging to IP
address pools with stronger mutation intensity tend to have
higher mutation probability.

The intensity matrix is estimated using scanning records.
Initially, each IP address pool is defined as the IP address range
of a small network, say a class C network, to ensure its high
probability under the management of the same IP assignment
policy. As scanning records accumulate, our system will
hierarchically cluster small IP address ranges into large IP
address pools, resulting in a compact representation of the
intensity matrix. The compact representation leads to a more
computationally effective estimation of the intensity matrix.
More importantly, as the size of an IP address pool increases,
the estimation accuracy for the intensity matrix increases due
to the growing number of scanning records in that pool.

The above architecture of our system constitutes a contin-
uous scanning decision-making process, which is a natural
fit for reinforcement learning algorithms. Model-free methods
and model-based methods are two types of reinforcement
learning. Compared with model-based methods, model-free
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TABLE I
SUMMARY OF MAJOR NOTATIONS

methods like Deep Q-Network [34] are not sample efficient,
resulting in a slow convergence rate. Consequently, they are
not suitable for the scanning environment where slow con-
vergence fails to capture the fast mutations. Therefore, we
propose two model-based reinforcement learning-based scan-
ning strategies under the designed architecture, namely, online
learning and batch learning, according to the way to build
the intensity matrix. The online learning strategy incremen-
tally updates the intensity matrix while performing scanning
and directly enters the continuous scanning decision making
process. The batch learning strategy, however, proactively
scans abundant information to build the intensity matrix before
entering the continuous scanning decision making process.

V. SYSTEM DESIGN

Following the proposed architecture, we detail our system
design. First, we present the design goal and system model.
Then, we design online learning and batch learning scan-
ning strategies, and the IP address pool estimation technique.
Table I summarizes major notations in our system.

A. Designing Goal
We model the IoT scanning process as a continuous

decision-making process. For a certain type of IoT device, the
basic task of the decision-making is to select one IP address,
scan it, and get the result. That is, the task can be regarded
as a cycle of selection and scan. The cycle will be repeated
continuously, hence constituting the entire scanning process.

From the perspective of IoT devices, our goal is to optimize
the scanning strategy to capture as many IP address changes
as possible. Such a goal is equivalent to capturing as many
IoT device changes as possible from the perspective of IP
addresses. To sum up, we aim to capture as many IP-device
mapping mutations as possible. Note that we treat an IP
address without hosting any device as a special IP-device
mapping. During the scanning process, we score the reward as
one upon capturing a mutation. Given a fixed number of scans
and a period of time, we aim to maximize the total reward.

B. System Model
1) Scanning Process Modeling: The scanning can be mod-

eled as a process of continuously making decisions on the
priorities of IP-device scanning tasks. All the scanning tasks
are organized in the priority matrix. At a high level, the
scanning process keeps refreshing the priority matrix regularly
after executing a bunch of scanning tasks. The refreshing is
actually to fine-tune the priority values based on the set of the
latest scanning records of all IP addresses.

Let St(t = t0, t1, t2, . . .) be the set of the latest scanning
records of all IP addresses at time t, and A denotes the set of
scanning tasks. Then, the problem becomes fine-tuning the pri-
ority value for each scanning task in A based on St. Intuitively,
scanning tasks with larger IP-device mutation probabilities
(during the following scheduled scan) should be assigned
higher priorities. More precisely, given St, top-k scanning
tasks in terms of mutation probability ranking, denoted by
π(St), join the queue of the following scheduled scan. π(St)
is formally expressed as

π(St) = {a|if P (a|St) ∈ top-k(P (a|St)), a ∈ A}, (2)

where P (a|St) is the IP-device mapping mutation probability
when we choose a to scan at state St. Apparently, modeling
IP-device mapping mutation and estimate the value of P (a|St)
is crucial in the scanning process.

We would like to point out that, in real-world scanning,
scanning tasks associated with one IP address but multiple
device types could be performed simultaneously to improve
the scanning efficiency, especially when the device types share
the same port. For example, many types of commercial IP
cameras open TCP port 554 by default. In this case, a scan
using a single TCP connection destined to TCP port 554 of
the target IP address will identify the camera type.

2) IP-Device Mapping Mutation Modeling: Consider an
event as one IP-device mapping mutation. Naturally, for a
certain device, the event arrivals can be modeled as a non-
homogeneous Poisson process [35]. The reasons are twofold.
First, the events of a device’s IP address changes are gener-
ally independent of each other. For example, in the DHCP
configuration mentioned in Sec. III-A, the IP address changes
are independent since they are attributed to many random
factors, such as device online-offline dynamics and human
intervention; in the static IP configuration, the two typical
events, namely, initial IP assignment and final IP release, are
also independent. Second, in different periods of time, the rate
of IP address changes is likely to be different. In other words,
the rate of IP address changes is time-dependent. Formally,
the event arrivals have the following properties.{

P [N(t + ∆t)−N(t) = 1] = λ(t)∆t + o(∆t),
P [N(t + ∆t)−N(t) ≥ 2] = o(∆t), (3)

where λ(t), a non-negative function of time t and device type
d, denotes the mapping mutation intensity (i.e., the rate of IP
address changes at t), and N(t) represents the number of IP
address changes during (t, t + ∆t], of a certain device.

Suppose t1 is the last time to scan the IP address a, and the
current time is t2. At t1, we find that a hosts a device d, which
is recorded in the state s. Assume that the mapping mutation
intensity of device d is λ(t). Then, the probability of capturing
the IP-device mapping mutation at t2 is approximated as

P (a|St) = 1− e−
∫ t2

t1
λ(t)dt. (4)

The reason why it is approximate rather than strictly equal is
as follows. After the device’s IP address changes, other devices
of the same type may be assigned the IP address again with
a very low (almost ignorable) probability.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 31,2024 at 20:54:54 UTC from IEEE Xplore.  Restrictions apply. 



1024 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Recall that both the IoT device types and IP address pools
affect the IP-device mapping dynamics, as is revealed in
Sec. III. We maintain and estimate λ(t) separately for each
pair of device type and IP address pools in the intensity matrix
demonstrated in Fig. 3.

