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Abstract—Despite being crucial to today’s mobile ecosystem, app markets have meanwhile become a natural, convenient malware

delivery channel as they actually “lend credibility” to malicious apps. In the past few years, machine learning (ML) techniques have been

widely explored for automated, robust malware detection, but till now we have not seen an ML-based malware detection solution

applied at market scales. To systematically understand the real-world challenges, we conduct a collaborative study with T-Market, a

popular Android app market that offers us large-scale ground-truth data. Our study illustrates that the key to successfully developing

such systems is multifold, including feature selection and encoding, feature engineering and exposure, app analysis speed and

efficacy, developer and user engagement, as well asML model evolution. Failure in any of the above aspects could lead to the “wooden

barrel effect” of the whole system. This article presents our judicious design choices and first-hand deployment experiences in building

a practical ML-powered malware detection system. It has been operational at T-Market, using a single commodity server to check

�12K apps every day, and has achieved an overall precision of 98.9 percent and recall of 98.1 percent with an average per-app scan

time of 0.9 minutes.

Index Terms—Machine learning, mobile malware detection, app market, dynamic analysis, Android emulation

Ç

1 INTRODUCTION

APP markets, such as Google Play, Apple App Store, and
Amazon AppStore, play a critical role in today’s mobile

ecosystem, through which most mobile apps are published,
updated, and distributed to users. On the other hand, the
markets have also become a convenient channel for adver-
saries to spread malware. Even worse, adversaries prefer to
use this channel because when an app is published in a rec-
ognized app market, it in fact “lends credibility” to the app.
Moreover, mobile devices are often pre-configured to allow
app installations from only app markets by default [1].
Thus, automated market-scale malware detection is neces-
sary by all popular app markets today.

In the past few years, machine learning (ML) techniques
have been extensively explored for malware detection, as
they do not depend on specific rules and thus are considered
more automated and robust. A variety of ML-based techni-
ques have been proposed, from simple app fingerprint

checking [1], static code inspection [2], to sophisticated
dynamic behavior analysis [3]. Till now, however, we have
not seen any report on the effectiveness and efficiency of
such solutions being applied at amarket scale.

This paper presents our systematical efforts towards
building and deploying an ML-powered mobile malware
detection solution. Collaborating with a popular Android
app market, i.e., Tencent App Market [4] or T-Market for
short, we get full access to the large-scale ground-truth data
of apps (both released and rejected) and their malice labels
(Benign or Malicious). By comprehensively analyzing the
data and existing ML-based malware detection solutions,
we unravel that the key challenges lie in multiple aspects:
feature selection and encoding, feature engineering and exposure
(here exposure means to let an app manifest its features ade-
quately), app analysis speed and efficacy, developer and user
engagement, as well asML model evolution over time.

More importantly, we notice that failure in any of the
above aspects could lead to the “wooden barrel effect” [5] of
the entire solution. For instance, feature selection affects not
only the detection accuracy but also the app analysis time
(both have strict requirements on a market-scale solution).
Besides, feature engineering decides the detection robust-
ness and the difficulty of model evolution. Furthermore,
both detection accuracy and analysis speed impact devel-
opers’ engagement in app submissions, which is vital for
the prosperity of a popular app market.

To build a desired market-scale, ML-powered malware
detection system, first of all, we choose to concentrate on a
lightweight and scalable design of feature extraction: API-centric
dynamic analysis, which tracks Android API invocations at
an app’s runtime to achieve high analysis speed. Since
Android SDK APIs provide almost all functions for typical
apps, they are still the de facto feature choice in almost all
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prior studies [6]. Indeed, our study indicates in many cases,
using more complex features can hardly bring a noticeably
higher detection accuracy [3], [7], [8].

Next, we take a principled, data-driven approach for feature
selection, noticing that Android SDK offers 50,000+ APIs. The
rationale is threefold. First, the number of selected APIs has
non-negligible influence on the analysis time (up to 50� dif-
ference). Second, compared to tracking all 50KAPIs, strategi-
cally tracking fewer APIs leads to better detection accuracy,
probably because of the reduced likelihood of over-fitting.
Third, APIs identified from distinct sources complement
each other; carefully combining them greatly improves the
detection accuracy. With the above considerations, we pick
out a total number of 426 key APIs as features, and adopt the
lightweight Random Forest ML algorithm (among a wide
range of off-the-shelf ML algorithms), achieving 96.8 percent
detection precision and 93.7 percent detection recall on the
large-scale dataset from T-Market.

Moreover, we devise a feature-embedded encoding scheme to
efficiently retain the fine-grained information of key API invoca-
tions. In the preliminary work [9], we use the traditional
One-Hot encoding scheme [10] to represent the invocation
information of key APIs, which records whether or not an
API is invoked while leaving out the invocation frequency
and hierarchy of key APIs. The latter fine-grained informa-
tion, nevertheless, is also useful in deciding the malice of
quite a few apps. Hence, we design a novel encoding
scheme to efficiently represent such information by convert-
ing each API invocation into a word embedding vector [11],
saving � 20� memory usage compared with using one-hot
encoding to represent such information. After the above
enhancement is applied, the detection precision and recall
are improved to 97.1 and 96.9 percent, respectively.

