1904

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Website Fingerprinting on Encrypted Proxies:
A Flow-Context-Aware Approach
and Countermeasures

Xiaobo Ma™“, Member, IEEE, Jian Qu

, Mawei Shi, Bingyu An, Jianfeng Li™,

Xiapu Luo™, Senior Member, IEEE, Junjie Zhang, Zhenhua Li*“, Member, IEEE, Senior Member, ACM,
and Xiaohong Guan™, Life Fellow, IEEE

Abstract— Website fingerprinting (WFP) could infer which
websites a user is accessing via an encrypted proxy by passively
inspecting the traffic characteristics of accessing different web-
sites between the user and the proxy. Designing WFP attacks is
crucial for understanding potential vulnerabilities of encrypted
proxies, which guides the design of defensive measures against
WFP. In this paper, we design a novel WFP attack against
(popular) encrypted proxies that relay connections between the
user and the proxy individually (e.g., Shadowsocks, V2Ray), and
accordingly implement lightweight countermeasures to effectively
defend against the attack. The attack features flow-context-
aware and is both accurate and immediately deployable, because
it fully considers the obstacle (dubbed training-testing asym-
metry) that fundamentally limits the practicability of WFP
and addresses the obstacle with built-in spatial-temporal flow
correlation mechanism. We implement the countermeasure as
middleboxes installed on both the client and server sides of
encrypted proxies, without altering any existing infrastructures
for compatibility. The middleboxes can obfuscate a website’s
flow regularities across different visits. Large-scale experiments
in real-world scenarios demonstrate that the WFP attack can
generally achieve a detection rate above 98.8% with a false
positive rate below 0.2%. The countermeasure forces the attack’s
false positive rate to be above 0.2 and true positive rate to
be below 0.9 with just five persistent TCP connections while
introducing very limited bandwidth overhead (e.g., 0.49%) and
almost-zero additional network latency.

Manuscript received 1 January 2023; revised 8 July 2023 and 26 September
2023; accepted 27 October 2023; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor J. S. Sun. Date of publication 5 December 2023;
date of current version 18 June 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant 61972313, Grant
62272381, Grant 62202405, Grant U23A20332, and Grant T2341003; in part
by the Natural Science Basic Research Program of Shaanxi Province under
Grant 2023-JC-JQ-50; in part by the Fundamental Research Funds for the
Central Universities; in part by the Post-Doctoral Science Foundation under
Grant 2019M663725, Grant 2021T140543, and Grant 2023M732791; and in
part by the Hong Kong Research Grants Council (RGC) Project of China
under Grant PolyU15223918. (Corresponding author: Jianfeng Li.)

Xiaobo Ma, Jian Qu, Mawei Shi, Bingyu An, Jianfeng Li, and Xiaohong
Guan are with the MOE Key Laboratory for Intelligent Networks and
Network Security and the Faculty of Electronic and Information Engineering,
Xi’an Jiaotong University, Xi’an 710049, China (e-mail: xma.cs @xjtu.edu.cn;
qj904154277 @stu.xjtu.edu.cn; seven_seeagain@qq.com; 1281582830@qq.
com; jfli.xjtu@xjtu.edu.cn; xhguan@xjtu.edu.cn).

Xiapu Luo is with the Department of Computing, The Hong Kong Poly-
technic University, Hong Kong (e-mail: csxluo@comp.polyu.edu.hk).

Junjie Zhang is with the Department of Computer Science and
Engineering, Wright State University, Dayton, OH 45435 USA (e-mail:
junjie.zhang @wright.edu).

Zhenhua Li is with the School of Software and BNRist, Tsinghua University,
Beijing 100084, China (e-mail: lizhenhual983 @gmail.com).

Digital Object Identifier 10.1109/TNET.2023.3337270

Index Terms— Website traffic

encrypted proxy.

fingerprinting, analysis,

I. INTRODUCTION

EBSITE fingerprinting (WFP) has been extensively

studied to infer which website or webpage a user
is accessing via an anonymity tool (e.g., Tor) by passively
inspecting statistical traffic characteristics (e.g., packet timing,
and directions [57]) between the user and the anonymity tool
[12], [37], [38], [52]. The key to WFP is designing a classifier
capable of distinguishing traffic characteristics of accessing
different websites. A typical training paradigm is to repeatedly
access a website (a specific URL) in a controlled (clean)
network and collect a number of (pure) traffic samples, where
each access results in one traffic sample. Collecting traffic
samples for a set of websites of interests, along with other
websites with sufficient diversity, enables the attacker to train
a classifier capable of detecting whether a user is accessing a
website among those of interests.

When deployed in real-life networks, a well-trained clas-
sifier may face a significant obstacle that prevents it from
working as expected. Specifically, although pure traffic sam-
ples can be collected in a controlled (clean) testbed for
training, the classifier may fail to extract such pure traf-
fic samples as its input from raw complicated traffic for
testing [13], [22], [23], [56], [58]. We name this obstacle
training-testing asymmetry. This obstacle fundamentally limits
the practicability of WFP because the classifier, although well-
trained, can hardly be fed with pure samples just as those for
training.

Tackling the obstacle of training-testing asymmetry is a
fundamental and widespread issue concerning the practicabil-
ity of WFP. Nevertheless, this issue has not been adequately
addressed [59]. Wang and Goldberg proposed a splitting-based
approach to divide realistic packet sequences into laboratory
packet sequences, each of which corresponds to one access
to a website [54]. Their approach can address the obstacle
in WFP against Tor by design, but is not suited for address-
ing the obstacle in WFP against encrypted proxies such as
Shadowsocks and V2Ray. The reason is that these encrypted
proxies have completely different relaying mechanisms with
Tor. Specifically, encrypted proxies relay connections between
the user and the proxy individually, while Tor multiplexes all
the connections into the same encrypted tunnel between the
user and the proxy (i.e., Tor guard node). Consequently, new

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0934-5035
https://orcid.org/0000-0003-1713-0859
https://orcid.org/0000-0002-3453-0195
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0002-8826-0362

MA et al.: WFP ON ENCRYPTED PROXIES: A FLOW-CONTEXT-AWARE APPROACH AND COUNTERMEASURES

’6} produce ﬂow 1

\Y
) html
¢ produce
oques —_— 2
http:/fwww.example_I.com £__Tequest EI Slow

Website 1 o o
\— Similar

N . Wy flow3
= K: }" Identical
y - Prodizz> flowd
http://www.example_2.com
‘e,
i Ly ! duce
Website 2 Z @ LU s flow s

xml

Fig. 1. An example illustrating accessing two different websites may induce
statistically similar or identical flows.

WEFP approaches to addressing the obstacle of training-testing
asymmetry are desired for encrypted proxies.

In this paper, we focus on application-level tunneling prox-
ies (e.g., Shadowsocks, V2Ray) instead of the circuit-level
transparent proxy (e.g., Tor). Note that encrypted proxies
like Shadowsocks and V2Ray are pretty popular due to their
lightweight positioning with high transmission rate (no extra
bytes needed in all packets for communication tunnels). At the
time of writing, Shadowsocks and V2Ray have at least a com-
bined total of 6 million downloads just at Google Play [1], [6].
Due to their wide popularity, solving the obstacle is essential
to the practicability of WFP. Although people may expect that
encrypted proxies would not be as resistant to WFP as Tor,
our experiments show that, unless addressing the obstacle,
WFP against these encrypted proxies results in surprisingly
poor performance (see PAR, or Per-access-based realistic WFP,
in Table I).

The obstacle renders a dilemma for encrypted proxies under
investigation. On the one hand, per-access traffic analysis is
desirable, but it is challenging to determine which collected
flows result from the user’s one access to a website, especially
when the overlapping page load sequences occur [27], or the
IP address resides behind NAT and is on behalf of many
individual users. On the other hand, per-flow traffic analysis is
immediately deployable. However, individual flows normally
lack uniqueness representing different websites, since access-
ing different websites (involving the same or similar resources)
may generate some identical or similar flows. Fig. 1 shows an
example, where flow 3 of website 1 is identical to flow 4 of
website 2 due to accessing the same gif resource, and flow 1 of
website 1 is similar to flow 5 of website 2 because of statistical
traffic similarity between HTML and XML resources.

To systematically address these challenges, we propose a
flow-context-aware WFP system against encrypted proxies.
Our system leverages per-flow traffic analysis and then takes
into account the spatial-temporal correlation of multiple neigh-
boring flows to determine whether a website is accessed.
Per-flow traffic analysis makes our system immediately
deployable in real-life networks, while the flow-context-aware
property allows us to achieve accurate WFP since it fully
considers both flow statistical similarity between websites and
flow sequential patterns of accessing a website. To imple-
ment our system, we employ a two-stage solution. Stage 1
performs spatial flow correlation. Specifically, a fingerprint
is generated for each flow, encoding not only flow statisti-
cal features but also the similarity between flows across all
websites from different angles (i.e., feature subspaces). Such

1905

fingerprints quantify the extent to which the presence of a
flow is indicative of the access to a website (i.e., spatial
flow correlation). Stage 2 further conducts temporal flow
correlation by considering common flow subsequences that
frequently appear when accessing a certain website multiple
times, hence revealing flow sequential patterns of accessing a
website.

In addition to designing a new attack system, we also design
countermeasures to defend against the attack. On the one hand,
we apply existing common defenses that hide packets timing
and size characteristics, such as Decoy Pages [38], Traffic
Morphing [55], BUFLO [19], and Tamaraw [11], to encrypted
proxies so as to evaluate the performance of our attack. On the
other hand, since we focus on encrypted proxies that relay
connections between the user and the proxy individually,
existing defenses are not suitable for our proposed attack.
Therefore, we design a new defense method. The proposed
defense method aims to randomly split each original flow so
as to confuse the flow classification of Stage 1, and in turn
thwart the flow correlation in Stage 2.

To our best knowledge, we are the first to systematically
investigate the training-testing asymmetry challenge of WFP
gainst encrypted proxies, and design the corresponding coun-
termeasures. We make the following contributions:

e We propose a flow-context-aware WFP system against
encrypted proxies. The system introduces a flow bi-
labeling mechanism in favor of incorporating both
flow-level and website-level context, and generates a
fingerprint for each flow to establish flow-website spatial
correlation. Then, it further explores flow-website tempo-
ral correlation to eventually build the flow-context-aware
classifier for WFP. It is aware of flow similarity between
websites and flow sequential patterns, thereby achieving
high accuracy and addressing the training-testing asym-
metry challenge.

o Large-scale experiments in real-world scenarios demon-
strate that our system can generally achieve a detection
rate above 98.8% with a false positive rate below 0.2%.
The results are even better than those derived by ideally
training/testing pure samples, indicating that our system
can effectively handle the practical challenge where a user
(or many users behind NAT) accesses different websites
within overlapping time windows.

o To thwart the flow-context-aware attack system, we pro-
pose a lightweight defense method based on random
flow rerouting. The proposed method introduces flow
randomness to fundamentally eliminate the possibility
of identifying individual flows that have stable features
across multiple visits to a website. The countermeasure
forces the attack’s false positive rate to be above 0.2
and true positive rate to be below 0.9 with just five
persistent TCP connections while introducing very lim-
ited (e.g., 0.49%) bandwidth overhead and almost-zero
additional network latency.