3) Mapping Mutation Intensity Estimation: If mapping
mutation intensity, i.e., λ(t), can be estimated, the mutation
probability P (a|St) would be calculated. We can estimate
λ(t) using historic scanning records. Maximum likelihood esti-
mation and least-squares methods can be used for parameter
estimation. However, they are challenging to solve.

Let us take maximum likelihood estimation as an example.
In the simplest case, λ(t) is a constant, which means λ is inde-
pendent of time and only related to the device type. We define
a 2-gram scanning record as a (successive) subsequence of the
scanning record sequence of an IP address. A 2-gram scanning
record can be expressed as < (t1, d1), (t2, d2) >, where t1 is
the scanning time, t2 is the scanning time following t1, d1 is
the device type at t1, and d2 is the device type at t2. The
probability that a 2-gram scanning record occurs is

P (<(t1, d1), (t2, d2)> |λ)=
{
e−λ(t2−t1) if d1=d2,
1−e−λ(t2−t1) if d1̸=d2.

(5)

λ is the IP-device mapping mutation intensity of device type
d1. Let R(d1) denote the set of every 2-gram scanning record
with the first device type equal to d1 across all IP addresses.
The likelihood function of d1 changing to other device types
across all IP addresses is

L(λ|R(d1)) =
∏

r∈R(d1)

P (r|λ). (6)

Then, we maximize the likelihood function to estimate λ.
However, the maximal value of this function is difficult to
solve by calculating the zero point of the derivative, even if the
log-likelihood function is used. To make things exacerbated,
λ may not be a constant, and parameter estimation would be
challenging. We need a solution to estimate λ.

Padmanabhan et al. revealed that the address changing inten-
sity depends on the time during a 24-hour day [32]. Therefore,
we model λ(t) as a periodic function with a period of 24 hours
for each device type. To estimate this continuous function,
we can discretize it into small intervals. Specifically, we divide
λ(t) into 24 intervals, and the problem becomes estimating
24 discrete variables. We use T (λ(t)) to represent any one
of the intervals, i.e., [0, 1), [1, 2),. . . , and [23, 24). We notice
that the probability P(d1 ̸= d2|T (λ) ⊆ (t1, t2]) grows as λ(t)
increases. We use this probability to approximate λ(t).

Next, we design two strategies for estimating λ(t): the
online learning strategy and the batch learning strategy.

C. Online Learning Strategy

The online learning strategy incrementally updates the esti-
mation of λ(t) as the scanning records arrive. The strategy is
detailed in Algorithm 1.

In Algorithm 1, λ(d, r, t) is represented by a three-
dimensional array. The first dimension is the device type, the
second dimension means the IP address range, and the third
dimension refers to the 24 discrete time intervals. ra represents

Algorithm 1 Scanning Using Online Learning Strategy
Input: scanning task set

A = {IP addresses} × {device types}
Output: scanning records
initialization:
λ(d, r, t) = y(d, r, t) = n(d, r, t) = 0;
St(a) = (t0, d0) for each a ∈ A;
while True do

λ(d, r, t) = y(d,r,t)+1
y(d,r,t)+n(d,r,t)+1 ;

scan π(St) and get a set of 2-gram scanning
records E;

for each [a, < (t1, d1), (t2, d2) >] in [π(St), E] do
if d1 ̸= d2 then

y(d1, ra, t) += |T (λ(d,ra,t))∩(t1,t2]|
t2−t1

;
else

n(d1, ra, t) += |T (λ(d,ra,t))∩(t1,t2]|
|T (λ(d,ra,t))| ;

end
update St(a) = (t2, d2);

end
end

the IP address range index of address a. λ(d, r, t) equals
(y(d, r, t) + 1)/(y(d, r, t) + n(d, r, t) + 1) in the algorithm,
where y(d, r, t) and n(d, r, t) represent the number of times
the scanning records change and does not change within the
time period of T (λ(d, r, t)), respectively.

Specifically, for a record < (t1, d1), (t2, d2) >, if d1 ̸= d2,
|T (λ(d, ra, t)) ∩ [t1, t2)|/(t2 − t1) is added to y(d, ra, t),
where |T | refers to the time duration of T . This means
that we split the contribution of one scanning record into
multiple time intervals, since the mutation could happen at any
time interval between t1 and t2. Similarly, |T (λ(d, ra, t)) ∩
(t1, t2]|/|T (λ(d, ra, t))| is added to n(d, ra, t) if d1 = d2,
because no mutation between t1 and t2 in the scanning record
indicates no mutation in all time intervals between t1 and t2.

The reason why we make λ(d, r, t) equal to (y(d, r, t) +
1)/(y(d, r, t)+n(d, r, t)+1) instead of y(d, r, t)/(y(d, r, t)+
n(d, r, t)) is to balance exploration and exploitation in online
reinforcement learning [36]. Our solution is a combination
of upper confidence bound and Laplace smoothing. In our
solution, all the values of λ(d, r, t) are equal to one at the
beginning of the scan, thereby allowing us to explore different
IP addresses at the initial period randomly. When the time
tends to infinity, λ(d, r, t) gradually stabilizes.

D. Batch Learning Strategy

In the online learning strategy, when the average scanning
interval of each IP address exceeds 24 hours, the value of
λ(d, r, t) will be very similar, making the segmentation of time
meaningless. For example, suppose we have a 2-gram record
< (t1, d1), (t2, d2) >, Algorithm 1 works well when t2− t1 is
small. However, if t2− t1 surpasses 24 hours, the contribution
of this 2-gram record to estimating λ(t) will be limited.