To further boost the detection accuracy, we take an
adversary’s perspective to figure out hidden features. Purely rely-
ing on Android APIs for malware detection bears a limita-
tion: an adversary can bypass API invocations and use other
mechanisms like Java reflection and intents (Android’s IPC
mechanism) to fulfill the functionality of certain APIs. In our
dataset, we observe that both mechanisms have been lever-
aged by malicious apps to hide their certain features. To this
end, we also capture the permissions requested and the
intents used during dynamic analysis; such “indirect” fea-
tures are then combined with API invocation features to get
amore complete picture of an app’s runtime behavior.

In addition, to better manifest all the aforementioned fea-
tures, we actively exploit apps’ information to overcome the major
shortcomings of the Monkey UI exerciser (which we use in the
preliminary work [9]): redundant actions and action loops [12],
which could degrade the testing coverage and thus impair
the feature exposure. To reduce redundant actions, we fine-
tune the portions of different types ofMonkey events accord-
ing to the specific category (e.g., shopping or news feed) of an
app. To mitigate action loops, we strategically exploit an
app’s UI layout structure and component information as heu-
ristics for more comprehensive activity exploration. With the
above optimizations, the detection time is shortened by 15
percent on average, and the detection precision and recall are
improved to 98.9 and 98.1 percent, respectively.

Having acquired the desired features, we shift our focus
to accelerating the app analysis.We architect the app emulation

system to let it run efficiently on x86 servers (Section 5.1). Specifi-
cally, we run the native Android-x86 OS [13] and translate
apps’ native code from ARM to x86 with Houdini, the
state-of-the-art dynamic binary translation (DBT) tool devel-
oped by Intel [14]. Also, to optimize graphic rendering for
apps, we adopt GPU-assisted acceleration to intercept the
“micro” graphic instructions (that are decomposed and
reconstructed from OpenGL instructions by the graphic
driver) and execute them on x86 servers’ dedicated GPUs.
The above efforts reduce the app execution time by� 77%.

On the other hand, we notice that some apps could
recognize the emulation environment and silence their
malicious activities. To address this, in the preliminary
work [9] our solutions mostly involve parameter configu-
ration and library obfuscation before app emulation. How-
ever, these are insufficient when encountered with apps’
careful examination of system properties and user behav-
iors. To account for this, we further make twofold in-situ
efforts during app emulation: 1) hooking apps’ certain opera-
tions that can recognize emulation and applying defensive
intervention, and 2) adaptively tuning the action frequency of
Monkey once the emulated app enters a “silent” stage.
With such in-situ improvements, only 0.4 percent apps
exhibit fewer features than on real devices; the percentage
is remarkably smaller than that (1.4 percent) without in-
situ improvements.

False positives/negatives can hardly be avoided in ML-
based systems. In our solution, false positive apps (that are
complained by developers) and false negative apps (that are
reported by end users) are both manually analyzed but in
distinct ways. We choose to actively avoid the former (on a
daily basis), since it essentially increases the burden of man-
ual intervention to deal with developers’ complaints. In
detail, � 90% of the flagged malicious apps are updated
apps, which can be quickly checked based on their previous
versions, and thus the totally required manual inspection is
affordable in practice. On the contrary, for the latter we only
conduct manual analysis upon user reports, because we
observe that the existence of a small portion of false negative apps
in fact brings little impact on the regular operation of T-Market.
Manual inspection illustrates that 87 percent of the sampled
false negative apps seldom use the key APIs we select to
track; hence, they have fairly simple functionalities and will
not pose a great security threat to end users.

All the above efforts have been implemented in the real-
world system APICHECKER, whose workflow is shown in
Fig. 1. Upon an app submission, it first leverages DBT to
enable the app’s efficiently running on x86 environments
(�1 ). Then, the enhancedMonkey exerciser automates the app
execution to trigger various app behaviors (�2 ). To prevent
adversaries’ detection evasion, we also integrate multiple
defensive interventions (�3 ). Meanwhile, the internal Xposed
[23] intercepts and logs API invocations (�4�5 ). Based on the
app’s metadata (�6 ), our analysis engine extracts carefully-
selected features and encodes them in a feature-embedded
manner (�7�8 ). Using a random forest classifier, APICHECKER

is then able to determine the app’s malice. Finally, we take
different measures to cope with possible false positives and
negatives (�9 ). In real deployment, we notice that several
steps above are in fact independent and thus can be carried
out in parallel. Thus, we convert the monolithic back-to-back
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execution into a loosely-coupled pipeline to further boost
performance.