Paper Organization. Sec. II presents the problem.
Secs. III-A, TI-B, and III-C detail the attack system.
Sec. IV performs attack evaluation. Sec. V designs the
defense, and Sec. VI performs defense evaluation. We finally
discuss in Sec. VII, survey the literature in Sec. VIII, and
conclude in Sec. IX.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

1906

8l — (i

Proxy Server

; WFP s [Website A8
Attacker

Fig. 2. A typical WFP scenario.

Sniff Internet

II. PROBLEM DESCRIPTION

WEFP assumes the presence of a passive on-path attacker
who can deduce whether a user, referred to as a victim,
is accessing a particular website or webpage through an
encrypted proxy. This can be achieved by compromising either
the victim or the router/switch between them, allowing the
attacker to eavesdrop on the traffic exchanged between the
victim and the proxy server. Figure 2 illustrates a typical
scenario where the victim browses the Internet via the proxy
server, while the attacker aims to determine the websites
visited by the victim. To accomplish this, the attacker needs to
train a classifier by inspecting statistical traffic characteristics
(e.g., packet timing, sizes, and directions) of the encrypted
channel between the user and the proxy. A typical training
paradigm is to repeatedly access a website (a specific URL)
in a controlled (clean) network and collect a number of (pure)
traffic samples, where each access results in one sample.
However, when a well-trained classifier is put into practice
for analyzing real-life traffic between a user and an encrypted
proxy, extracting a pure sample associated with one access to a
website would be difficult (i.e., the obstacle of training-testing
asymmetry) [54].

One reason for the obstacle is that, in real-life networks,
a user (say X) may access more than one website via an
encrypted proxy (say Y) within overlapping time windows.
To make things exacerbated, when X is an IP address for
Network Address Translation (NAT) behind which many
individual users reside, the traffic between X and Y will
become far more complicated. Consequently, collecting the
traffic between X and Y during a period of time will result
in a traffic sample that is actually a mixture of traffic due to
accessing multiple websites. In this case, the collected traffic
sample may have never been learned by the classifier.

We aim to address the obstacle of training-testing asym-
metry so that WFP becomes practical (i.e., immediately
deployable and accurate). As mentioned earlier, we are
interested in the popular lightweight encrypted proxies that
relay connections between a user and a proxy individually.
(e.g., Shadowsocks, V2Ray, and Socks-based proxies). A user
communicating with such a proxy, upon requesting new
resources, randomly generates a port to initiate a new flow with
the proxy offering relay services at a fixed port. Apparently,
a flow between the user and the proxy is uniquely identified
by the IPs and ports of both the user and proxy sides.

Fig. 3 demonstrates the asymmetry problem of WFP for
encrypted proxies of our interests. During the training period,
the attacker collects traffic samples of Website A and Website
B by driving the user (i.e., a computer under his control) to
access the websites one by one. Moreover, the attacker must
disallow any other network activities when each website is

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Attacker 00

(Classifier) _/
ﬂaft‘i‘c\
Training = Website A Website B
— e flow 1> e flow 2
= e flow 4y e flOw 3o
AR e flow Gy e flow S
User (Victim) Encrypted Proxy
~ >
time
- Attacker 00
(Classifier) /7

traffic
Website A|Website B
flow 1+

- flow

! B
= e

. e flow S
User (Victim) e flOW G >
-

Testing —

Encrypted Proxy

time

Fig. 3. The obstacle of training-testing asymmetry in WFP.

accessed, hence ensuring the purity of the collected traffic
sample. Consequently, flows 1, 4, and 6 constitute a traffic
sample of Website A, while flows 2, 3, and 5 constitute a
sample of Website B. Suppose the attacker uses statistical
features, and then trains a classifier that works pretty well
in distinguishing between the collected samples.

However, when it comes to testing in real-life networks, the
attacker will suffer defeat. The reason is that flows of Website
A and Website B may overlap with one another [27], while
all the flows share exactly the same two communicating IP
addresses and server-side ports. Therefore, the attacker can
hardly extract a pure traffic sample only consisting of flows
induced by one access to a website, not to mention achieving
accurate WFP. To make things exacerbated, flows of different
websites may be statistically similar because they may result
from requesting identical or similar web resources.

Focusing on the above problem, we endeavor to answer the
following research questions.

RQ1. Consider that accessing different websites may gen-
erate the same or similar flows. Can we quantify the extent
to which an observed flow is indicative of accessing different
websites? (Sec. III-B)

RQ2. If the answer to RQ1 is positive, how can we further
correlate different flows so as to determine whether a user
is accessing a certain website, even when a large number of
flows accessing different websites are observed simultaneously
(e.g., in the presence of NAT) or within overlapping time
windows? (Sec. III-C)

RQ3. If the above research questions are solved, can exist-
ing common WFP defenses be directly applied to thwart the
proposed attack? (Sec. IV-F) If the answer is negative, can we
further propose a new countermeasure? (Sec. V)

III. FLOW-CONTEXT-AWARE ATTACK SYSTEM DESIGN
A. System Overview

We design a flow-context-aware WFP system following two
design objectives, namely, deployable and accurate. For the
first objective, we base our system on per-flow (rather than
per-access) traffic analysis. That is, at the raw data processing
layer, our system is fed with original individual flows, without
the need to be directly fed with (hard-to-extract) a pure traffic
sample (consisting of multiple flows) resulting from one access
to a website. To achieve the second objective, our system
performs spatial-temporal flow correlation. From the spatial
perspective, our system considers not only the stability of the

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

MA et al.: WFP ON ENCRYPTED PROXIES: A FLOW-CONTEXT-AWARE APPROACH AND COUNTERMEASURES

—— Website Trace Collection—

Stage 1: Website-oriented flow characterization
~Flow Extraction & Bi-labeling—

1907

— Statistical Flow Feature Vectorization —

) round 1: ._._A?I
Website 1 eee soe
round 2: round 1: -O-A-h>
oo coe . flows
|::> Website 2 round 2: F-O-2 |::> — . Ny o
round 1: 3 coe Overall Packet Packet Packet ea
Website 2 packets P P tatistics| | Ordering Timing Size and Tail
round 2: .O Colors labeling websites where
oo (XX flows originate \L \L \L \L \L
cee oo OOA Shap\?/sitﬁt:]eg:: ﬂgg;’geﬂ“ws Flow Feature Vector
o o o ___ Flow Website-Indication ___
r— Flow Fingerprint Generation — Index (W2I) Calculation
W2I Results

J/leq/intlex J/ J,

[8, 6, 2]

A leaf index uniquely identifies a bi-label

/P

Flow Fingerprint

Flows (nodes) from all websites and a 2D plot]
representing their fis

w2 =

K-nearest neighbor
borderline

Flow 1 — W2I;;
Website I{Flnw 2 = w2,
Flow 3 —> W2I;
e
Flow 1 — w2,
Website Z{Flow 2 = w2l

Flow 3 — W2I;
cee

Flow with bi-label:
(Webpage i, Flow j)

rprint-based distances

Fig. 4. Architecture of Stage 1 of the proposed system.

flows across multiple accesses to the same website, but also
the similarity between the flows of different websites. From
the temporal perspective, our system explores common flow
subsequences that frequently appear when accessing a website.

Our system works in two stages below.

Stage 1: website-oriented flow characterization
(Sec. III-B). This stage processes individual flows and
characterizes their statistical similarities in light of originating
websites. For each website, representative flows and their
website-indication indices (a metric quantifying the extent
to which the presence of a flow is indicative of the access
to a website) are calculated. A representative flow of a
website, i.e., a flow that frequently appears across multiple
accesses to the website, is expressed as a vector of flow
fingerprint that encodes not only flow statistical features but
also the similarity between the flows of various websites from
different angles (i.e., feature subspaces).

Stage 2: spatial-temporal flow correlation for WFP
(Sec. III-C). Incorporating the (spatial) output of stage 1,
stage 2 further explores femporal flow correlation by min-
ing common flow subsequences that frequently appear when
accessing a website, and determines whether a user is access-
ing a website.

B. Website-oriented Flow Characterization

Since accessing different websites may generate identical
or similar flows, and repeatedly accessing a certain website
may induce varying sets of flows, an immediate task is to
characterize individual flows’ statistical similarities in light of
originating websites. Therefore, we perform website-oriented
flow characterization to figure out representative flows for each
website, and quantify the extent to which the presence of a
representative flow is indicative of the access to a website.
As demonstrated in Fig. 4, we design stage 1 of our system
to realize website-oriented flow characterization.

1) Flow Extraction & Bi-Labeling: ‘“Website Trace Col-
lection” automatically drives a user to repeatedly access a
website for a number of rounds in a clean network and capture
the original traffic in each round. Then, we perform flow
extraction and bi-labeling. Specifically, for each access to a

website, we extract all the flows and assign each extracted flow
with two labels. One is the website where the flow originates,
as can be straightforwardly obtained. The other is a flow
identity derived by aligning flows across multiple accesses to
the website. Such aligning can be performed through clustering
flows across multiple accesses to the website. Intuitively, flows
resulting from different accesses, if clustered into the same
category, have the same flow identity. We define (i,j) as
a bi-label of a flow, meaning that this flow originates from
website ¢ with a flow identity of j.

To perform flow alignment, we employ Density-Based
Spatial Clustering of Applications with Noise algorithm
(DBSCAN). We use DBSCAN because it does not require
one to specify the number of clusters a priori. One needs
to define the cluster radius e, and the minimum number of
samples MinPts in the cluster radius. The final output is
the resulting cluster that meets the density requirements.
Before feeding all flows of a certain website into DBSCAN,
we represent each flow using a vector consisting of three
overall features, namely, the number of packets, the size of all
the sent packets, and the size of all the received packets. The
overall features are well suited for flow alignment because of
their sufficient tolerance against feature variation of a certain
flow across multiple accesses. Among all resulting clusters,
we reserve those whose flows appear in more than 90%
of the total rounds of accesses to the website, and remove
others. For the reserved clusters, we order them randomly and
sequentially assign each of them an integer starting from 1.
The assigned integer is then inherited by all flows inside the
cluster as their common flow identity.

An alternative solution for flow alignment is to reference
other informative flow features in log files of encrypted
proxies, such as the queried domain name or a visited URL
corresponding to a flow. This solution, though plausible, is not
as general as the above clustering method.

2) Statistical Flow Feature Vectorization: After extracting
and bi-labeling flows, we next use a number of statistical
features that have proven effective in the literature to fully
characterize each flow, in support of subsequent flow finger-
print generation. For each flow, we analyze its sequence of
packets in both directions and construct a feature vector below.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

1908

Overall statistics. The total number of packets in both
directions, the number of packets in each direction, and the
ratio of the packets in each direction to the packets in both
directions.

Packet ordering. Packet ordering focuses on the interaction
order of requests and responses, as well as packet densities
over time. For every packet in each direction, we count the
number of packets in both directions before its arrival. Then,
we calculate the mean and the standard deviation for the
numbers as features reflecting the interaction order of requests
and responses. Additionally, we count the number of packets in
all consecutive one-second time windows, and derive the mean
and the standard deviation as features reflecting the temporal
densities of packet numbers. Moreover, we follow the method
in [37] for sampling the cumulative distribution of packet sizes,
and extract 100 interpolation points for each flow as features
reflecting the temporal densities of packet sizes.

Packet timing. Packet timing is a feature that reflects the
timing characteristics of packet arrivals in a flow [51]. There
are 300 features coming from the total number of packets
before each of the first 300 outgoing packets in the flow. The
remaining 300 features are the number of incoming packets
between every two adjacent packets of the first 301 outgoing
packets.