To address the limitation of the online learning strategy,
we propose the batch learning strategy in Algorithm 2. The
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Algorithm 2 Scanning Using Batch Learning Strategy
Input: scanning task set

A = {IP addresses} × {device types}
Output: scanning records
initialization:
λ(d, r, t) = y(d, r, t) = n(d, r, t) = 0;
St(a) = (t0, d0) for each a ∈ A;
—Stage 1: batch learning
while True do

perform sequential scanning and get
< (t1, d1), (t2, d2) >;

if d1 ̸= d2 then
y(d1, ra, t) += |T (λ(d,ra,t))∩(t1,t2]|

t2−t1
;

else
n(d1, ra, t) += |T (λ(d,ra,t))∩(t1,t2]|

|T (λ(d,ra,t))| ;
end
update St(a) = (t2, d2);

end
λ(d, r, t) = y(d,r,t)+1

y(d,r,t)+n(d,r,t)+1 ;
—Stage 2: delayed scanning
while True do

calculate P (a|s) for each address a using (4);
scan address a′ that maximize P (a′|s);

end

basic idea is to conduct a special scan to collect information
(i.e., batch learning), and then use the collected information
to perform scanning (i.e., delayed scanning). We efficiently
and proactively collect needed information before entering a
continuous decision-making scanning process.

In Algorithm 2, the entire scanning process is divided into
two stages. Stage 1 performs batching learning. Specifically,
we set a fixed interval for sequential scans to estimate λ(t)
efficiently. The estimation algorithm is the same as that in
Algorithm 1, except that we calculate λ(t) after Stage 1 (rather
than at the time of every scan). Stage 2 conducts delayed
scanning. We calculate P (a|s) for each IP address and scan
the IP address with the highest value of P (a|s). Note that λ(t)
does not change any longer once Stage 2 starts.

The advantage of batch learning scanning is the capability
of accurately estimating λ(t). Therefore, the final scanning
performance could be improved, yet at the cost of extra
scanning investment at the batching learning stage.

E. IP Pool Estimation Based on IP Address Range Clustering
After several rounds of scanning, the IP address range

clustering algorithm can be used to estimate the IP address
pools, resulting in a compact representation of the intensity
matrix. During the scanning process, we gradually obtain
statistics about IP-device mapping dynamics. Besides helping
us perform scans more efficiently, such statistics allow us to
estimate IP address pools. If some addresses have the same
characteristics, they are likely to belong to the same IP address
pool. The key to this problem is to find some features so that
the features of the IP address ranges in the same pool are as

similar as possible, and the features of the IP address ranges
in different IP address pools differ from each other.

An effective feature can be device distribution. Given a
certain IP address pool, although the IP addresses of different
devices may change internally, the population distribution
of different types of devices will keep stable. Moreover,
for different IP address pools, the device distribution will be
different. Therefore, the device distribution can be exploited
to identify IP address pools. Since it is easy to know which
IP addresses are statically configured by keeping track of the
evolution of IP-device mapping, we filter out all static IP
addresses while estimating IP address pools.

To exploit device distribution for estimating IP address
pools, we employ a clustering-based method. Specifically,
we use 256 IP addresses as the smallest unit of IP address
ranges to perform clustering since many network admin-
istrators also consider the IP address range comprising
256 addresses as the smallest unit. For each block of IP
addresses, we calculate the population distribution of different
types of devices using the scanning records and cluster differ-
ent IP address ranges based on the distances of the population
distribution. We use hierarchical clustering to perform the
clustering. The reason is that hierarchical clustering does not
require pre-defining the number of clusters.

VI. OPTIMIZING SYSTEM SCALABILITY

In Sec. V, we have designed online and batch learning
strategies for the smart scanning system. However, directly
deploying these two strategies makes the system both compute
and storage intensive, thereby making it difficult to scale up
in large-scale scanning of a number of IoTs. The major
reason is that these strategies rely on regularly calculating the
probabilities of mutations for each task (to select the tasks
of top priority) in large-scale scanning (e.g., the entire IPv4
space).

A. Bucket-Based Online Learning Strategy

To make our system scale up, we reduce the computation
and storage overhead by designing a bucket-based online
learning strategy. As Fig. 4 demonstrates, the strategy divides
the rates of performing scanning tasks into discrete levels,
and for each scan rate level, a bucket that contains a queue of
tasks is maintained. A queue of tasks in a bucket is executed
at the corresponding (constant) scan rate level. Initially, all the
tasks are in the same bucket with the same (initial) scan rate
level. Upon the execution of any task, if an IP-device mapping
mutation occurs, the task will be probabilistically moved into a
higher bucket with a larger scan rate level, and if no mutation
occurs, the task will be probabilistically moved into a lower
bucket with a smaller scan rate level.

A group of tasks of top priority would be selected from all
the buckets under the constraints of maximum task execution
cache, the number of tasks in each bucket, and the scan rate
levels. Let us consider three buckets with scan rate levels of
R1 = 1, R2 = 2, and R3 = 3, respectively. Suppose the
numbers of tasks in the three buckets are all equal to 100, and
the maximum task execution cache can only process 10 tasks.
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Fig. 4. A bucket-based online learning strategy for scalable scanning.

In this case, the tasks in the three buckets are selected in a ratio
of 1:2:3 (i.e., 1×100 : 2×100 : 3×100) to add up to 10 tasks.
Suppose the numbers of tasks in the three buckets are 300, 150,
and 100, respectively. Then, the tasks in the three buckets are
selected in a ratio of 1:1:1 (i.e., 1× 300 : 2× 150 : 3× 100).
It can be proved that, if the scan rate level of each task is
accurately estimated, the selected tasks are also the ones with
the largest IP-device mutation probabilities.

The bucket-based online learning strategy allows one to only
calculate the probabilities to update (increase or decrease)
the scan rate levels of those just executed tasks, instead of
regularly calculating the probabilities of IP-device mutations
for all the tasks (e.g., all IPv4 addresses) and selecting the
top-ranked tasks in terms of mutation probabilities. Therefore,
the computational and storage overhead is drastically reduced.

B. Probabilistic Scan Rate Update

Probabilistic scan rate update aims at dynamically adjusting
the scan rate levels of the just executed task based on the
scanning results. The basic idea is to move the task to a
bucket with a higher scan rate level once an IP-device mapping
mutation occurs when executing the task; conversely, if there
is no mutation, the task would be moved to the bucket with a
lower scan rate level. For example, in Fig. 4, the task denoted
by T6 is moved to R102 with a rising probability q conditioned
on an IP-device mutation, and the task denoted by T5 is moved
to R100 with a falling probability p if no mutation occurs.