APICHECKER was first launched at T-Market in March
2018 [9] and has been continually optimized. It can cur-
rently examine �12K newly submitted apps per day on a
single commodity server (with 20 cores), and take an aver-
age of 0.9 minutes to scan a submitted app. This is basically
acceptable to the developers, given that the typical per-app
scan time is nearly 5 minutes in Google Play [24]. Recently,
the detection precision and recall have been around 99
and 98 percent, respectively, because the ML model is auto-
matically updated every month with new apps and novel Android
SDK APIs (Section 5.2). As the model evolves, the amount
of selected key APIs just slightly fluctuates between 425
and 432.

Data and Tool Availability.We have released at https://
apichecker.github.io/ the list of our selected key Android
SDK APIs, part of our analysis logs, and our implemented
efficient emulator.

2 MOTIVATION

Nowadays in app markets, mobile malware leverages vari-
ous techniques (e.g., repackaging and update attack) to con-
ceal its malice [25], entices users to download and install
from the app markets, and then carries out malicious opera-
tions on user devices that are hard to detect. To combat
these threats, Google launched a proprietary malware
detection system called “Bouncer” [24] in 2012 on Google
Play, reducing the number of malicious apps on the plat-
form by 40 percent. However, a lack of such detection on
numerous third-party app markets has allowed malware
continue to spread. To have an in-depth and practical
understanding of the issue, in this paper we collaborate
with a third-party app market called T-Market that has
released over 6M apps since 2012, with more than 30M
APKs being downloaded by 20M users every day.

To detect malware, T-Market reviews new and updated
apps submitted from developers on a daily basis. Specifi-
cally, T-Market introduced a sophisticated app review pro-
cess that is mainly a conglomeration of three techniques: 1)
fingerprint-based antivirus checking, 2) empirical API
inspection, and 3) user-report-driven manual examination.
First, antivirus checking vets apps against virus fingerprint
databases [1] provided by antivirus services such as Syman-
tec, Kaspersky, Norton, and McAfee, as well as those col-
lected by T-Market itself. Second, API inspection identifies

malware by monitoring the invocations of a set of specified
APIs through static code analysis. The API set is selected by
security experts, based on their experiences that certain
invocation patterns of APIs hint potential security threats
[7]. Finally, after the above steps, false results can still exist.
T-Market currently depends on developers and users to
report false positives and false negatives, respectively. For
reported cases, manual examination is then performed to
decide the results.

In this review process, the fingerprint-based antivirus
checking is only able to detect known malware samples,
while leaving the most critical defense task, detecting zero-
day malware, to the subsequent API and manual inspection
steps [18]. As manual inspection is slow (up to several days
of analysis time for an app), T-Market is especially inter-
ested in enhancing the API inspection step and achieving a
similar performance as the “Bouncer” system. In particular,
as today’s popular ML techniques are often expected to be
more automated and robust without dependence on specific
rules (from security experts), T-Market hopes to know
whether they are capable of achieving the goal.

3 RELATED WORK

Static Analysis. Static analysis extracts API usage informa-
tion from an app’s APK file that contains the compiled code
and configuration/resource files. After that, ML or heuristic
rules can be applied to decide apps’ malice. For instance,
Sharma et al. [15] apply Naive Bayesian and kNN classifiers
to 35 malice-correlated APIs extracted from 1,600 apps, to
achieve 91.2 percent precision and 97.5 percent recall for
malware detection.

DroidAPIMiner [7] extracts critical APIs based on their
usage frequencies, and compares the performance of four ML
classifiers. As a result, kNN achieves the best performance of
99 percent accuracy and 2.2 percent false positive rate, requir-
ing 25 seconds on average to check anAPKfile. Stowaway [16]
is an automated static analysis tool that builds a permissionmap
to detect apps’ over-privileged behaviors, using 1,259 APIs
with restrictive permission extracted from 964 apps. Droid-
Mat [17] adopts a similar strategy to determine the malice of
1,738 apps, which employs the k-means clustering to enhance
the kNN classificationmodel.

RiskRanker [18] leverages a two-order risk analysis to
examine 118K apps (taking around 41 seconds for each app).
Eventually 3,281 risky apps are revealed by identifying certain
patterns of seemingly innocent API usages, whichmay in fact
be indicators of malware. Further, Droid-Sec [20] proposes a
mashup strategy that utilizes 64 sensitive APIs extracted
through static analysis, and 18 app behaviors based on
dynamic analysis of 250 Android apps. It manages to achi-
eve the highest accuracy of 96.0 percent with the deep belief
network. Adopting a hybrid strategy, DREBIN [22] gathers
multi-dimensional features from 129K apps, including per-
mission-restricted APIs, suspicious APIs related to sensitive
operations, requested permissions, network addresses, and so
forth. On a real device, it takes 10 seconds on average to
extract features, and identifies certain patterns of embedded
featureswith the support vectormachine (SVM) classifier.