Packet size. As in [51], we split the packet size into
ranges from 257! to 2% bytes (s € [6,11] is an integer), and
count the number of packets in each size range as features of
packet size distribution. Moreover, for the entire flow and the
subsequence of all outgoing/incoming packets, the statistics,
including mean, median, standard deviation, third quartile, and
the sum of these numbers, are respectively calculated.

Head and tail packets. The head and tail packets in a flow
are normally informative. We select the first/last 30 packets
in a flow as head/tail packets [59]. Then, the number of
outgoing/incoming packets in head/tail packets is computed.

3) Flow Fingerprint Generation: Using the flow features
above, we produce a fingerprint for each flow to reflect the
similarity between flows of various websites from different
angles (i.e., feature subspaces). We leverage Random Forest
(RF) to generate a fingerprint for each flow [9], [24], [32].
To avoid over-fitting, each decision tree is constructed based
on the bagging of both flows and features, indicating that
the intermediate decision regarding flow classification made
by each decision tree naturally comes from different angles
of observations (i.e., training flow samples and feature sub-
spaces). Accordingly, for each flow, we use the intermediate
decisions made by all decision trees (rather than the final
decision made by RF through voting) to construct an N-
dimensional vector as its flow fingerprint, where N is the
number of decision trees.

The fingerprint of a flow with a bi-label, say (i,), can be
expressed as (71(¢, 7)), 72(¢, 7)), - - -, In (4, 7)), where Ty (k =
1,2,...,N) is a function that outputs the intermediate deci-
sion of the kth decision tree. As demonstrated in Fig. 4,
an intermediate decision made by a decision tree is a leaf index
that uniquely identifies a flow bi-label. The major advantage
of the proposed flow fingerprint is that it incorporates com-
prehensive, primitive, and heterogeneous flow features into an
advanced and homogeneous vector that makes full use of RF’s
sophistication in feature processing. Since flow fingerprints are

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

homogeneous vectors, calculating similarities between flows
would be quite easy compared to doing it through normalizing
primitive and heterogeneous flow features.

4) Flow Website-Indication Index (W2I) Calculation: To
quantify the extent to which the presence of a flow is indicative
of the access to a website, we define a metric named Flow
Website-Indication Index (W2I). Specifically, for a flow with
a bi-label, say (7,7), we denote the metric by W21I;;.

W2I;; quantifies to what extent flow (4,j) among all
distinct flows of website ¢ is indicative of the presence of
website 7. It is calculated as follows. Let us term a flow with
a bi-label (i,7) generated in one access to website ¢ as a flow
instance of (4, 7). For each flow instance of (i, j), we find its
K-nearest flow instances (based on flow fingerprint) among
all flow instances of all websites, and calculate the proportion
of the flow instances with a bi-label (i, j). Then, we derive the
average proportion across all flow instances of (¢, j) as W2I,;.
Formally, W2I;; is calculated by

) KNV ,a)(UMHU#szw(p)Z))
6.9 |fer(m>

In (1), Z(i,4) and Z(p, q) are functions representing the set
of flow instances with bi-labels (4, j) and (p, q), respectively.
M denotes the set of monitored websites, and M + 1 means
we take all websites in M (as M classes), along with those
unmonitored websites (as one class), into account. # flow(p)
counts the number of unique flow bi-labels of website p,
and KNN }w)(X) counts the number of f’s K-nearest flow
instances among the set of flow instances X. Intuitively, if the
K -nearest flow instances of (7, j) include more flow instances
with the same bi-label, the more likely flow (¢, j) is indicative
of the presence of website ¢. Here, K is actually the maximum
observation scope surrounding a flow instance for counting
flow instances with the same bi-label. Since the maximum
number of flow instances with the same bi-label equals the
number of flow instances of a website, and we use training
flow instances to calculate W21;;, we set K to be the number
of training flow instances of a website.

W2I,= (M)

C. Spatial-Temporal Flow Correlation for WFP

We further take into consideration common flow subse-
quences that frequently appear when accessing a website.
These common flow subsequences reveal temporal flow cor-
relation, since they can reflect flow sequential patterns of
accessing a website. We will combine spatial and temporal
flow correlation to determine whether a user is accessing
a website via an encrypted proxy at a particular time. The
architecture of stage 2 of our system is depicted in Fig. 5.

1) Spatial-Temporal Website Fingerprint Generation: The
metric W2I enables spatial website fingerprint, i.e., the extent
to which the presence of a flow is indicative of accessing a
website. To explore temporal website fingerprint, we propose
a Longest Common Subsequence, or LCS-based method for
finding sequential flow patterns of accessing a website. Specif-
ically, we aim to generate the longest common subsequence
for most flow sequences. Considering that the complexity
of calculating the longest common subsequence of all flow
sequences is huge [26], we propose an approximate method
to reduce the calculation as follows.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

MA et al.: WFP ON ENCRYPTED PROXIES: A FLOW-CONTEXT-AWARE APPROACH AND COUNTERMEASURES

Extracted Flows and

Spatial-temporal Website

1909

Stage 2: Spatial-temporal flow correlation for website fingerprinting - — — —

Bi-labels Fingerprint Generation
. . ‘Website Feature _

round 1: .—Qjﬁowg Lest: <l.@ > seore ! Vector Generation

. r s I: > Lesa: Score 2 . . .
round 2: A— @ . <A. !.>. Score Seare 1 Website Classificatio

0
- Fingerprint Lest Losz |
Matching
x Websitex % Others
Real-world Traffic Trac — Flow Classification = ﬂ [Score 1, 0, -

Flows of Website x mixed
with background flows ([l])

T TTTFFTT

o>

Website Feature Vector

Fig. 5. Architecture of Stage 2 of the proposed system.

o LCS-based Sequential Fingerprint Calculation

One access to a website results in a sequence of multiple
flows. We denote by S° [1§,15,...,15] the ath flow

sequence that contains n, flows, and S = [1,15,... 1%] the
bth flow sequence that contains n; flows, where [denotes a
flow. All flow sequences are in chronological order. For every
two flow sequences of accessing a website, say S® and S°,
we generate their LCS as one sequential fingerprint of the
website. Let S7 (resp. Sf;) be the subsequence consisting of
the first p (resp. ¢) flows of S (resp. S?). We denote the LCS

of S% and S® as L(ng,np), as can be recursively derived by

0, ifp=0orq=0,
Lp—1,q—1) ~1p,

if p,g>0 and bi-label(I%)=bi-label(I}),
ma’X(L(p - 1a q)vL(p7 q— 1))7

if p,g>0 and bi—label(lg);ébi—label(lg),

L(p,q)= (2)

where L(p, q) is the LCS of S¢ and S}, L(p—1,q—1) ~ 12
means /5 is added to the end of the sequence L(p—1,q—1),
and bi-label is a function outputting the bi-label of a flow.

e Scoring the Importance of Sequential Fingerprint

For a website, we obtain one sequential fingerprint from
every two flow sequences. Some of these obtained sequential
fingerprints may be the same, implying that sequential fin-
gerprints may differ from each other in terms of the number
of occurrences among all flow sequences. Also, flows in a
sequential fingerprint differ in values of W2I. Combining
these information, we score the importance of a sequential
fingerprint, say F', by

Score(F)=+/#occur(F) Z{WZ[ZJ\(Z, J=bi-label(D)}, (3)

leF

where Score(F') is the importance score of F, and #occur(F)
is the occurrence number of F' among all flow sequences.
We select sequential fingerprints with the top 10 highest
importance scores, as well as those sequential fingerprints that
occur only in one flow sequence, to construct the website
fingerprints. Suppose the selected sequential fingerprints are
denoted by [F}, F», . ..]. The website fingerprints would be

[(Fy, Score(Fy)), (Fy, Score(Fy)), .. .]. 4

2) Website Feature Vector Generation: Although the web-
site fingerprints in Sec. III-C.1 reflect the spatial-temporal
patterns of accessing a website, they are derived in a clean

network environment without considering that flows of the
website may be misclassified as flows of other websites and
vice versa in real-world traffic. As a matter of fact, for a
website z, understanding how the website fingerprints of x
behave in real-world traffic traces is the key to figuring out
whether x is accessed. To this end, we examine whether or
not each of z’s website fingerprints appears in a number of
real-world traffic traces. Each traffic trace is a mixture of
accessing multiple websites, either including = or not (which
we know as ground truth). For each traffic trace, we derive
a website feature vector associated with the ground truth.
The dimension of a website feature vector equals that of the
website fingerprints in (4).

Generating a website feature vector for = can be performed
in two steps. First, by reusing the RF classifier in Sec. III-B.3,
we classify all flows in a traffic trace and assign each of them
one bi-label, hence getting a flow sequence. Second, following
a subsequence matching process, we search its flow sequence
for all website fingerprints of x. If a website fingerprint is
found, the value of the corresponding element of the website
feature vector equals the corresponding importance score.
Otherwise, the value would be 0.

3) Website Classification: A number of generated web-
site feature vectors, along with the ground truth concerning
whether website 2 is accessed or not in each traffic trace,
constitute the samples for training a classifier. The classifier
determines whether x is accessed or not in a given traffic trace.
Website feature vectors with the ground truth that x is accessed
are positive samples, and otherwise are negative samples. Now
determining whether x is accessed or not in each traffic trace
becomes a classical binary classification problem. We employ
the K-nearest neighbor to build a classifier for each website.

D. Upgrading The Attack System with Deep Learning

Until now our system has been relying on manually crafting
flow features. To make such a human-engineered process
automatic, we upgrade the flow classification model from
random forest to Convolutional Neural Networks (CNN). As a
matter of fact, CNN has been used in WFP against Tor by
Sirinam et al. and achieved accuracy over 98% WEFP against
Tor [45]. The essence of CNN is its convolution layer and
pooling layer. The convolution layer comprises a set of filters,
and it can achieve a function similar to feature extraction. The
pooling layer, which is immediately after the convolution layer,
aims to reduce the size of the feature space. In our context,
however, upgrading the flow classification model does not only

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

1910

affect the way to classify individual flows, but also necessitates
a new approach to defining flow fingerprint.

We utilized the neural network architecture developed by
Sirinam et al. for flow classification [45]. The architecture
is a one-dimensional convolutional neural network (CNN)
consisting of eight convolutional layers and two linear layers.
The model was trained using the cross-entropy loss function
and the Adamax optimizer. We also adopted the hyperparam-
eters optimized by Sirinam et al., including input dimension,
learning rate, batch size, etc., which can be found in [45].

Specifically, the following modifications are needed to
upgrade our attack system with deep learning. First, remove
the “Feature Extraction” module, but keep the “Flow Extrac-
tion and Flow Bi-label” module to extract and bi-label flows.
Similar to [45], each flow is extracted in the form of a packet
size sequence, which, along with the bi-label, will be the input
of CNN. Second, unlike defining flow fingerprint using the
leaf index of the final decision of each decision tree in the RF
model, we select the predicted probability value of each type
of flow bi-label at the output layer as flow fingerprint whose
dimension equals the total number of flow bi-labels.

IV. ATTACK PERFORMANCE EVALUATION
A. Data Preparation

We evaluate our system on two popular encrypted proxies,
namely, Shadowsocks [2] and V2Ray [49]. The former is
implemented based on the Socks5 protocol [5], [17], while
the latter uses the Socks5 protocol as an inbound protocol and
uses the VMess protocol as an outbound protocol [20].

Let M and U denote the set of monitored websites of our
interests and the set of unmonitored websites, respectively. Let
Fam and Fyy be the corresponding sets of flows resulting from
accessing websites in M and U, respectively.