Recall that all the tasks are initially in the same bucket with
the same scan rate level. Because of the inborn differences of
IP-device dynamics across tasks, the hitting probabilities (i.e.,
the probabilities of finding an IP-device mutation) of executing
different tasks depend on specific tasks and the scan rate level.
For a particular task, say T , we denote its hitting probability
at the scan rate level Ri by rT (Ri).

Once T falls into the tasks of top priority (i.e., those
with top-ranked hitting probabilities) and gets executed, the
probability of moving T to the higher scan rate level equals
rT (Ri)q, and moving T to the lower scan rate level happens
with a probability of (1 − rT (Ri))p. If rT (Ri)q > (1 −

rT (Ri))p, T moves upward, the scan rate Ri increases to
Ri+1, and accordingly rT (Ri) decreases to rT (Ri+1); and
if rT (Ri)q < (1 − rT (Ri))p, T moves downward, the scan
rate Ri decreases to Ri−1, and accordingly rT (Ri) increases
to rT (Ri−1). Therefore, we can adjust the scan rate levels of
different tasks by carefully setting the values of q and p.

Finally, rT (Ri)q and (1 − rT (Ri))p become equal and T
stabilizes at a certain scan rate level. Suppose that task T is
expected to stabilize at the optimal scan rate level R∗. In this
case, we have

rT (R∗)q = (1− rT (R∗))p. (7)

In addition, since we select the tasks with top-ranked hitting
probabilities to execute, the value differences of rT (R∗) across
tasks lead to the moving upward/downward of the executed
tasks. Therefore, the optimal scan rate level R∗ should make
the values of rT (R∗) (i.e., the hitting probabilities) equal
across all the tasks so that our strategy could converge.

Let us denote the above equalized hitting probability across
all the tasks by r̄, which is the average hitting probability of
all the tasks.

Substituting rT (R∗) in (7) by r̄, we have

p =
r̄

(1− r̄)
q. (8)

This equation can be used to determine the values of p and q.
Algorithm 3 summarizes our strategy. It accepts a set of

tasks and a rising probability q as the input. During the
initialization stage, it establishes 256 buckets and puts all the
tasks in the middle bucket. During the scan cycle, we execute
a batch of tasks and get a set of scanning records E using the
method mentioned in Sec. VI-A. Then, we update the average
hitting probability r̄ with the scanning records E, and update
the scan rate of each executed task.

Using the probabilistic scan rate update algorithm, one can
adjust the scan rate following the real mutation intensity. For
example, if scanning an IP pool is suddenly prohibited by a
firewall, the mutation intensity of the tasks in this pool will
become 0. The scanner will gradually reduce the scan rate of
the tasks in this pool until the removal of firewall blocking.

In the NAT case, multiple devices may share the same IP
address. If the device uses port mapping, the scanner can
still discover it. Otherwise, the scanner may not receive any
response. Our method is also applicable when multiple devices
share the same IP address using different ports. Specifically,
in the real-world scan (Section VI-C), one task can be rec-
ognized as a tuple of an IP address and the target port, such
as < IP : 100.100.100.100, port : 21 >. For the same IP
address, different ports will not interfere with each other.

C. Tunable System Overhead

The bucket-based online learning strategy allows one to
tune the two parameters below to control the system overhead
within affordable resources.

1) The Number of Buckets: Fewer buckets mean fewer
scan rate levels and less computation and storage overhead.
To make the limited number of scan rate levels cover a large
range of scan rates, we use the exponential growth method
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Algorithm 3 Probabilistic Scan Rate Update
Input: scanning task set A = {a0, a1, a2, . . . , an} and

tasks,
rising probability q

Output: scanning records
Initialization:
R0−255 = ∅, R127 = A;
St(a) = (t0, d0) for each a;
Scan Cycle:
while True do

perform scanning and get a set of 2-gram scanning
records E;

update r̄;
for each < (t1, d1), (t2, d2) > in E do

if d1 ̸= d2 then
calculate p using (8);
move to a lower bucket with probability p;

else
move to a higher bucket with probability q;

end
update St(a) = (t2, d2);

end
end

to generate the scan rate levels. Specifically, for any bucket
Ri, the scan rate of Ri+1 is equal to a × Ri, where a is a
constant greater than 1 (a = 1.05 in our experiments). With
this method, only hundreds of buckets are needed.

2) Partition Granularity of the Task Set: A partition of the
task set consists of many task subsets. Each task subset nor-
mally consists of scanning targets relating to each other. Each
task subset could be considered a basic task that constitutes the
minimum scheduling unit. Such a basic task may be a specific
one, like scanning one IP address for a particular device, or a
broad one, like scanning a range of IP addresses for many
devices. Broader task partition granularity reduces scheduling
complexity due to the decreased total number of tasks.

Setting partition granularity is task-specific. Below we intro-
duce three typical granularities to partition a task set A into
task subsets.

3) IP-Port Granularity: This is the finest granularity. One
task subset is recognized as a tuple of an IP address and the
target port, such as < IP : 100.100.100.100, port : 21 >,
wherein this subset would be assigned a personalized scan
rate level.

4) IPs-Port Granularity: A range of IP addresses and a
certain port is recognized as a task subset. In the experiments,
we normally consider a class C IP space and a port as a task
subset, e.g., < IPs : 100.100.100.0− 255, port : 21 >.

5) IPs-Port-Device Granularity: On the basis of the
IPs-port granularity, the device type can be added to dif-
ferentiate the scan rate levels of different devices in the
same network identified by the IPs-port. As such, an example
of a task subset is < IPs : 100.100.100.0 − 255, port :
21, device : a hash value denoting Amazon Echo >. In real-
world scanning, the device type may be agnostic. However,

in the context of figuring out scanning policies, we do not
need to identify the type of each device accurately, but only
to distinguish between different devices. For example, we can
extract fields from the scan results like banners, and then use
the hash function to distinguish between different devices.