Dynamic Analysis.Due to its immunity to code obfuscation
and dynamic code loading, dynamic analysis can reveal a

Fig. 1. Architectural overview of APICHECKER.
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deeper andmore complete landscape of apps’ behaviors. For
instance, Yang et al. [8] develop a dynamic app behavior
analysis platform to examine the run-time usage of 19 APIs
that are related to three specific types of restrictive permis-
sions, in terms of obtaining device/system information, net-
work access, and charging from the user’s account. Using an
SVM model, they vet each app for around 18 minutes, and
achieve 92.8 percent precision and 84.9 percent recall.

DroidDolphin [21] builds a dynamic analysis framework
that leverages big data analysis and the SVM algorithm to
check the usage of 25 APIs and 13 types of sensitive opera-
tions in around 17 minutes, achieving 90 percent precision
and 82 percent recall. IntelliDroid [3] extracts specified API
call paths and risky event-chains from 2,326 apps in terms
of 228 target APIs that may facilitate sensitive operations
uncovered by TaintDroid [26]. Based on the extracted fea-
tures, it detects malware during an app’s runtime in an
average of 138.4 seconds. Moreover, DroidCat [19] applies
a random forest classification model to 122 extracted
behavioral features, achieving 97.5 percent precision and
97.3 percent recall, as well as an average per-app time cost
of 354 seconds for feature computation and classification.
Unfortunately, it is subject to dynamic code loading, thus
substantially degrading its generalizability.

Comparison With Our Work. Despite employing a similar
API-centric analysis scheme, our work differs from current
researches (as listed in Table 1) in multiple aspects: First,
our measurement scale (in terms of the number of studied
apps) is much larger. Second, our API selection is innova-
tive, and we identify hidden features and optimize UI exer-
ciser to further boost the detection accuracy. Third, we
enhance the dynamic execution (emulation) infrastructure
to considerably reduce the detection time while guarantee
the analysis efficacy and reliability. Fourth, we commer-
cially deploy our system and update the ML model in the
process. In total, our work develops the first practical and
integrated ML-based malware detection solution at market
scales with commercial deployment results reported.

4 COLLABORATIVE STUDY

In this section, we take a principled, data-driven approach
to study challenges and strategies of building an ML-based
malware detection system at real markets.

4.1 Large-Scale Dataset

Our app dataset includes �500K apps newly submitted to
T-Market within 10 months (from March to December
2017), with � 85% of them are updated apps initially sub-
mitted as early as in 2014. In practice, we treat APKs with
the same package name but different MD5 hash codes as
different apps. Also, in the dataset T-Market provides a
malice label (Malicious or Benign) for each app using a
sophisticated and effective app review process introduced
in Section 2. The labels are acquired with at least four state-
of-the-art signature-based antivirus checking [9], static API
inspection, and manual examination triggered by develop-
ers and users’ complaints. Hence, despite a trivial portion of
falsely-labeled apps, the dataset is mostly able to provide
credible, unbiased ground truth. In general, the dataset
contains 463,273 benign apps and 38,698 malicious apps.
Fig. 2 demonstrates the categories of apps (as classified by
T-Market) in our dataset, and the malice breakdown of each
category. Gaming apps account for the largest portion in
our dataset (� 35%) while each category contains < 15% of
malicious app samples. Currently, the malicious ones are
quarantined in T-Market’s database without being released.

Ethical Concern. When conducting this study, we strictly
follow the agreement established between T-Market and the
developers who submit their apps. When individual apps
are referred to as examples, they are anonymized for devel-
opers’ privacy protection.

4.2 Dynamic Analysis Engine

In order to monitor and record the run-time invocations of
framework APIs, we build a dynamic analysis engine atop of
Google Android emulator [27], and the Xposed hooking
framework [23] that can intercept a target API prior to its

Fig. 2. Categories of apps in our dataset.

TABLE 1
Representative Android Malware Detection Schemes That Study a Selected Set of Potentially Useful Framework APIs

“- -” means unknown.
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invocation.Meanwhile, we automate each appwith theMon-
keyUI exerciser [28] which can generate app- or system-level
UI event streams. For model comparison and selection, we
feed our collected logs into nine mainstream machine learn-
ing algorithms as listed in Table 2 to observe the yielded per-
formance, including Naive Bayes (NB), CART decision tree,
logistic regression (LR), k-nearest neighbor (kNN), support
vector machine (SVM), gradient boosting decision tree
(GBDT), artificial neural network (ANN), deep neural net-
work (DNN), and random forest (RF). These models have
been extensively explored in existing studies or systems [7],
[8], [15], [17], [19], [20], [21], [22], and demonstrate the best
performance. In building the above infrastructure, our key
design decision is using provably mature program analysis
(i.e., a well-received app analysis tool chain, in terms of emu-
lation [27], API hooking [29], and UI testing) and ML techni-
ques as our building blocks, as our engine will be part of a
production system that is supposed to accommodate all the
appmarket’s hosted apps.