We collect traffic traces for M monitored websites, ranging
from search engines to social medias, as the closed-world
dataset. We automate the collection process and each mon-
itored website is repeatedly accessed 90 times to generate
90 instances (70 for training and 20 for testing). An instance
consists of the original traffic traces that are normally a
mixture of multiple flows. To simulate the scenario that a
user may access websites other than those in M, we further
collect traffic traces for 3,500 unmonitored websites (i.e., U =
3,500) chosen from Alexa’s top 10,000 websites [15]. Every
unmonitored website is accessed once to generate one instance,
resulting in 3,500 instances in total.

To boost training efficiency, we only reserve persistent
flows in Fa, that appear in all the generated 90 instances
for each monitored website. Consequently, the number
of unique persistent flows across all the instances for
each monitored website (denoted by |F,|unigue) is lower
bounded mingeaq |Fzlunique. Such numbers for all moni-
tored websites add up t0 |Fatlunique = D pepq [Felunique
(-e., | Falunique flows with unique bi-labels), indicating that
there are | F |umque different classes of (closed-world) flows.
We randomly choose 6,000 flows (a.k.a. the number of neg-
ative flows in flow classification in Sec. IV-B) from Fy; as
the samples of the (|Fa|unique + 1)th class of (open-world)
flows.

Having M, U, Faq, and Fy collected, we then prepare
the training/testing traffic for each website in M to build the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

website classifier. To ensure that the training and testing traffic
is realistic and aligns with the motivation for training-testing
asymmetry, we have prepared the dataset during the website
classification stage. For each monitored website, we have
randomly added additional background traffic to its samples to
simulate real-world conditions of training-testing asymmetry.

Specifically, given a monitored website, say x € M, we
generate the training traffic in a number of successive time
windows to ensure its diversity across all time windows.
In each time window, we synthesize background traffic to gen-
erate a negative sample, or mix a randomly selected training
instance of accessing = with the synthesized background traffic
to generate a positive sample. The synthesized background
traffic comes from two sources. One is the instances of
accessing websites in M \ {x}. The other is the instances of
accessing websites in /. We randomly select #BW websites
(a.k.a. the number of background websites in training/testing
traffic preparation in Sec. IV-B) in {M \ {z}} UU, and for
each website we put (any) one instance of accessing it in the
time window. All these aforementioned selected instances are
put within the time window with random start times. When we
prepare the training/testing traffic, we set each time window
to be 1 minute. We generate 100 time windows for generating
both negative and positive samples, and calculate classification
(i.e., WFP) performance via four-fold cross-validation.

The values of M, minge a | Falunique> and [Fat|unique for
Shadowsocks equal 23, 2, and 175, respectively, while these
values for V2Ray are 20, 1, and 143, respectively.

B. Evaluation Results

We measure the performance of our system using the
following two metrics.

True Positive Rate (TPR). The probability that a monitored
website is classified as the correct monitored website.

False Positive Rate (FPR). The probability that an unmon-
itored website is incorrectly classified as a monitored website.

Here, “website” can be substituted by “flow” for measuring
flow classification performance. We compare our methods with
the following four benchmark methods.

Per-access-based ideal WFP (PATI). This method is the
traditional method commonly used in WFP, and identifies each
website based on the entire traffic generated during one access
to the website. Here, “ideal” means that during training and
testing all individual traffic samples are pure without being
mixed with noisy background traffic. In other words, this
method directly uses traffic samples of each website collected
in the controlled (clean) network for both training and testing.

Per-access-based realistic WFP (PAR). This method inher-
its the above definition regarding per-access-based WFP. The
major difference is that it focuses on a more realistic scenario.
Specifically, it trains a classifier using pure traffic samples
collected in the controlled (clean) network, but feeds the
trained classifier with real-world traffic traces.

Per-flow-based naive WFP (PFN). Different from per-
access-based WFP, this method identifies of each website
based on individual flows generated during one access to the
website, and naively declares that a website is accessed as long
as any flow belonging to the website is identified.

Per-flow-based weighted WFP (Prw). This method
improves PFN by weighting individual flows. To determine

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

MA et al.: WFP ON ENCRYPTED PROXIES: A FLOW-CONTEXT-AWARE APPROACH AND COUNTERMEASURES

whether website ¢ is accessed in a time window, we calculate
ey W2lin/ Zf&_fllow(z) W21 to see if the proportion of the

accumulative W2I value of the detected flows of website ¢
to the accumulative W2I value of all the flows of website ¢
surpasses a threshold 7, where {x} denotes the set of identities
of the detected flows of website 1.

For different methods, we prepare the experimental data
in different ways. In PAI, for each (entire) traffic instance
generated during one access to a website, we extract its
statistical features using the features designed in Sec. III-B.2
that cover almost all state-of-the-art fingerprinting features.
Then, we train a (M + 1)-class classifier based on RF, where
M classes correspond to the set of monitored websites, and
the entire set of unmonitored websites are regarded as the
remaining one class. PAR has a data preparing process similar
to PAI. The only difference is that we mix every testing traffic
instance, either positive or negative, with the traffic instance
of a randomly chosen unmonitored website to simulate the
scenario of training-testing asymmetry.

Preparing the experimental data for PFN and PFW differs
from that for per-accessed-based WFP. For each traffic instance
of a monitored website x € M, we randomly select five
background websites from {M \ {z}} U and mix their
traffic instances with the traffic instance of x. The mixed traffic
constitutes a positive sample. Similarly, the traffic instance
of an unmonitored website € U/ is mixed with the traffic
instances of five randomly selected background websites in
U\ {z} to get a negative sample. Since PFN declares that
a website is accessed as long as any flow belonging to the
website is identified, mixing the traffic instances of randomly
selected websites that do not belong to the target website
enables calculating FPR as well as TPR.

Note that, in preparing the data for PFN and PFW, the
reason for mixing traffic instances of five randomly selected
background websites is as follows. We consider PFN and
PFW as the simplest approaches to performing WFP without
flow correlation, or with very simple correlation. To perform
a fair comparison, we prepare the experimental data as the
same complexity as that in Sec. IV-A for our flow-context-
aware WFP method, wherein we set the number of background
websites as five (i.e., #BW = 5). In all experiments, when
we mix traffic instances of the target website and background
websites to construct a new sample, all the traffic instances
are put within a one-minute time window with random start
times.

Table I shows the results of our methods against two
encrypted proxies (i.e., Shadowsocks and V2Ray) in compar-
ison to the benchmark methods. In our flow-context-aware
(realistic) WFP method (i.e., CAR), we set the number of
decision trees in RF as 100, the value of K in (1) as 70,
and the value of #BW as 5. We see that CAR outperforms
all benchmark methods, and accomplishes state-of-the-art
performance.

Compared with PATI, our method achieves at least one
or two percentage points higher TPR (i.e., above 98.8%),
while reducing FPR or keeping FPR around 0.2%. This
indicates that even in a realistic setting, our method has
better (or at least comparable) performance than the method
in an ideal setting, where pure traffic instances are used
in both training and testing. In other words, our method

1911
TABLE I
PERFORMANCE OF WFP OF DIFFERENT METHODS. “FC” IS THE
PERFORMANCE OFOUR FLOW CLASSIFICATION AND “CAR”

Is THE PERFORMANCE OFOUR WFP CLASSIFICATION
Encrypted Proxies Shadowsocks V2Ray
Metrics TPR FPR TPR FPR

PAI | 0.9821 | 0.0027 | 0.9600 | 0.0020
Benchmark methods | PAR | 0.0270 | 0.0000 | 0.1333 | 0.0000
PEN | 1.0000 | 1.0000 | 0.9950 | 0.5350
PFW | 1.0000 | 0.5450 | 0.9833 | 0.0190
Our methods FC 0.9621 | 0.0189 | 0.8465 | 0.0211
CAR | 0.9946 | 0.0017 | 0.9880 | 0.0020

makes WFP while achieving the expected state-of-the-art
performance.

Compared with PAT, the performance of PAR substantially
decreases. Such results confirm that, when a classifier trained
using traffic instances in the controlled (clean) network is fed
with real-world traffic, it would fail to perform as expected.
However, our method can gain an overwhelming performance
over PAR. Specifically, although PAR has no false positives,
the values of TPR for Shadowsocks and V2Ray are as low as
2.7% and 13.33%, respectively. This means that a well-trained
classifier in a controlled (clean) network, when faced with
real-world traffic traces that are actually a mixture of traffic
resulting from accessing multiple websites, may seldom mis-
classify a website as the target website but would experience
serious performance degradation in terms of detection rate.

The reason is that a well-trained classifier in a controlled
(clean) network has very limited and incomplete knowledge
of the real-world per-access traffic characteristics. Worse still,
such incompleteness is hard to approach completeness because
of the extremely diverse website accessing activities of dif-
ferent users, not to mention the situation where many users
behind NAT access websites via the same proxy and thus
drastically complicate real-world traffic. Note that, in PAR,
we mix every testing traffic instance with the traffic instance
of just one randomly chosen unmonitored website so that the
performance results in Table I are in favor of PAR.

As to PFN, both values of TPR and FPR for Shadowsocks
equal 100%. This means that simply determining whether
a website is accessed according to the presence or absence
of its flows would result in a large number of false posi-
tives, especially when traffic instances of multiple websites
are mixed. For V2Ray, the value of FPR drops to 53.5%,
which remains pretty high. Apparently, the high FPR for
PFN is inevitable, since many individual flows of access-
ing different websites may be statistically similar to each
other. Attributed to our spatial-temporal flow correlation, the
performance improvement of our method (i.e., CAR) over
PFN is significant. Compared to PFN, PFW achieves lower
values of FPR. We vary the threshold 7 for Shadowsocks and
V2Ray separately to achieve their respective best performance.
However, the FPR remains too high in comparison to our
method.

It is interesting to note that, although the performance of
our flow classification (i.e., FC in Table I) that produces
intermediate results of classifying flows is relatively low, our
flow-context-aware WFP compensates the degraded perfor-
mance of flow classification and achieves high performance
in WFP due to spatial-temporal flow correlation.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

o : o
@ © .
2 o4 o 1 Toa 02\]
0.0 Y A —
0 10 20 3 40 5 10 20 30 40 5
02 / —————— TPR] 02 / ------ TPR
—FPR —
oo y - FPR
0 100 200 300 400 500 600 ®0 100 200 300 400 500 600

Number of trees Number of trees

(a) Shadowsocks (b) V2Ray

Fig. 6. Flow classification performance as the number of trees in RF varies.

TABLE 11
FLOW CLASSIFICATION SENSITIVITY TO # OF NEGATIVE FLOWS (NFS)
Shadowsocks V2Ray
of NFS 1 pp—T FPR | TPR | FPR

1,000 | 0.9746 | 0.0894 | 0.8692 | 0.1173

2,000 | 0.9709 | 0.0425 | 0.8667 | 0.0597

4,000 | 0.9635 | 0.0260 | 0.8573 | 0.0345

6,000 | 0.9621 | 0.0189 | 0.8472 | 0.0282

8,000 | 09567 | 0.0145 | 0.8412 | 0.0209

10,000 | 0.9519 | 0.0129 | 0.8353 | 0.0197

C. Sensitivity to Parameter Settings

The parameters, including the number of decision trees in
RF, the number of negative flows in flow classification, and
the number of background websites in training/testing traffic
preparation, are crucial. We detail the sensitivity of our system
to these parameter settings.