D. Scheduling Complexity Analysis

The scheduling complexity of the bucket-based online learn-
ing strategy is attributed to two processes, namely, scan rate
update and selection of tasks of top priority.

In the scan rate update process, given a set of 2-gram
scanning records, for each record, one needs to find the task
relating to the record and update the task state to determine
whether an IP-device mutation occurs. Since it only needs
O(1) time complexity to find the task relating to the record,
The overall time complexity of this process is O(n) (n is
the number of records). This process also requires saving the
previous scanning records for state comparison. To this end,
a hash table can be used. Suppose the average hitting rate is
r(0 < r < 1), and the size of the task space is n, and the total
space complexity is O(rn).

The task selection process selects top-n-ranked tasks in
terms of their priorities. To figure out the top-n-ranked tasks,
the strategy traverses all of the buckets, hence taking a time
complexity of O(l), where l represents the number of buckets.
The output time cost is proportional to the number of tasks,
and the time complexity is O(n). Therefore, the total time
complexity in the task selection process is O(n+l). The space
required by this process lies in preserving the data structure
in Fig. 4. The data structure contains l buckets and n tasks.
If we use a linked-list structure to store the tasks, the total
space complexity is O(n + l).

VII. SIMULATION-BASED EVALUATION

We first simulate the scenario where many devices change
their IP addresses in large-scale networks. The simulation
enables us to exactly set various parameters and discover
potential factors influencing the performance. It also allows us
to use random seeds to ensure that different scanning strategies
work in precisely the same simulation environment for a fair
comparison.

A. Experiment Settings

The simulation environment is built based on two com-
ponents. One is the simulation of individual devices. The
other is the simulation of large-scale autonomous networks.
In the simulation of individual devices, we make the IP-device
mapping mutations as a nonhomogeneous Poisson process and
λ(t) is a periodic function with a period of 24 hours for each
device. For each device, we assume that the IP-device mapping
mutations occur instantaneously, and the target IP address that
a device transfers to is randomly selected in the remaining IP
addresses of the IP address pool where the device resides.

Note that an autonomous network may have multiple IP
address pools, and each pool has its own configuration. For
simplicity, we assume that all devices’ IP addresses are dynam-
ically assigned. This assumption does not hinder the practical
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TABLE II
DEFAULT PARAMETER SETTINGS

use of our strategy, as it is easy to know which IP addresses are
statically configured. To be more realistic, for each IP address
pool, the IP address assignment is set continuously, and the
number of IP addresses is a multiple of 256.

We set the number of devices and the device distribution
differently across IP address pools. We randomly generate the
number of each type of device for each IP address pool, and
randomly assign an initial IP address for each device. Under
these settings, we mainly test two typical scenarios below:

Scenario A: All the IP-device mapping mutations are subject
to the homogeneous Poisson process. For each combination of
device type and IP address range, we assign a random λ.

Scenario B: All the IP-device mapping mutations follow
a non-homogeneous Poisson process. Each type of device
changes its address at a certain time of each day.

Scenario A can be considered the worst-case scenario for
our scanning strategies due to the maximized randomness
of IP-device mapping dynamics (hence little information to
exploit), while scenario B is a more general and best-case sce-
nario. Accordingly, the experiments under these two scenarios
can represent the proposed strategies’ lower and upper-bound
performance, respectively.

Table II details our parameter settings, including the total
number of IP addresses, the total number of IP pools, the scan
rate, etc. We define a round of scan as scanning all addresses
once, and the scanning will end after a certain number of
rounds. Note that both λ and t in Table II depend on device
types and IP address ranges.

B. Scanning Performance Using Different Strategies
To evaluate the performance of our online learning scanning

and batch learning scanning, we compare them with naive
strategies, including random scanning and sequential scan-
ning. In addition, we use a “God’s view scanning” strategy,
which can know the specific time when a device changes
its IP address in Scenario B. Therefore, the God’s view
strategy can be used as the upper bound of all the scanning
strategies.

To eliminate the influence of the absolute number of
IP-device mapping mutations and make a fair comparison,
we define the relative performance (RP) score to measure the
performance of each strategy. The RP score is defined as

RP score =
Ni(t)
Nr(t)

, (9)

where Ni(t) and Nr(t) represent the number of IP-device
mapping mutations at time t using scanning strategies i and
“random scanning”, respectively. Particularly, when i is the

Fig. 5. A scanning example using different strategies in Scenario B. The
default parameters in Table II are used.

random scanning, RP score (relative performance of a strategy
over random scanning) is always equal to 1.

Fig. 5 shows an experiment using different strategies in
Scenario B. In this experiment, for a fair comparison, we set
the number of IP-device mapping mutations of each device to
be the same across different strategies. The x-axis represents
the round number of scanning, and one round of scanning
means that the strategy finishes scanning all IP addresses. The
y-axis represents the RP score of each strategy.

In Fig. 5, we see that the curve is not stable at the beginning,
especially within the first ten rounds, because of the significant
variance caused by insufficient samples. As the round number
increases, the curve becomes more stable. At the 100th round
when the scan ends, the RP scores of the strategies “God’s
view scanning”, “batch learning scanning”, “online learning
scanning”, “sequential scanning” and “random scanning” are
1.42, 1.30, 1.24, 1.05, and 1.00, respectively.

Among all scanning strategies other than the God’s view,
the batch learning scanning performs the best. However, such
performance comes at the cost of conducting 100 rounds of
scanning to collect information (i.e, the batch learning stage)
before entering the continuous decision-making-based scan-
ning. The RP score of the online learning scanning increases
as the scanning proceeds. In summary, the experiment shows
that our strategies significantly outperform random scanning
and sequential scanning under the parameters in Table II.

C. Performance Sensitivity

Previous experiments are conducted using the parameter
settings in Table II. To gain insight into the performance
under different parameter settings, we examine the impact of
different parameter settings on scanning strategies.