App Emulation Environment. We deploy Google Android
emulators on a sever cluster containing 16 commodity x86
machines (HP ProLiant DL-380 running Ubuntu 16.04
LTS 64-bit). They are all equipped with a 5�4-core Xeon
CPU@2.50 GHz and 256-GB DDRmemory. On eachmachine,
we pin 16 emulators on 16 cores to allow concurrency, while
the remaining 4 cores are assigned with task scheduling, sta-
tus monitoring, and data logging. We then parallelly run the
�500K apps on 16 emulators using theAndroidDebugBridge
(adb) tool. For each app, adb commands are sequentially exe-
cuted for automatic app installation, UI event generation and
execution with Monkey, log recording, app uninstall, and
residual data purging. Meanwhile, when executing Monkey’s
generated UI events for an app, we use Xposed not only to
intercept target APIs’ invocation data (including API names
and parameters), but also to implement possible callback
interfaces to perform instrumental operations (e.g., hooking a
target Activity, and return customized values to bypass
user login or simulate behaviors of a real device).

Furthermore, we observe that malware sometimes
attempts to detect the existence of emulators to evade our
detection by suppressing its malicious activities. Common
practices of emulator identification mainly include exami-
nations of system states/configurations, user behaviors,
sensor data and installed packages. To prevent such detec-
tion from discovering our emulation environment, in the

preliminary work [9] we make fourfold improvements as
follows: First, we modify default configurations of emula-
tors and default parameters of the Build class [30], includ-
ing those related to device identities (IMEI and IMSI),
network status (e.g., the TCP information maintained in
/proc/net/tcp), and PRODUCT/MODEL types to conceal
ourselves. Second, we adjust the execution parameter
throttle of Monkey, which regulates the input interval
to make the UI events appear more realistic. Meanwhile, we
specify two flags (ignore-crashes and ignore-time-

outs) to enhance Monkey’s resistance to response excep-
tions in apps [28]. Third, we replay traces of sensor data
(e.g., those of accelerometer, gyroscope) collected in multi-
ple real devices on our emulators to augment their authen-
ticity [31]. Finally, we obfuscate libraries related to Xposed
and modify the return values of certain interfaces of the
PackageManager class, so as to hide the existence of
Xposed [32].

To measure the effectiveness of our enhanced emulation
environment, we carry out a controlled experiment by run-
ning the same sample set of apps on real Android devices
(Google Nexus 6), the default emulator, and our enhanced
emulator. The sample set is an unbiased subset (1 percent)
randomly extracted from our dataset (the �500K apps). As
a result, on the default emulator only 86.6 percent of apps
invoke as many APIs as (they invoke) on the real Android
devices, while on our enhanced emulator 98.6 percent of
apps invoke as many APIs as on the real Android devices.
This result showcases the effectiveness of our optimizations
to the emulator.

UI Exploration Methodology. For automatic UI exploration,
our goal is to achieve a high UI coverage that can trigger as
many user activities as possible. Originally, we used
Activity coverage as our UI coverage metric [33], as pos-
sible Activity objects of an app have been specified in the
configuration file (AndroidManifest.xml). However,
this metric is exceedingly pessimistic given that Activi-
ties not referenced by the app code are taken into account
in calculation. To understand the common ratio of specified
Activities actually being referenced by an Android app,
we write a script to scan and analyze the configuration file
and the static app code of non-obfuscated APKs in our data-
set. The scanning results showcase that only 88 percent of
specified Activities are referenced in the code on aver-
age. To more accurately measure and quantify UI coverage,
we define a new metric based on the above findings—
Referred Activity Coverage (RAC), which is the ratio
between the number of detected (triggered) Activities

during an app’s emulation and the number of its referenced
Activities.

We next explore the relation between executed Monkey
events and RAC. The triggered Activities during an app’s
emulation are detected and logged by Xposed [23]. Quantita-
tively, we notice that executing �100K Monkey events can
obtain 86 percent RAC on average, while executing more
events hardly increases the recorded RAC. However, 100K
Monkey events consume 2,142 seconds (35.7 minutes) for exe-
cution on average, which is unacceptable to both app market
operators and developers in practice (given that Google
Bouncer only requires nearly 5minutes to analyze an app sub-
mission [24]). To account for this problem, carefully balancing

TABLE 2
Performance and Overhead of Different MLClassification

Models When 50K Versus 426 Key APIs are Tracked

Models Precision Recall Training Time

(50K / 426 ) (50K / 426 ) (50K / 426 )

NB [15] 60.4% / 64.1% 59.6% / 63.6% 3.6 min / 1.7 sec
LR [20] 81.2% / 89.9% 70.3% / 72.4% 10.4 min / 4.5 sec
SVM [8] 87.9% / 96.2% 71.6% / 80.1% �27K min / 13K sec
GBDT 88.4% / 96.2% 74.3% / 77.9% 364 min / 174 sec
kNN [15] 86.5% / 95.3% 83.7% / 93.3% �1.8K min / 821 sec
CART [7] 87.6% / 94.3% 84.3% / 93.7% 11.6 min / 5.8 sec
ANN [20] 90.8% / 96.0% 89.9% / 93.4% �1.2K min / 563 sec
DNN 91.5% / 96.4% 90.9% / 93.7% �1.9K min / 944 sec
RF [19] 91.6% / 96.8% 90.2% / 93.7% 29.1 min / 14.4 sec
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the effectiveness (in terms of RAC) and the efficiency (in terms
of emulation time) is essential.