1) The Number of Decision Trees in RF: RF is composed
of multiple decision trees. Too few decision trees reduce the
accuracy of flow classification. Conversely, too many decision
trees are not beneficial to the accuracy while introducing addi-
tional overhead. Fig. 6 shows how TPR and FPR vary over the
number of decision trees when we perform flow classification
for Shadowsocks and V2Ray, respectively. We see that TPR
increases and FPR decreases significantly before the number
of decision trees reaches 25. When the number of decision
trees becomes 100, TPR and FPR for Shadowsocks converge
around 96% and 1.8%, respectively; and TPR and FPR for
V2Ray converge around 85% and 2%, respectively.

2) The Number of Negative Flows in Flow Classification:
In flow classification, the positive flows are those generated
by accessing the monitored websites, while the negative
flows are from accessing those unmonitored websites. When
we train the flow classifier, adding an appropriate number
of negative flows is critical to the classifier’s performance.
Table II shows how TPR and FPR of flow classification change
as we vary the number of negative flows for Shadowsocks
and V2Ray. As expected, FPR significantly decreases as the
number of negative flows grows. Although TPR also decreases,
its decreasing rate is much smaller as compared to that of FPR.
This indicates that one can achieve very low FPR by sacrificing
just a little TPR by increasing the number of negative flows
in flow classification.

3) The Number of Background Websites in Training/Testing
Traffic Preparation: The number of background websites in
training/testing traffic preparation decides the concurrently
accessed websites other than the target website in each
one-minute time window. The background websites compli-
cate the detection of the target website. Apparently, the larger

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

TABLE III
WPFP SENSITIVITY TO # OF BACKGROUND WEBSITES (BWS)
Shadowsocks V2Ray
#of BWs ' —1pR—T FPR | TPR | FPR

5 0.0946 | 0.0017 | 0.9880 | 0.0020

10 0.9928 | 0.0017 | 0.9860 | 0.0020

15 0.9928 | 0.0033 | 0.9815 | 0.0035

20 0.9873 | 0.0084 | 0.9800 | 0.0075

TABLE IV

FC PERFORMANCE SENSITIVITY TO DATASET
S1ZE USING SHADOWSOCKS

of Samples RF model CNN model

per Class TPR FPR TPR FPR
400 0.9557 | 0.0320 | 0.9073 | 0.0280
800 0.9615 | 0.0699 | 0.9154 | 0.0300
1,200 0.9656 | 0.0819 | 0.9216 | 0.0320
1,600 0.9667 | 0.1139 | 0.9271 | 0.0300
2,000 0.9671 | 0.0979 | 0.9236 | 0.0799

the number is, the harder the detection will be. Table III
shows, when we keep the number of negative flows in flow
classification as 6,000, how TPR and FPR change as we vary
the number of background websites for Shadowsocks and
V2Ray. For Shadowsocks, while the number of background
websites increases from 5 to 20, TPR, though gradually
decreasing from 99.46% to 98.73%, remains high. Meanwhile,
FPR increases from 0.17% to 0.84% because more flows of the
background websites are misclassified as those of the target
website. For V2Ray, the trend is similar as the number of
background websites increases.

D. Comparison with Deep Learning

Due to the extensive number of training samples required by
CNN, we obtained a considerably larger dataset using Shad-
owsocks from April 30, 2023, to May 19, 2023. Each webpage
was visited 2,000 times. The performance of flow classification
with varying dataset sizes is presented in Table IV. The results
indicate that with an increase in the dataset size, the CNN
model shows a slight improvement in performance. However,
there remains a significant disparity between the CNN model
and the RF model.

E. Fingerprinting Proximate Webpages

So far, our experiments are performed based on webpages
from diverse websites. In contrast to such webpages, webpages
originating from the same website, which we term proximate
webpages, would be more resistant to WFP attacks. The
reason is that proximate webpages are more likely to share
the same web resources (e.g., logo, images) and in turn exhibit
statistically similar traffic flow patterns.

To gain insight into the performance of our system
in the face of proximate webpages, we target 73 proxi-
mate webpages belonging to GitHub (https://www.github.com),
a world-famous Git repository hosting website service. Note
that our aim is to distinguish between these statistically similar
webpages, rather than inferring the website (i.e., Github) from
consecutive visits of webpages like [34].

On the one hand, we conduct WFP experiments using the
PAT method, which uses the complete traffic generated by

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

MA et al.: WFP ON ENCRYPTED PROXIES: A FLOW-CONTEXT-AWARE APPROACH AND COUNTERMEASURES 1913
TABLE V TABLE VI
PERFORMANCE OF WFP AGAINST PROXIMATE WEBPAGES PERFORMANCE OF OUR WFP SYSTEM AGAINST COMMON DEFENSES
Encrypted Proxies Shadowsocks V2Ray Encrypted Proxies Shadowsocks V2Ray
Metrics TPR FPR TPR FPR Metrics TPR FPR TPR FPR
Benchmark methods | PAT | 0.6086 | 0.0232 | 0.6083 | 0.0191 No Defense FC 0.9621 | 0.0189 | 0.8465 | 0.0211
o thod FC 0.5624 | 0.0063 | 0.2717 | 0.0010 CAR | 0.9946 | 0.0017 | 0.9880 | 0.0020
ur methods CAR | 0.7243 | 0.0275 | 0.6944 | 0.0361 Decov Pascs FC | 09634 | 0.0189 | 0.8465 | 0.021
y tag CAR | 0.9956 | 0.0021 | 0.9880 | 0.0020
Traffic Morphin FC 0.8234 | 0.0874 | 0.5510 | 0.0334
o . PRI | car | 09926 | 0.0456 | 0.9730 | 0.0295
the accesses to a webpage for both training and testing. The BUFLO FC 0.3837 | 0.2140 | 0.2048 | 0.1610
PAT method can derive the WFP performance in an ideal CAR | 09421 | 03947 | 0.8510 | 0.4869
. . FC 0.2927 | 0.4956 | 0.1811 | 0.1614
experimental setting. On the other hand, we use our system Tamaraw car | 08969 | 05856 | 08510 | 05835

CAR to fingerprint the accesses of these proximate webpages
through encrypted proxies in consideration of practical issues,
i.e., training-testing asymmetry.

Table V shows the results. We see that, for the PAI method,
TPR can reach 60%, while FPR centers around 2% in the face
of Shadowsocks and V2Ray. When it comes to our method,
our observation is two-fold. First, FC achieves pretty low
values of both FPR and TPR, meaning that background (neg-
ative) webpages can hardly be recognized as Github (positive)
webpages, while proximate webpages belonging to Github are
very likely to be misclassified as each other. Second, despite
the poor performance of flow classification, after performing
spatial-temporal flow correlation, CAR can achieve comparable
(even better) performance compared with PAT. This implies
that our flow-context-aware method, even in consideration of
training-testing asymmetry issues, can accomplish at least as
good performance as the method in an ideal experimental
setting in the face of proximate webpages.

F. Attack against Common Defenses

We evaluate the performance of our proposed WFP system
against common obfuscation-based defenses below.

Decoy Pages [38]. This method uses background noises to
add randomness to each page’s loading. It loads a random
decoy page whenever the target page is loaded to disturb
normal traffic and degrade recognition accuracy.

Traffic Morphing [55]. This defense is designed to hide
packet size. It allows a client to set a target page T and
modify these packet sizes to imitate the target page’s packet
size distribution.

BuFLO [19]. This defense is applied to incoming and
outgoing traffic, and packets are sent at a fixed interval with a
fixed length. The entire traffic must last for a fixed minimum
time. This defense may extend the transmission and insert
dummy packets in the middle.

Tamaraw [53]. Tamaraw is an improved version of
BUFLO. The major improvement is that the outgoing and
incoming directions maintain different packet sending rates,
generally with smaller outgoing sending rates than incoming
sending rates. Additionally, Tamaraw no longer fixes the traffic
duration but sets a packet sequence length.

The parameters for common defenses above are set as
follows. For Decoy Pages, we select decoy pages from Alexa’s
TOP 10,000 websites. For Traffic Morphing, we use Google as
the target webpage and morph all per-flow packet size distri-
butions of a webpage to the per-access packet size distribution
of the target webpage. For BUFLO, the fixed packet size is
set as 1500, and the packet transmission interval is 0.02s.

For Tamaraw, the fixed packet size is set as 1500, the out-
going/incoming packet transmission interval is 0.04s/0.012s.

Table VI shows the attack performance of our system
against common defenses. We see that, when the Decoy
Pages defense is added to Shadowsocks and V2Ray, our
flow-context-aware system CAR achieves almost the same
performance as no defense is added. Such results reveal that
our system is immune to randomly choosing decoy pages. The
reason is that randomly choosing decoy pages has no impact
on the characteristics of individual flows of a target webpage.

When the Traffic Morphing defense is added, we see that
TPR significantly decreases while FPR slightly increases for
FC. However, TPR achieved by CAR approaches large values
when no defense is added, while the corresponding FPR
remains below 5%. This indicates that Traffic Morphing indeed
weakens the distinguishability of flows across webpages, while
under such unfavorable conditions CAR still achieves high
attack performance.

The BUFLO and Tamaraw defenses thwart both FC and
CAR (i.e., low TPR and high FPR). Under these defenses,
it is impossible for our system to distinguish between different
webpages. Nevertheless, the success of BUFLO and Tamaraw
is at the cost of non-negligible bandwidth overhead (around
200%, see Sec. VI).

G. Attack With User Interactions

User interactions on a website can influence flow analysis.
Given that accessing the landing page of a website is the
most common user behavior, our experiments assume that
users initially visit the landing page of the target website.
However, if a user first visits another webpage within the
website, it necessitates collecting additional traffic from the
webpages associated with each website to train the model.

To comprehensively examine the impact of user interactions
on model performance, we developed a crawler that emulates
human behavior by randomly clicking through a website.
We generated a dataset using this crawler and conducted
training and testing procedures. The results are in Table VII.

The most significant observation from our experiments is
a noticeable decrease in flow classification accuracy when
user interactions are incorporated into the model’s training
data. Specifically, the TPR for flow classification decreased
from 0.9621 to 0.8537, while the FPR increased from
0.0189 to 0.0220.

Despite the degraded flow classification performance, our
CAR model, which utilizes information from multiple flows,

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

1914

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

With RFR Defense

Without Defense
A
| .l -| <3 end flows —> .I .l |
¢ o ¢ O ‘ o
1? @ ®¢ @‘ ®¢
roxy < > Proxy
Client _ mom Server
o220
) »
proxy flows \ WFP
Tow® | | B4 Tow ®
- payloads fznw, ,: randomly splitted Jow randomly flow @
0" Slow®d & iloads of /0% @allocated to flow ®
flow® flow® :

Browser Web Server

| .l .| <3 end flows —> -| .| |
o N H o
QY oV @ @

RFR Client

S| X! | |
X @ <33 RFR flows—> @/ &I
| | PEI Y
oV @V @ ®
Proxy O ® Proxy
Client - - _ Server
©® @ K
proxy flows ™ wgp 2

Fig. 7. The workflow of the proposed RFR defense.

TABLE VII

PERFORMANCE WITH/WITHOUT USER INTERACTIONS (UA)
USING SHADOWSOCKS

Scene Without UA With UA
Metrics TPR FPR TPR FPR
FC 0.9621 | 0.0189 | 0.8537 | 0.0220
CAR 0.9946 | 0.0017 | 0.9966 | 0.0033

continues to excel in identifying webpage access with remark-
able accuracy. The TPR and FPR for webpage access
classification only experience minimal changes, moving from
0.9946 to 0.9966 for the TPR and from 0.0017 to 0.0033 for
the FPR.