By varying a certain parameter and keeping the remaining
parameters constant, we find that there are mainly three
parameters that significantly impact the RP score of different
strategies, namely, the scan rate, the proportion of devices to
IP addresses, and the proportion of specially-configured IP
addresses. To understand the influence of these parameters on
the scanning performance, we conduct experiments, and the
results are shown in Fig. 6, Fig. 7, and Fig. 8.

Consider that, even if each experiment is conducted with
the same parameters, the varying λ of different device types
may result in fluctuations in the experiment results. Therefore,
we use the average results of multiple experiments. Each
point in Fig. 6, Fig. 7 and Fig. 8 represents the average
RP score across 100 experiments with the same parameters.
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Fig. 6. Average RP score under different scan rates. Each data point is the
average of 100 experiments under the same parameters.

Fig. 7. Average RP score over varying proportions of devices to addresses.
Each data point is the average of 100 experiments under the same parameters.

In each experiment, the scan is conducted for 100 rounds.
In Scenario A, we compare four scanning strategies and five
strategies in Scenario B. Note that the God’s view strategy
only works in Scenario B.

1) Scan Rate: Fig. 6(a) and Fig. 6(b) represent the per-
formance of scanning strategies with different scan rates in
Scenario A and Scenario B. We find that, as the scan rate
increases, the average RP score gradually decreases. This
indicates that as the scan rate tends to be positive infinity, all
IP-device mapping mutations will be captured by any strategy.

Fig. 8. Average RP score over varying proportions of specially-configured
addresses. Each data point is the average of 100 experiments under the same
parameters.

The temporal fluctuation of the average RP score in
Scenario B is smaller than that in Scenario A. Meanwhile,
the average RP score improvement that our proposed scanning
strategies make over random scanning in Scenario B is higher
than that in Scenario A. We believe the reason is that the
IP-device mapping mutations in Scenario A are more uncertain
than that in Scenario B, thereby restricting the capability
of our strategies. Particularly, when the scan rate is small,
the performance improvement over sequential scanning is not
significant. However, when the scan rate grows large, the
performance improvement becomes significant.

2) The Proportion of Devices to IP Addresses: Fig. 7(a) and
Fig. 7(b) depict the performance using different proportions of
devices to IP addresses in Scenario A and Scenario B. In these
two figures, the temporal fluctuation of the average RP score
in Scenario A is still larger than that in Scenario B.

As the proportion of devices to IP addresses increases,
the absolute number of IP address mutations captured by
all strategies grows larger, but the growth rates of different
strategies differ from each other. Specifically, the growth rates
of our strategies are larger than those of random and sequential
scanning. This implies that, as the number of IoT devices
on the Internet grows, our strategies would become far more
advantageous than random and sequential scanning.

3) The Proportion of Specially-Configured IP Addresses:
IP address relocation dynamics, attributed to IP address
relocation policies, can impact the performance of scanning
strategies. Normally, a pool of neighboring IP addresses
(e.g., those belonging to a class C network) follows the
same IP address relocation policy since they tend to be
in the same administrative domain. However, some IP
addresses in a pool of neighboring IP addresses may not
follow the same IP address relocation policy, and we term
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them “specially-configured” IP addresses, while the rest are
“normally-configured” IP addresses.

Specially-configured IP addresses are difficult to rec-
ognize from the scanner’s perspective. Scanning perfor-
mance is expected to deteriorate as the proportion of
specially-configured IP addresses increases. To quantitatively
measure the impact of IP address relocation dynamics on
scanning strategies, we conducted experiments under different
IP address relocation policies, i.e., different proportions of
specially-configured IP addresses. In our experimental set-
ting, we assume that each specially-configured IP address
belongs to a newly initialized IP pool, and these addresses
are independent.

Fig. 8(a) and Fig. 8(b) depict the performance results
of employing different proportions of specially-configured
IP addresses in Scenario A and Scenario B, respectively.
In Scenario A, no trending impact of the proportion of
specially-configured IP addresses on the average RP score
can be observed for each strategy. This is probably due to
the maximized randomness of IP-device mapping dynamics.
In contrast, in Scenario B, a discernible degradation in perfor-
mance can be observed. That is, with every 1% increase in the
proportion of specially-configured IP addresses, the average
RP score decreased by approximately 0.6%. This experimen-
tal evidence demonstrates that using specially-configured IP
addresses leads to a decline in RP scores for the scanning
strategies. However, this decrease is insignificant when the
proportion of specially-configured IP addresses remains small.
Additionally, the “God’s view scanning” strategy possesses
precise knowledge regarding the exact time when a device
changes its IP address, hence achieving optimal performance
across all scanning strategies.

4) IP Pool Estimation: We use hierarchical clustering to
demonstrate the effect of IP address pool estimation. The
advantage of hierarchical clustering is that we can observe the
whole clustering process and choose a more realistic number
of clusters. We use our proposed scanning strategies to collect
scanning records in the clustering experiments. We find that
the clustering results are not sensitive to the distance function,
and hence we use the single-linkage clustering [37].

Fig. 9(a) shows the clustering result using the parameter
settings in Table II. We initialize 8,192 IP addresses from
10 IP pools with 20 different types of devices. The smallest
unit of clustering is an IP address range consisting of 256 IP
addresses, i.e., a class C network, and the number of IP
address ranges to cluster is 32. If correctly clustered, ten
different clusters will be obtained. Fig. 9(a) is plotted after 100
rounds of scanning. The distance threshold interval for correct
clustering is [0.041,0.129] in Fig. 9(a), and [0.079,0.129] in
Fig. 9(b). If a threshold of 0.1 is selected, the IP address
ranges would be clustered into ten pools, corresponding to
the ten different IP pools that we initialized. After clustering,
we derive a compact representation of the IP pool-device
mutation intensity matrix. The size of the compact matrix is
69.7% smaller than that of the original matrix. Consequently,
each element of the compact matrix has on average 3.2 times
the number of IP addresses of the original matrix, resulting in
more samples for accurate intensity estimation.

Fig. 9. IP pool estimation using hierarchical clustering. When a threshold of
0.1 is selected, the IP address ranges (i.e., class C networks) are accurately
clustered into 10 IP pools in both settings (following Table II unless specified).