Fig. 3 demonstrates the average RAC with the increasing
number ofMonkey events. In detail, we notice that as the emu-
lation time increases (proportional to the increase of Monkey
events), the average RAC quickly rises to 76.5 percent within
126-second emulation time. Afterwards, the benefits of exe-
cuting more Monkey events become marginal – even spend-
ing �250 seconds for 10K events merely brings 1.5 percent
increase in the RAC on average. As a result, we choose to exe-
cute 5K Monkey events for an app’s emulation (costing
126 seconds), so as to achieve a decent RAC (76.5 percent). In
other words, we sacrifice a small portion (9.5 percent) of RAC
to largely reduce (94 percent) the emulation time compared
to executing 100KMonkey events.

Additionally, Fig. 4 shows the number of detected API
invocations during the emulation of one app. Quantitatively,
tens of millions of API invocations are triggered during the
emulation (with 5K Monkey events being executed). That is,
one Monkey event would trigger an average of 8,460 APIs,
indicating that API usage during an Android app’s running
is intensive. Furthermore, we notice that the number of
tracked APIs could also greatly impact the emulation time.
As shown in Fig. 5, when emulating an app without tracking
any APIs, the time consumption is merely 2.1 minutes on
average. But when all the �50K APIs are tracked during
emulation, the time consumption drastically increases to an
average of 53.6 minutes due to the considerable overhead of
intercepting a large number of APIs. Evidently, tracking all
APIs would be time-wise infeasible. To practically track API
usages, we judiciously investigate key API selection strategy
in Section 4.4.

Machine Learning Algorithms. Similar as most existing
work reviewed in Section 3, we adopt machine learning
techniques to classify an app as malicious or benign. Recall
that during the emulation of each app from our dataset, the
invocation data of the tracked APIs (API names and param-
eters) are recorded. To feed the data into ML models for
training, in the preliminary work [9] we employ One-Hot

encoding to transform the log into a feature vector of n
dimensions, where n is the total number of tracked APIs
and each dimension represents the invocation status of a
tracked API (1 for invoked and 0 for not). All the feature
vectors of our studied apps are split into the training or test
sets (which are of course disjoint).

For the performance evaluation of ML models, three
key metrics are commonly considered: precision, recall,
and training time. The precision and recall are calculated
as: precision ¼ TP

TPþFP and recall ¼ TP
TPþFN , where TP (True

Positive) denotes the number of apps accurately classified
as malware, while FP (False Positive) and FN (False Neg-
ative) represent the number of apps falsely vetted as mali-
cious and benign, respectively. In total, we use scikit-
learn [34] to implement nine mainstream machine learn-
ing models (cf. Section 4.2). In our experiments, we tune
the hyper-parameters of each model based on our domain
knowledge.

Further, to mitigate possible data leakage [35] in the train-
ing and testing stages, we employ 10-fold cross-validation
during model evaluation. Data leakage occurs when the
training set gains access to the test set, i.e., the two sets share
identical or similar data, leading to overestimated evalua-
tion results. While one single random train/test split could
easily lead to the problem, 10-fold cross-validation is able to
yield less biased results by training and testing the model
with multiple different train/test splits. Meanwhile, to fur-
ther reduce data leakage, we remove duplicate feature vec-
tors in the training and test sets from the test set for each
iteration of the cross-validation. Additionally, examination
has revealed that the ratio of duplicate apps (i.e., apps with
the same package names but different MD5 hash codes,
which could also result in data leakage) in the training and
test sets is fairly small (< 1%). The detailed model configu-
rations can be found at https://apichecker.github.io/.

4.3 Understanding Tradeoffs for API Selection

Leveraging the above dynamic analysis engine, we collect
apps’ API invocation data to study the critical design
aspects of API (feature) selection and malware detection
speed/accuracy. In the market-scale context, tradeoffs
between the above aspects are critical since app markets
often have stringent requirements for them. Regarding this,
we present our understandings and insights that effectively
guide us to our practical strategies in this section.

APIs’ Correlations With Apps’ Malice. An API’s correlation
with the malice of apps is an objective metric of API statis-
tics [15]. In this paper, we adopt the Spearman’s rank correlation
coefficient (SRC) [36] to evaluate the statistical correlation.

Fig. 3. Relationship among #Monkey events, RAC, emulating time.

Fig. 4. CDF of the number of API invocations when emulating one app.

Fig. 5. Time consumption for tracking all APIs and no API.
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With the dynamic analysis results and malice labels in the
dataset, we measure SRC for each API regarding the malice
of apps. Fig. 6 shows all the detected APIs sorted by their
SRC values in descending order. Since the correlations
(between APIs and the malice of apps) are considered non-
trivial when jSRCj � 0:2 [37], we focus on these APIs and
observe that there are 247 (APIs) whose SRC � 0:2, and 2,536
whose SRC � �0:2.