In summary, our findings underscore the influence of user
interactions on model performance. Our CAR model stands out
for its ability to maintain high accuracy levels in identifying
webpage access, demonstrating its robustness and effective-
ness in real-world scenarios.

V. RANDOM FLOW-REROUTING (RFR) DEFENSE

Existing common defenses are not suitable to defend against
our proposed WFP system. They either have little effect
(e.g., Decoy Pages, Traffic Morphing) because our system
considers flow correlation, or achieve the expected effect at
the cost of non-negligible bandwidth overhead (e.g., BUFLO,
Tamaraw). We aim to design an effective yet lightweight (i.e.,
limited bandwidth overhead and time delay overhead) defense
method to defend against our WFP system. We implement
the proposed method as a software tool that is installed on
both the client and server sides of encrypted proxies (e.g.,
Shadowsocks and V2Ray). The source code of the software
tool will be released on Github upon publication.

The proposed method is based on random flow-rerouting
(RFR). The basic idea is to randomly allocate the payloads
of the original flows to several specially designed flows so as
to dissipate the original flows’ regularity. Consider the case
that one visits a website via the encrypted proxy without
defense, wherein five flows between the client and server of
the proxy. When our RFR defense is enabled, the payload of
these five flows would be randomly allocated into several new
flows. Since the allocation has a built-in random mechanism
(as described later), the characteristics of each new flow vary
significantly across different visits. Consequently, it is difficult

for the attacker to classify the new flows, not to mention
correlating these flows.

Fig. 7 demonstrates the workflow of the proposed RFR
defense. Suppose the browser should establish three TCP
connections with the web server so as to visit a website. When
no defense is added, the browser simply issues the connection
requests to the proxy client, and then the proxy client forwards
the requests to the proxy server. The proxy server eventually
establishes TCP connections with the web server, retrieves the
website content, and relays the content backward to the proxy
client and in turn to the browser.

For ease of presentation, we call the flows between the
browser and the proxy client, along with those between the
proxy server and the web server, as end flows, while the flows
between the proxy client and server as proxy flows. The proxy
is just responsible for forwarding the payloads of end flows
without altering payload-flow route mapping. In other words,
payloads transmitted by the same end flow are also transmitted
by the same proxy flow. Consequently, as long as end flows
across multiple accesses to a website have some regularity, the
traffic characteristics of proxy flows would exhibit regularity
to a certain extent and WFP against proxy flows is feasible.

When the RFR defense is enabled, a client-side middlebox,
i.e., the RFR client, is initiated between the browser and the
proxy client to randomly reroute the payloads of end flows.
For the same purpose, a server-side middlebox, i.e., the RFR
server, is initiated between the web server and the proxy server.
Through randomly payload rerouting, the payloads of end
flows originating from one visit to a website are randomly
allocated into a bunch of RFR flows, making the features of
the RFR flows (and in turn the proxy flows) random across
different visits to the website.

Designing the defense middlebox has two essential require-
ments. First, for easing the deployment, the middlebox should
be transparent so that adapting the browser, the proxy client
and server is unnecessary. Second, the payload rerouting policy
should be carefully designed so as to achieve high randomness
while accomplishing low time delay and bandwidth overhead.

To fulfill the first requirement, the client-side middlebox,
i.e., the RFR client, translates the Socks5 protocol (originating
from the browser) into our RFR protocol, which is relayed
to the server-side middlebox (i.e., the RFR server) by the
proxy client and server. The server-side middlebox resolves

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

MA et al.: WFP ON ENCRYPTED PROXIES: A FLOW-CONTEXT-AWARE APPROACH AND COUNTERMEASURES

Browser/Web Br]g\)sv%ei')/:geb Payload
DST IPv4 Address (4 Bytes) | (2 Bytes) (<=random threshold Bytes)
Message Sequence |yp Browser/Web Browser/Web
Lengt] Number (1Bye) SRC IPv4 Address SRC Port
(2 Bytes) (2 Bytes) (4 Bytes) (2 Bytes)
RFR/Proxy | RFR/Proxy
SRC Port DST Port
(2 Bytes) (2 Bytes)
RFR/Proxy RFR/Proxy
SRC IPv4 Address (4 Bytes)| DST IPv4 Address (4 Bytes)

IP Layer to
the lowest

|:| TCP Layer

The RFR protocol structure.

I:] RFR Layer

Fig. 8.

the RFR protocol, visits the website, and returns the website
content backward using the RFR protocol. For the sake of
flexible payload rerouting, the RFR client and server establish
k persistent TCP connections, where k£ is a tunable parameter.
Such k connections result in £ RFR flows and k proxy flows.

To satisfy the second requirement, we adopt the two-fold-
randomness and no-padding policy. Specifically, to achieve
high randomness, the RFR client and server not only randomly
assign payloads of end flows to different RFR flows, but also
randomly split each payload before allocating RFR flows.
Randomly splitting a payload is implemented by iteratively
generating random thresholds of payload sizes. A payload
is truncated to be equally sized with the current threshold
when its size exceeds the threshold, and the remaining part of
the payload would be truncated by generating a new random
threshold. This process iterates until the remaining part of the
payload has a size that is below the threshold. Since the RFR
client and server only split payloads and no padding is used,
the bandwidth overhead is very limited. Moreover, the RFR
client and server are deployed at the same hosts with the proxy
client and server, respectively, thus minimizing the additional
forwarding time delay.

Fig. 8 details the design of the RFR protocol. The protocol
is incorporated into the RFR client and server, and works at
the application layer over TCP between the RFR client (server
resp.) and the proxy client (server resp.). It is designed to
uniquely identify the payloads of end flows so that the RFR
client and server could not only randomly split payloads and
randomly allocate split payloads into RFR flows, but also
assemble the split payloads of RFR flows into end flows.

The RFR protocol structure has eight fields, namely, mes-
sage length, sequence number, operation code (OP code),
source address, source port, destination address, destination
port and payload. Message length records the number of
bytes in the structure, which is used for calculating the size
of the payload (equal to or less than a random threshold)
encapsulated in the structure. Sequence number defines pay-
load offset, and the combination of browser/web IP addresses
and ports could uniquely identify the end flow where the
encapsulated payload originates. OP code indicates the type of
the message, including requesting TCP connection, requesting
DNS resolution, data transmission, and heartbeat messages.

VI. DEFENSE PERFORMANCE EVALUATION

To gain insight into the realistic performance of our RFR
defense, we assume that a strong attacker has full knowledge

1915
TABLE VIII
PERFORMANCE OF RFR DEFENSE AGAINST SHADOWSOCKS
Defense Mode | # of RFR Flows | Method TPR FPR
No Defense j FC 0.9621 | 0.0189
CAR 0.9946 | 0.0017
1 FC 0.9140 | 0.0020
CAR 0.9824 | 0.0092
3 FC 0.8859 | 0.0000
- CAR 0.9272 | 0.1475
FC 0.7680 | 0.0080
Our Defense > CAR | 0.8676 | 0.2420
10 FC 0.5940 | 0.0080
CAR 0.6548 | 0.1008
20 FC 0.4960 | 0.0100
CAR 0.5776 | 0.2196
50 FC 0.4039 | 0.0060
CAR 0.4948 | 0.2347
400 T T
Bandwidth
350 - k7 Latency E 1
1055
300 K g
1559
ro%!
g w0 .
=
gmr i I
5 15554
3 150 - K 1
B £
XX 8
100 = K £ T
K15
D'O‘q =l
0 10554 1

Decoy Morphing Tamaraw StrongVPN ~ RFR

Fig. 9. Bandwidth and latency overhead of different defenses.

of our defense. Additionally, we assume a WFP scenario favor-
able to the attacker, wherein websites are accessed sequentially
without overlaps (contents of different websites cannot appear
in the same flow).

We deploy our RFR defense middlebox for Shadowsocks to
perform the experiments. The results are shown in Table VIII.
Note that the number of RFR flows is a tunable parameter.
We find that, as the number of the RFR flows increases, the
attacker’s fingerprinting ability gradually decreases. In partic-
ular, when there are 50 RFR flows, FC can only achieve a
TPR of 40.39% and an FPR of 0.6% FPR, and the TPR of
CAR is just 49.48%, while the FPR is up to 23.47%. The
underlying reason is that the growing number of RFR flows
leads to increased randomness of payload rerouting.

As a matter of fact, compared with no defense, the RFR
defense rapidly takes effect with just three RFR flows, and
the performance becomes rather significant when there are
five RFR flows. Such a result indicates that our defense could
achieve significant performance in a lightweight fashion (i.e.,
consuming just a few persistent TCP connections) even if the
experiment setting is in favor of the attacker.

Figure 9 depicts the bandwidth and latency overhead asso-
ciated with different defense mechanisms. In addition to the
previously discussed defense strategies, we also evaluated the
effectiveness of StrongVPN, a commercial VPN service owned
by J2 Global. StrongVPN proved to be a robust defense, capa-
ble of defeating our classifier. For flow classification, the TPR
and FPR are 0.1347 and 0.0000, respectively. As for website
fingerprinting, the TPR is 0.9913, while the FPR is 0.9147.
However, it is worth noting that StrongVPN incurs the highest

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

1916

bandwidth overhead among all the defense mechanisms tested.
In contrast, our defense strategy imposes only a minimal over-
head derived from the header of the RFR protocol, amounting
to a mere 0.49%. This overhead is significantly smaller than
that of other defenses.

The latency overhead represents the delay directly intro-
duced by the defense method. In the case of the morphing
defense and our defense, packets are promptly forwarded,
resulting in a latency overhead of zero. The specific latency
overhead of StrongVPN is unknown as the exact defense
strategy employed is not disclosed. The latency overheads
of BUFLO and Tamaraw are larger than 300%, indicating a
substantial increase in latency compared to other methods.

VII. DISCUSSION

By performing WFP attacks against status-quo encrypted
traffic, our ultimate goal is to gain insights into features
vulnerable to the attack and accordingly design a new defense
method to obfuscate the features. We confess that an ideal
defense that dissipates all distinguishing features can defeat all
WFP attacks. However, such an ideal defense would lead to
high bandwidth and latency overhead, making user experience
unacceptable. Therefore, our defense approach focuses on
being lightweight, minimizing bandwidth overhead and latency
while effectively deterring state-of-the-art attacks.

Our research assumes an attacker who knows the defender’s
defense strategy. This assumption is rooted in our observation
that users rarely deviate from the default configurations when
using encryption proxies. This suggests that attackers can
exploit default configurations to target most users effectively.

A more complex challenge arises when users continuously
change the obfuscation schemes. Under such circumstances,
launching website fingerprinting attacks becomes extremely
challenging. The core problem is that attackers can no longer
accurately discern the defender’s whole strategy and cannot
train a model that aligns with the users’ changing traffic
characteristics. Currently, there is no well-established solution
to this problem within the realm of network traffic fingerprint
attacks. We leave this for future research.

Due to the flow-context-aware design, our system can
achieve deployable while accurate WFP. Although all exper-
iments are performed using Shadowsocks and V2Ray, our
design supports lightweight encrypted proxies that relay con-
nections between the user and the proxy individually. Our
system is fed with individual flows, rather than a mixture of
multiple flows resulting from one access to a website (hard to
extract in the wild). Moreover, it can achieve spatial-temporal
flow correlation for accurate WFP. These properties enable
our system to be competent when a user is accessing multiple
websites within overlapping time windows. This scenario is
essentially identical to the situation where many users are
behind NAT. Hence, our system is also suited for detecting
whether a user behind NAT is accessing a website.