Fig. 10. An example of the scanning results using MASSCAN and ZGrab2.
The text in the green box represents the scan result of a tuple of an IP address
and a port.

VIII. REAL-WORLD EVALUATION

The simulation-based evaluation has verified the feasibility
of our system, but the IP-device mutation dynamics in reality
may be different from those in the simulation. To evaluate
the performance of our system in consideration of real-
world IP-device mutation dynamics, we perform real-world
evaluation.

A. Experiment Settings
The scanning system is built based on two famous scanning

tools: MASSCAN [38] and ZGrab2 [3]. We use MASSCAN
to do the port scan and ZGrab2 to do the application-layer
scan. If a port of a host is found open by MASSCAN, it will
be further scanned for identifying applications using ZGrab2.

Figure 10 shows an example of the scanning results using
MASSCAN and ZGrab2. The port scan records list all IP
addresses and their open ports, as shown in Figure 10(a).
The application-layer scan records include time, IP address,
protocol, status, banner, and protocol-specific fields, such as
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“will” and “do” options of the Telnet protocol. Figure 10(b)
shows the scan records using the Telnet protocol.

Note that our scanning experiment only uses port scanning
and banner scanning of MASSCAN and ZGrab2, and does not
include any form of vulnerability scanning or exploitation. Our
experiment setting is legal in China. Cyber search engines sim-
ilar to our setting, such as FOFA, HUNTER, and ZoomeEye,
have been built in China in recent years. In other countries,
cyber search engines, such as Shodan [1] and Censys [2], have
also been developed. Although IP scanning appears legal in
many countries, several ISPs prohibit scans, like US-based
cable company Comcast [39]. In our experiment, only one
scanner is used to scan 3,261,184 IP addresses with a very
limited scanning rate (e.g., 300 packets per second). In other
words, each IP address received less than ten packets per day
on average. (This setting can scan up to around 40 times
as many IP-device mapping mutations as random/sequential
scanning while resulting in negligible overhead for IoT
devices.)

People may have privacy concerns about network scanning.
For example, one may be concerned that if an attacker scans
a device frequently, the attacker may be able to infer the
online/offline dynamics of the device and in turn the living
habits of the device owner by observing IP-device mutations.
However, our method will not cause privacy exposure for three
reasons. First, the IP-device mutation does not necessarily
mean that the device goes online/offline, and it may also
be caused by the device changing its IP address. Therefore,
attackers cannot determine whether a home security service is
temporarily offline or has shifted to a new IP address, making
physically infiltrating homes lack underlying support. Second,
exposing fine-grained privacy, such as live habits, requires a
high scanning rate, but our scanning rate is low. Last but not
least, our method does not involve any mining of user privacy
and will not increase existing cyber search engines’ risk of
privacy exposure. Also, we declare that the historical scanning
data will not be saved in our experiment, nor be used to explore
user privacy.

The scanning system scanned 3,261,184 IP addresses in a
major city in China in March 2022. The ports include 21,
22, and 23; the application-layer protocols are Telnet, SSH,
and FTP. To uniquely identify the device type that hosts the
application (e.g., Telnet), we calculate the hash function of
the fingerprint of the scanning results (e.g., banner, options,
versions) to represent the device type behind the port (e.g., 21).

B. Performance Using Bucket-Based Online
Learning Strategy

Because of its high scalability, the bucket-based online
learning strategy is used in real-world scanning experiments,
in comparison to random scanning and sequential scan-
ning strategies. In the bucket-based online learning strategy,
we leverage IP-port, IPs-port, IPs-port-device granularities to
partition the task set into 3261184 × 3, 3261184 × 3/256,
3261184 × 3 × d/256 tasks, respectively, and accordingly
instantiates three bucket-based strategies (bucket-based-I/
bucket-based-II/bucket-based-III scanning). Here, 3,261,184
and 3 are the numbers of IPs and ports. 256 is the number

Fig. 11. Real world scanning performance using different strategies.

of IPs in a class C network, and d is the number of device
types (we define its maximum as 256).

Fig. 11 shows the RP score of different strategies over
60 scanning rounds. The RP score of sequential scanning is
between 1.1 and 1.4, whereas our strategy can achieve an
RP score of around 45. This demonstrates that our system
can scan up to around 40 times as many IP-device mapping
mutations as random/sequential scanning. Also, at the begin-
ning of the scan, the RP score of bucket-based-II scanning
shows a significant rising trend and converges rapidly within
five rounds. When the number of scanning rounds reaches
30, bucket-based-III scanning gradually outperforms bucket-
based-II scanning. When the number of scanning rounds
reaches around 40, bucket-based-I scanning also surpasses
bucket-based-II scanning. When the number of scanning
rounds reaches around 50, the growth rates of RP scores of
all strategies slow down.

Among the three bucket-based strategies instantiated based
on task granularity, bucket-based-I scanning converges the
slowest, since it has the finest task granularity. However, at the
cost of slow convergence, it can finally achieve a higher RP
score than bucket-based-II scanning. When we look closer
at bucket-based-II scanning and bucket-based-III scanning,
the latter constantly outperforms the former due to its more
fine-grained partition of tasks.

The real-world scanning results in several times larger
RP scores than the simulation-based scanning. This reason
is that in real-world scanning IP-device mutation probabil-
ities across different tasks are diversely distributed, while
in simulation-based scanning the probabilities are uniformly
distributed. Our strategy is more beneficial when IP-device
mutation probabilities across different tasks are more diversely
distributed. Fig 12 shows the number of tasks in each bucket
under the bucket-based-I strategy after 60 rounds of scanning.
We observe that most tasks are concentrated around the 125th
scan rate level, which slightly decreases from the initial 128th
scan rate level due to the less frequent mutation. In addition,
there is a small peak at the 255th scan rate level, indicating
tasks in this bucket have quick IP-device mutations.

IX. DISCUSSION

The key to smartly scanning IoT devices is to keep the
system continuously learning historical scanning results. Our
work provides a systematic solution. Despite its promising
performance, several problems need to be discussed to make
the solution appropriate and better used.
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Fig. 12. The number of tasks in each bucket (i.e., scan rate level) under the
bucket-based-I scanning strategy after 60 rounds of scanning.