We next closely examine the characteristics of the above
APIs and reveal several intriguing findings. Regarding the
247 APIs whose SRC is greater than 0.2, we notice that in
certain apps some of these APIs are statistically correlated
with each other. Therefore, it would seem somewhat redun-
dant to include them all in app analysis. Nevertheless, we
further find that these APIs often complement each other in
terms of functionalities rather than being interchangeable,
thereby in fact being beneficial and crucial to our analysis.
Moreover, among the 2,536 APIs whose SRC is smaller
than �0:2, we notice that almost all of them are seldom
invoked by the examined apps in our dataset. Here seldom is
empirically taken as being invoked by � 0:1% of the apps.
Since including these rarely used APIs as features may lead
to over-fitting problems in machine learning, we choose to
exclude them in API selection. Nevertheless, there are 13
APIs with SRC � �0:2 that are frequently invoked by most
apps to perform common system operations like disk I/O;
such APIs are still retained in our analysis. In general, Fig. 7
demonstrates the top-1K framework APIs that are not sel-
dom invoked with regard to their jSRCjs. From the figure
we can observe that there are a total of 260 APIs (247 APIs
with SRC � 0:2 and 13 APIs with SRC � �0:2, denoted as
Set-C) that exhibit a non-trivial jSRCj.

Analysis Speed. As discussed in Section 4.2, the number of
trackedAPIs could greatly impact the analysis speed.Wedelve
deeper into the problem, and present the relationship between
the number of tracked APIs (n) and the analysis time (t) in
Fig. 8, whenwe prioritize trackingAPIs exhibiting a high corre-
lation (with themalice of apps) that are not seldom invoked.

To describe the statistical relationship shown in Fig. 8, we
propose a complex tri-modal distribution that can well fit
the data. In detail, t first experiences linear growth when
n 2 ½0; 800Þ, with the corresponding APIs being moderately
used, more likely by malware given their high SRCs. Next
when n 2 ½800; 1K	, t polynomially grows due to the
involvement of APIs heavily used by both malware and
benign apps, which are therefore less expressive regarding
characterizing malware. Finally, t logarithmically grows
when n > 1K since the newly enrolled APIs are less fre-
quently invoked. We use the following tri-modal distribu-
tion to describe the above characteristics:

t ¼
a1 
 nþ b1; n 2 ½1; 800Þ;
a2 
 nb2 ; n 2 ½800; 1K	;
a3 
 logðnÞ þ b3; n > 1K:

8
<

:
(1)

where a1 ¼ 0:006; b1 ¼ 2:06, a2 ¼ 10�9; b2 ¼ 3:44, a3 ¼ 6:4,
and b3 ¼ �43:36. Also, we employ the coefficient of determina-
tion [38] (R2, ranging from 0 to 1) to evaluate how well the
measured data can be expressed by the proposed statistical
model. As a result, we have R2

1 ¼ 0:96, R2
2 ¼ 0:99, and R2

3 ¼
0:99, which are all fairly close to 1 (the perfect fitting).

The above results demonstrate a rather complex relation-
ship between APIs’ SRC and their invocation frequency
(and thus the incurred API interception overhead). A quan-
titative insight helps better balance the tradeoff between
analysis speed (time) and detection accuracy. For the for-
mer, Fig. 8 indicates that when tracking up to the top-490
APIs, we can achieve an average analysis time of �5
minutes per app with the dynamic analysis engine. We will
later explore the accuracy dimension.

Machine Learning Models. We evaluate the nine machine
learning models introduced in Section 4.2 by tracking all the
50K framework APIs. The performance (in terms of preci-
sion and recall [39]) and overhead (in terms of training
time) of each model are listed in Table 2. We find that the
models manifest differently in the above aspects, particu-
larly regarding training time and generalization. However,
no model alone is able to surpass others in all the key met-
rics. Specially, we notice that the distributions of most API
features in the dataset (e.g., in terms of invocation fre-
quency) are rather skewed, resulting in generally better per-
formance of tree-based models (GBDT and CART) and
neural network models (ANN and DNN). However, such
performance merits often come with a price of overfitting.
Consequently, we select the classification model that can
best balance them all – random forest (RF), which produces
the best precision, a preferable recall, and an acceptable
training time. Additionally, RF uses the ensemble learning

Fig. 6. Ranking of the �50K framework APIs in terms of SRCs.

Fig. 7. Top-1K APIs in terms of jSRCj.

Fig. 8. Time consumption for tracking top-n correlated APIs.
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technique that draws the power of multiple trained models
to effectively overcome the overfitting problem and enhance
its generalization ability [19]. Also, the model’s simplicity
(as compared to complex network models) and parallel
nature of RF’s internal trees make the training process
rather efficient. As a matter of fact, when only the top-1K or
top-490 APIs (referred to Fig. 8) are tracked in analysis, the
best option is still the RF classifier.