Since our system relies on spatial-temporal flow correlation,
more persistent flows (i.e., flows that persistently appear across
different website accesses) are anticipated when a website is
accessed. When the number of persistent flows of a website
is too small (i.e., only one), the advantages of our system
would not be maximized because flow correlation is needless.
Nevertheless, in such a case, our system could at least achieve

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

the same performance as the simple flow classification. For-
tunately, roughly 90% of the Alexa top 10,000 websites have
at least two persistent flows, indicating that our system would
play an important role in most circumstances. We would like to
emphasize that our system even achieves better performance
than ideally training/testing pure samples. This is attributed
to our system’s capability of extracting persistent spatial-
temporal flow patterns (and hence filtering out noises) across
multiple accesses of a website.

Note that some hyperparameters, such as the time window
size, are involved in the feature design. If the network condi-
tions change, it may be beneficial to appropriately adjust the
window size. We conducted sensitivity tests on our method by
varying the window size from 0.1s to 10s. Despite different
time window conditions, the standard deviation of flow classi-
fication accuracy remained below 0.2%. This finding indicates
that the performance is not significantly affected by the
choice of time window length. Therefore, based on empirical
evidence, we have chosen a one-second time window, which
is also commonly used in traffic analysis tasks [31], [43], [48].

In our problem description, as in all existing studies [24],
[40], we consider a passive on-path attacker capable of deter-
mining whether a victim is accessing a specific website.
Moreover, for the purpose of designing a defense method,
we assume a strong attacker who can eavesdrop on the target
network traffic involving the knowledge of the victim’s specific
network conditions to train the classification model. If the
attacker intends to target victims in other networks, the most
effective approach would be to collect network traffic from
those networks and retrain the model accordingly. However,
if the attacker wishes to employ the trained model from one
network to attack other networks, several factors, such as net-
work bandwidth, latency, packet loss, and packet reordering,
need to be systematically considered. We leave this as future
work.

To defeat our WPF system, one may simply use an
encrypted tunnel (e.g., VPN) that multiplexes flows. However,
such tunnels would lower the transmission rate due to their
requirements of additional bytes in all packets. In addition,
encrypted tunnels like VPNs may send all your traffic through
a server by default (though configurable) [4], as opposed to
encrypted proxies like Shadowsocks and V2Ray normally have
user-friendly interfaces to define which websites are accessed
through the proxy and which are not. For the sake of a high
transmission rate and flexibility, people are using encrypted
proxies to access certain websites that are normally off-limits
due to censorship, geoblocks, etc. VPNs are primarily used to
access geo-restricted content while adding a layer of encryp-
tion [3].

To retain the lightweight advantage of encrypted proxies and
meanwhile seek an effective defense approach, our proposed
RFR defense introduces flow randomness (with very limited
overhead) to fundamentally eliminate the possibility of identi-
fying individual flows that have stable features across multiple
visits to a website. In our experiments, we assume a strong
attacker and use a setting in favor of the attacker. In real-world
scenarios, such settings disappear and our defense performance
would be better. For example, when one visits two websites
concurrently, our defense could randomly allocate the contents

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

MA et al.: WFP ON ENCRYPTED PROXIES: A FLOW-CONTEXT-AWARE APPROACH AND COUNTERMEASURES

of different websites in the same RFR flow, making the iden-
tification of individual flows of a website almost impossible.
In addition, one could also randomize the number of RFR
flows for each visit to further enhance the randomness. Differ-
ent from TrafficSliver which splits traffic using multiple Tor
entry nodes [16], our countermeasure provides fine-grained
traffic splitting and is suitable for encrypted proxies.

VIII. RELATED WORK

In the early stage, WFP was used to analyze SSL-encrypted
traffic. For example, Wagner and Schneier proposed that the
content of network traffic can be analyzed by inspecting
SSL-encrypted packets [50]. Cheng and Avnur implemented a
prototype of an SSL-traffic analysis attack and employed it to
identify the pages visited by users browsing a website [14].

Since the above pioneer work, WFP has been extensively
applied against anonymity networks like Tor [18], [35] and
JAP [8]. For example, Herrmann et al. showed that Tor, when
confronted with WFP, is secure [25]. However, later studies
revealed that this may not be true. Panchenko et al. proposed a
new identification approach based on Support Vector Machine,
which can recognize visited URLSs in the Tor dataset [38], and
Cai et al. improved the performance using new features based
on the optimal string alignment distance (OSAD) [12]. Wang
et al. improved the OSAD method and achieved an accuracy
of 90% in both closed-world and open-world scenarios [52].
Afterward, they applied WFP in a larger dataset containing
5,000 non-monitored open-world websites and achieved an
accuracy of 83% using K-nearest neighbor [51]. Li et al.
performed fine-grained open-world Android app fingerprinting
against wireless traffic [30], [31].

Several studies focused on WFP against Tor in real-life sce-
narios. Sirinam et al. considered small-sized sample collection
and training problems to make WFP more realistic [46]. Juarez
et al. claimed that previous WFP methods make assumptions
about user settings (e.g., no overlapping page load sequences),
adversary capabilities, and the nature of the Web that do
not necessarily hold in practice, thereby overestimating the
efficacy of WFP [27]. Kwon et al. found that the users’
involvement with hidden services of Tor can be accurately
identified to support better WFP [29]. Hayes and Danezis
proposed a new technique named k-fingerprinting that could
be applied in large-scale WFP [24]. Shusterman et al. designed
a new technique to identify other websites being browsed
by injecting malicious JavaScript code to the target user’s
computer [44]. Sirinam et al. and Rimmer et al. presented
deep learning-based fingerprinting methods against Tor, and
achieved promising performance [41], [45]. Xu et al. proposed
a multi-tab WFP attack that can accurately classify sequen-
tially requested multi-tab webpages over a short period of
time, only using a small chunk of packets [56]. Juarez et
al. studied the potential influencing factors on WFP attack,
such as a user’s browsing habits and version of browser [27].
Mitseva et al. improved attack accuracy by analyzing multiple
page visits of a single website [34]. In addition, several studies
designed defenses for Tor [10], [11], [28].

Different from the above studies focusing on Tor, our work
centers around a pretty popular type of lightweight encrypted
proxies and tackles the training-testing asymmetry challenge

1917

in real-life scenarios. Wang and Goldberg proposed a splitting-
based approach to address the challenge for Tor [54]. Since
Tor multiplexes the flows into the same encrypted tunnel estab-
lished between the user and the proxy, their approach cannot
be suited to our problem. Targeting lightweight encrypted
proxies, we design a flow-context-aware WFP system that
achieves both immediate deployability and high accuracy.

To defend against WFP, several studies propose measures
obfuscating traffic characteristics to fool WFP classifiers [7],
[11], [19], [21], [33], [36], [38], [39], [42], [47], [55]. In 2009,
Wright et al. proposed a traffic morphing defense. This defense
aims to cover up packet sizes by imitating the packet size
distribution of the target webpage [55]. Panchenko proposed a
decoy page defense that randomly loads an additional webpage
to disturb normal traffic patterns in 2011 [38] In 2012, Dyer
et al. proposed a new defense that fixed the packet size and
transmission rate and set the shortest traffic duration, named
“BUFLO” [19]. “BUFLQO” has a good defense effect at the cost
of higher bandwidth overhead. Cai et al. improved BUFLO and
proposed a new defense “Tamaraw”. They stipulate that the
packets in the receiving and sending directions maintain dif-
ferent sending rates and no longer have fixed communication
duration, thereby reducing bandwidth and delay consumption
while guaranteeing defense effect [11]. Our RFR defense
implements the first lightweight and effective middlebox for
defending encrypted proxies.

IX. CONCLUSION

Devoted to a practical solution to WFP against a popular
type of lightweight encrypted proxies that relay connections
between the user and the proxy individually, we designed a
flow-context-aware WFP system that addresses the obstacle
of training-testing asymmetry. The obstacle is a common
fact that pure traffic samples, unlike those collected in a
controlled (clean) network for training the classifier, can
hardly be extracted from real-world traffic for testing the
classifier. We pointed out that one may fall into the pitfall
that pure traffic samples are ideally fed to the classifier for
testing, accomplishing excellent yet unrealistic performance.
Through systematically tacking this obstacle using a two-stage
spatial-temporal flow correlation approach, our system enables
performing accurate WFP over complicated streaming traffic
resulting from simultaneously accessing a set of monitored and
non-monitored websites, thereby meeting the requirements of
immediate deployability and high accuracy (i.e., high detection
rate with very low false positive rate in open-world scenarios).

In response to the proposed flow-context-aware WFP sys-
tem, we also designed a lightweight defense method by
introducing flow randomness to fundamentally eliminate the
possibility of identifying individual flows that have stable
features across multiple visits to a website. Experiments
proved that the defense is effective (even in the face of a
strong attacker) while retaining the lightweight advantage of
encrypted proxies.

REFERENCES

[11 Shadowsocks. Accessed: Jan. 2023. [Online]. Available: https://play.
google.com/store/apps/details?id=com.github.shadowsocks&hl=en_US&
gl=US

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

1918

[2]

[3]

[4]

[9]

[10]

(11]

(12]

[13]

[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Shadowsocks. Accessed: Jan. 2023. [Online]. Available:

shadowsocks.org/en/download/clients.html

Shadowsocks or VPNs—Which is Best for You and Why. Accessed:
Jan. 2023. [Online]. Available: https://www.wizcase.com/blog/pros-cons
-of-shadowsocks-and-vpns/

Shadowsocks vs. VPNs—Everything You Need to Know. Accessed:
Jan. 2023. [Online]. Available: https://www.vpnmentor.com/blog/shad
owsocks-vs-vpns-everything-need-know/

Socks. Accessed: Jan. 2023. [Online]. Available: https://en.wikipedia
.org/wiki/SOCKS

v2rayng. Accessed: Aug. 2022. [Online]. Available: https://play.google.
com/store/apps/details?id=com.v2ray.ang&hl=en_US&gl=US

K. Al-Naami et al., “BiMorphing: A bi-directional bursting defense
against website fingerprinting attacks,” IEEE Trans. Dependable Secure
Comput., vol. 18, no. 2, pp. 505-517, Mar. 2021.

O. Berthold, H. Federrath, and S. Kopsell, “Web MIXes: A system for
anonymous and unobservable internet access,” in Proc. Int. Workshop
Designing Privacy Enhancing Technol., Design Issues Anonymity Unob-
servability, 2001, pp. 115-129.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A congestion sen-
sitive website fingerprinting defense,” in Proc. 13th Workshop Privacy
Electron. Soc., Nov. 2014, pp. 121-130.

X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A sys-
tematic approach to developing and evaluating website fingerprinting
defenses,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2014, pp. 227-238.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proc. ACM
Conf. Comput. Commun. Secur., Oct. 2012, pp. 605-616.

M. Chen, Y. Chen, Y. Wang, P. Xie, S. Fu, and X. Zhu, “End-to-end
multi-tab website fingerprinting attack: A detection perspective,” 2022,
arXiv:2203.06376.

H. Cheng and R. Avnur, “Traffic analysis of SSL encrypted web
browsing,” Tech. Rep., 1998.

Alexa The Web Information Company. Vmess. Accessed: Aug. 2020.
[Online]. Available: http://alexa.com

W. De la Cadena et al., “TrafficSliver: Fighting website fingerprinting
attacks with traffic splitting,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2020, pp. 1971-1985.