First, different strategies may be used in combination with
each other to achieve better performance than any single strat-
egy. For instance, in Fig. 11, we can use the bucket-based-II
strategy first and then switch to the bucket-based-III strategy,
to accomplish both fast convergence and high RP scores.
The flexible and seamless transition between strategies can be
realized via parameter switching, that is, using the parameters
of one strategy to initialize the parameters of another.

Second, besides using the number of mutations as a per-
formance metric to optimize, other metrics like the average
scanning record valid time could also be used. The scanning
record valid time is the actual lifetime that the record is
true in reality. Although the average scanning record valid
time is significantly related to the number of mutations, it is
more focused on the scanning timeliness. However, obtaining
the record valid time is extremely challenging given the
limited scanning rate for a certain task because it relies on the
detailed timing information of IP-device mapping mutations.
If IP-device mutations follow a homogeneous Poisson process,
we can derive the optimal scanning rate to maximize the
average scanning record valid time, as shown in Appendix.
When IP-device mutations follow a non-homogeneous Poisson
process, the integral form of the average record valid time
hinders analytically deriving the optimal scanning rate, which
we leave for future study.

Last, our bucket-based online learning strategy boosts sys-
tem scalability by discretizing scan rates that are originally
continuous variables into discrete scan rate levels. This strat-
egy actually considers the scan rate of a task in a certain period
of time constant, with an underlying assumption that the arrival
rate of IP-device mutations is constant during that period.
Intuitively, this assumption is arguably reasonable because in
practice the network environment of most devices is stable in
a short period of time.

Cyber search engines are built upon IP scanning. The legal
ramifications of IP scanning have been controversial. This
issue also draws many debates. However, many laws, such
as United States federal laws, do not explicitly criminalize
IP scanning [40]. In addition, IP scanning without actual
intrusion is legal in many countries. Sometimes, unauthorized
IP scanning is against the provider’s acceptable use policy. If a
scan is noticed, a more frequent occurrence is that the target
network will send a complaint to the network service provider
initiating the scan.

Note that our study is not an improvement of the ARP proto-
col. The ARP protocol works on the local area network, while
the cyber search engines perform scanning by sending probes
(e.g., IoT-specific HTTP requests) on the wide area network to
determine IoT device types according to the probes’ responses.
Our approach focuses on the scan scheduling algorithms to
help cyber search engines in the IPv4 space.

We use class B and class C IP space in the paper. Most local
networks use CIDR today. However, it is tough for a scanner to
know the configuration of all IP pools worldwide. Therefore,
we assume that a segment of consecutive IP addresses (e.g.,
class C IP space) shares a similar intensity matrix since the
class C network generally does not further divide into smaller
IP pools.

In the future, there is no doubt that IPv6 will replace
IPv4. However, at present, many devices on the Internet still
use IPv4. According to Wilhelm’s research, IPv6 adoption at
the end user side is between 30% and 40% globally, with
significant differences between regions and countries [41].

X. CONCLUSION

Scanning IoT devices in a principled way is an important
problem. We made the first step toward investigating this
problem based on a real-world global IoT scanning platform.
Our large-scale measurement study revealed that both the
device type and IP address pools are related to the IP-device
mapping dynamics. Inspired by this observation, we designed
a system capable of smartly scheduling scans for IoT devices.
The proposed system can achieve a reinforcement learning-
based continuous scanning decision making process using both
online learning and batch learning strategies.

Through extensive experiments, we demonstrated that our
system could generally capture significantly more IP-device
mapping mutations than random and sequential scanning, and
approach the God’s view strategy. We revealed the two key
parameters affecting the performance of different strategies,
i.e., the scan rate and the proportion of devices to IP addresses.
We found that, as the number of IoT devices grows, our
system would become far more advantageous than random
and sequential scanning. The real-world experiments show that
our system can scan up to around 40 times as many IP-device
mapping mutations as random/sequential scanning.

APPENDIX

A. Record Valid Time Under Homogeneous Poisson Process

We assume that for one task, the generation of mutations is
completely consistent with a homogeneous Poisson process.
Suppose that the first mutation time is S0. Then, probability
density of S0 is

fS0(t) = λe−λt, (10)

where t represents time.
Suppose we execute one task at a fixed frequency f . Then,

the same process is repeated at period T , where T = 1/f .
And we only need to focus on the changes in one cycle. In one
cycle, the valid time D of one record can be expressed as

D =
{

S0 if S0 ≤ T,
T if S0 > T.

(11)
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The cumulative distribution function of D is

F (t) =

 0 t < 0,
1− e−λt if 0 ≤ t < T,
1 T ≤ t.

(12)

In a cycle, the proportion of the average scanning record valid
time is

E(D)
T

=
1
T

[
Te−λT +

∫ T

0

tλe−λtdt

]
. (13)

The simplified formula is

E(D)
T

=
1

λT
− 1

λT
e−λT (14)

For the entire scanning system, it aims to maximize the
valid duration expectation summation of each task subset, and
the sum of the scan rates is a constant. The formula of this
optimization problem is

max
∑

i∈Tasks

fiE(Di) (15)

s.t. S =
∑

i∈Tasks

fi, (16)

fi ≥ 0, ∀i ∈ Tasks

in which i refers to different tasks. fi is the scan rate of the
ith task, and S represents the total scanning resources.

It can be proved that if the objective function (15) is to reach
its maximum value, for any two different tasks, the derivatives
of scan rates must be equal, that is

df1E(D1)
df1

=
df2E(D2)

df2
. (17)

The simplified formula is

1
λ1

+
(

1
f1

+
1

λ1f2
1

)
e−

λ1
f1 =

1
λ2

+
(

1
f2

+
1

λ2f2
2

)
e−

λ2
f2

(18)

Formula (18) is difficult to find an analytical solution.
Fortunately, one can still calculate the numerical solution and
apply it to the real-world scanning.
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