Z. Deng, Z. Liu, Z. Chen, and Y. Guo, “The random forest based
detection of Shadowsock’s traffic,” in Proc. 9th Int. Conf. Intell. Human-
Mach. Syst. Cybern. (IHMSC), vol. 2, Aug. 2017, pp. 75-78.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. USENIX Secur. Symp., 2004,
pp. 303-320.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
Proc. IEEE Symp. Secur. Privacy, May 2012, pp. 332-346.
Github. Vmess. Accessed: Aug. 2020. [Online].

https://toutyrater.github.io/basic/vmess.html

J. Gong and T. Wang, ‘“Zero-delay lightweight defenses against web-
site fingerprinting,” in Proc. USENIX Secur. Symp. Symp., 2020,
pp. 717-734.

X. Gu, M. Yang, and J. Luo, “A novel website fingerprinting attack
against multi-tab browsing behavior,” in Proc. IEEE 19th Int. Conf.
Comput. Supported Cooperat. Work Design (CSCWD), May 2015,
pp. 234-239.

Z. Guan, G. Xiong, G. Gou, Z. Li, M. Cui, and C. Liu, “BAPM:
Block attention profiling model for multi-tab website fingerprinting
attacks on Tor,” in Proc. Annu. Comput. Secur. Appl. Conf., Dec. 2021,
pp. 248-259.

J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in Proc. USENIX Secur. Symp., 2016,
pp. 1187-1203.

D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
Attacking popular privacy enhancing technologies with the multinomial
Naive-Bayes classifier,” in Proc. ACM Workshop Cloud Comput. Secur.,
Nov. 2009, pp. 31-42.

R. W. Irving and C. B. Fraser, “Two algorithms for the longest common
subsequence of three (or more) strings,” in Proc. Springer CPM, 1992,
pp. 214-229.

https://

Available:

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

[27]

[28]

[29]

(30]
[31]
(32]
[33]

[34]

[35]

[36]

(37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2014, pp. 263-274.

M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward
an efficient website fingerprinting defense,” in Proc. ESORICS, 2016,
pp. 27-46.

A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas, “Circuit
fingerprinting attacks: Passive deanonymization of Tor hidden services,”
in Proc. USENIX Secur. Symp., 2015, pp. 287-302.

J. Li et al., “Packet-level open-world app fingerprinting on wireless
traffic,” in Proc. NDSS, 2022, pp. 1-18.

J. Li et al., “FOAP: Fine-grained open-world Android app fingerprint-
ing,” in Proc. USENIX Secur. Symp., 2022, pp. 1579-1596.

A. Liaw and M. Wiener, “Classification and regression by randomFor-
est,” R News, vol. 2, no. 3, pp. 18-22, 2002.

R. Meier, V. Lenders, and L. Vanbever, “ditto: WAN traffic obfuscation
at line rate,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2022, pp. 1-17.
A. Mitseva et al., “POSTER: How dangerous is my click? Boosting web-
site fingerprinting by considering sequences of webpages,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2021, pp. 2411-2413.
M. Nasr, A. Bahramali, and A. Houmansadr, “DeepCorr: Strong flow
correlation attacks on Tor using deep learning,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2018, pp. 1962-1976.

M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating DNN-based
traffic analysis systems in real-time with blind adversarial perturbations,”
in Proc. USENIX Secur. Symp., 2021, pp. 2705-2722.

A. Panchenko et al., “Website fingerprinting at Internet scale,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2016, pp. 1-15.

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proc. 10th
Annu. ACM Workshop Privacy Electron. Soc., Oct. 2011, pp. 103-114.
M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mockingbird:
Defending against deep-learning-based website fingerprinting attacks
with adversarial traces,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp- 1594-1609, 2021.

V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” 2017,
arXiv:1708.06376.

V. Rimmer, D. Preuveneers, M. Juarez, T. van Goethem, and W. Joosen,
“Automated feature extraction for website fingerprinting through deep
learning,” in Proc. NDSS, 2018, pp. 1-49.

S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “Patch-based defenses
against web fingerprinting attacks,” in Proc. 14th ACM Workshop Artif.
Intell. Secur., Nov. 2021, pp. 97-109.

Z. Shi, J. Li, C. Wu, and J. Li, “DeepWindow: An efficient method for
online network traffic anomaly detection,” in Proc. IEEE 21st Int. Conf.
High Perform. Comput. Commun., IEEE 17th Int. Conf. Smart City,
IEEE 5th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Aug. 2019,
pp. 2403-2408.

A. Shusterman et al., “Robust website fingerprinting through the cache
occupancy channel,” in Proc. USENIX Secur. Symp., 2019, pp. 639-656.
P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprint-
ing: Undermining website fingerprinting defenses with deep learning,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2018,
pp- 1928-1943.

P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting with
N-shot learning,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 1131-1148.

R. Tang, G. Shen, C. Guo, and Y. Cui, “SAD: Website fingerprinting
defense based on adversarial examples,” in Proc. Springer SPNCE, 2021,
pp. 88-102.

T. Tsourdinis, I. Chatzistefanidis, N. Makris, and T. Korakis, “Al-driven
service-aware real-time slicing for beyond 5G networks,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), May 2022,
pp. 1-6.

Project V. V2ray. Accessed: Jan. 2023. [Online]. Available: https://www
.v2ray.com/

D. Wagner and B. Schneier, “Analysis of the SSL 3.0 protocol,” in Proc.
USENIX Workshop Electron. Commerce, 1996, pp. 1-13.

T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in Proc.
USENIX Secur. Symp. Symp., 2014, pp. 143-157.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

MA et al.: WFP ON ENCRYPTED PROXIES: A FLOW-CONTEXT-AWARE APPROACH AND COUNTERMEASURES 1919

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

T. Wang and I. Goldberg, “Improved website fingerprinting on Tor,”
in Proc. 12th ACM Workshop Privacy Electron. Soc., Nov. 2013,
pp- 201-212.

T. Wang and I. Goldberg, “Comparing website fingerprinting attacks and
defenses,” CACR, Waterloo, ON, Canada, Tech. Rep. 2013-30, 2014.
[Online]. Available: http://cacr.uwaterloo.ca/techreports

T. Wang and I. Goldberg, “On realistically attacking Tor with website
fingerprinting,” in Proc. PETS, 2016, pp. 21-36.

C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An effi-
cient defense against statistical traffic analysis,” in Proc. NDSS, vol. 9.
Princeton, NJ, USA: CiteSeerX, 2009, pp. 1-14.

Y. Xu, T. Wang, Q. Li, Q. Gong, Y. Chen, and Y. Jiang, “A multi-tab
website fingerprinting attack,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., Dec. 2018, pp. 327-341.

J. Yan and J. Kaur, “Feature selection for website fingerprinting,” in
Proc. PETS, 2018, pp. 200-219.

Q. Yin et al.,, “An automated multi-tab website fingerprinting attack,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 6, pp. 3656-3670,
Nov. 2022.

Y. Zhao, X. Ma, J. Li, S. Yu, and W. Li, “Revisiting website fingerprint-
ing attacks in real-world scenarios: A case study of Shadowsocks,” in
Proc. NSS, 2018, pp. 319-336.

Xiaobo Ma (Member, IEEE) received the Ph.D.
degree in control science and engineering from
Xi’an Jiaotong University, Xi’an, China, in 2014.
He was a Post-Doctoral Research Fellow with The
Hong Kong Polytechnic University in 2015. He is
currently a Professor with the MOE Key Labora-
tory for Intelligent Networks and Network Security,
Faculty of Electronic and Information Engineering,
Xi’an Jiaotong University. He is a Tang Scholar. His
research interests include internet measurement and
cyber security.

Jian Qu received the bachelor’s degree in computer
science and technology in 2019. He is currently pur-
suing the Ph.D. degree with the MOE Key Labora-
tory for Intelligent Networks and Network Security,
Faculty of Electronic and Information Engineering,
Xi’an Jiaotong University, Xi’an, China. He was in
the Special Class for the Gifted Young in Xi’an
Jiaotong University. His current research interests
include internet traffic analysis and cyber security.

Mawei Shi received the master’s degree with
the MOE Key Laboratory for Intelligent Networks
and Network Security, Faculty of Electronic and
Information Engineering, Xi’an Jiaotong University,
Xi’an, China. Her research interests include traffic
analysis and cyber security.

Bingyu An received the master’s degree with
the MOE Key Laboratory for Intelligent Networks
and Network Security, Faculty of Electronic and
Information Engineering, Xi’an Jiaotong University,
Xi’an, China. Her research interests include traffic
analysis and cyber security.

Jianfeng Li received the Ph.D. degree in control
science and engineering from Xi’an Jiaotong Univer-
sity, China, in March 2018. He was a Post-Doctoral
Fellow with The Hong Kong Polytechnic University
from September 2019 to June 2022. He is currently
an Assistant Professor with the MOE Key Labora-
tory for Intelligent Networks and Network Security,
Faculty of Electronic and Information Engineer-
ing, Xi’an Jiaotong University. He has published
a number of research papers in top conferences
and journals, such as S&P, CCS, USENIX Security,
NDSS, INFOCOM, IEEE/ACM TRANSACTIONS ON NETWORKING, and
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY. His
research interests include traffic analysis, the privacy of mobile platform,
network monitoring, Al security, and large-scale cyber security.

Xiapu Luo (Senior Member, IEEE) is currently a
Professor with the Department of Computing, The
Hong Kong Polytechnic University. His research
interests include mobile/the IoT security and privacy,
blockchain/smart contracts, networks/web security
and privacy, software engineering, and internet
measurement with papers published in top secu-
rity/software engineering/networking conferences
and journals. His research led to eight best paper
awards, including the ACM SIGSOFT Distinguished
Paper Award from ICSE 2021, the Best Paper Award
from INFOCOM 2018, the Best Research Paper Award from ISSRE 2016,
and several awards from the industry.

Junjie Zhang received the B.S. degree in computer
science and the M.S. degree in systems engineering
from Xi’an Jiaotong University, China, in 2003 and
2006, respectively, and the Ph.D. degree in computer
science from the Georgia Institute of Technology in
2012. He is currently a tenured Associate Profes-
sor with the Department of Computer Science and
Engineering, Wright State University. His research
interests include computer and network security.

Zhenhua Li (Member, IEEE) received the B.S. and
M.S. degrees in computer science and technology
from Nanjing University in 2005 and 2008, respec-
tively, and the Ph.D. degree in computer science and
technology from Peking University in 2013. He is
currently an Associate Professor with the School
of Software, Tsinghua University. His research
interests include mobile networking/emulation and
cloud computing/storage. He is a Senior Member of
the ACM.

Xiaohong Guan (Life Fellow, IEEE) received the
Ph.D. degree in electrical engineering from the
University of Connecticut, Storrs, in 1993. Since
1995, he has been with the Department of Automa-
tion, Tsinghua National Laboratory for Information
Science and Technology, and the Center for Intelli-
gent and Networked Systems, Tsinghua University.
He is currently with the MOE Key Laboratory for
Intelligent Networks and Network Security, Faculty
of Electronic and Information Engineering, Xi’an
Jiaotong University, Xi’an, China. He is also the
Dean of the Faculty of Electronic and Information Engineering. He is an
Academician of the Chinese Academy of Sciences.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 19,2024 at 03:24:19 UTC from |IEEE Xplore. Restrictions apply.