Malware Detection Accuracy. Intuitively, tracking all the
50K APIs is supposed to yield the optimal accuracy despite
its high time consumption. Fig. 9 shows the detection accu-
racy when tracking the top-n correlated APIs based on the
RF classifier. The precision/recall obtained by tracking 50K
APIs, top-1K correlated APIs, and top-490 correlated APIs
is 91:6%=90:2%; 94:7%=92:0%, and 96:3%=92:4%, respec-
tively. It may be surprising that tracking fewer APIs in a
strategical manner can lead to better precision and recall
compared to tracking all the 50K APIs. Delving deeper, we
realize that this counter-intuitive situation originates from
the fact that most APIs are sparsely or seldom invoked by
most apps. The enrollment of these rarely observed features
could then lead to over-fitting of the trained models. As a
result, tracking fewer APIs can in fact benefit both runtime
speed and detection accuracy.

4.4 Key API Selection Strategy

We now describe our principled API selection strategy con-
sisting of the following four steps.

Step 1. Selecting APIs that are most correlated with malware
(Set-C). When tracking the top-260 correlated APIs
(Set-C) as analyzed in Section 4.3, we can achieve
93.5 percent precision and 82.1 percent recall.

Step 2. Selecting APIs that require restrictive permissions
(Set-P). In protection of the privacy/security of user infor-
mation, an app needs to explicitly request permissions before
obtaining certain information or executing certain func-
tions [17]. There are three protection levels in Android per-
missions [40]: normal, signature, and dangerous. The APIs
that require dangerous-level or signature-level permissions
are oftentimes related to private user data (such as camera,
SMS, and location data), thereby being crucial to malware
detection. Leveraging the Axplorer [41] and PScout [42]
static analysis tools, we pick out APIs related to restrictive
permissions, and obtain a total of 112 APIs (referred to as
Set-P). By solely tracking APIs in Set-P, we acquire
95.1 percent precision but rather low (71.3 percent) recall.

Step 3. Selecting APIs performing sensitive operations
(Set-S). Unlike the permission levels, there is no “official”
definition to sensitive operations. From previous work
we find that five categories of operations are commonly

exploited for attacks: 1) APIs that result in privilege escala-
tion, e.g., shell command execution APIs [25], 2) APIs for
database operations and file I/O, which are often used for
privacy leakage attacks [26], 3) APIs that control key
Android components, e.g., those for creating an Android
window or overlay, which are adopted in attacks like Activ-
ity hijacking [43], 4) cryptographic operation APIs, which
are frequently employed in ransomware attacks [44], and 5)
APIs for dynamic code loading that load malicious pay-
loads at runtime, enabling attacks such as update attack [25].
Combined with domain knowledge, we identify 70 APIs
(referred to as Set-S) related to the above sensitive opera-
tions. By solely tracking these 70 APIs, we obtain 95 percent
precision but poor (70.1 percent) recall.

Step 4. Combining the above. After combining the above
strategies, i.e., Set-P

S
Set-S

S
Set-C, we have a total of

426 key APIs. Intuitively, doing so simultaneously considers
statistical observations of the data and adversarial techni-
ques based on domain knowledge. As shown in Fig. 10,
only 16 overlapped APIs exist among the three sets, indicat-
ing an orthogonal relationship. Fig. 11 shows that when
only the 426 key APIs are tracked, the per-app analysis time
is 4.3 minutes on average, which is much shorter than
53.6 minutes (the average time consumption of tracking all
the 50K APIs), and close to 2.1 minutes (the average time
consumption tracking no APIs), on the dynamic analysis
engine. In Section 5.1, we will further boost the detection
speed by optimizing and engineering the underlying analy-
sis infrastructure.

Further, we measure the detection precision and recall
using the 426 key APIs with the nine mainstream ML mod-
els. As listed in Table 2, random forest still yields the high-
est precision (96.8 percent) and recall (93.7 percent), with its
training (14.4 seconds) being much faster than that of more
complex models (such as DNN and SVM). In comparison,
simply tracking the top-426 correlated APIs (i.e., extending
Set-C, also with RF) leads to 95.2 percent precision and
90.6 percent recall, as shown in Fig. 9. This confirms the
advantage of the hybrid strategy over an individual strat-
egy. It is noteworthy that selected 426 key APIs might not

Fig. 9. Efficacy for tracking top-n correlated APIs, respectively.

Fig. 10. Number of APIs in Set-C, Set-P, and Set-S.

Fig. 11. Time consumption for tracking 426 key APIs.
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be the optimal API set with the best detection accuracy. We
do not exhaustively pursue such an “optimal solution” for
the enormous search space. Nevertheless, our proposed
API selection strategy can be easily executed, and yields
good results in the real-world deployment (Section 5.2).

Finally, we feel that it is difficult for adversaries to
bypass our detection as we observe that a total of 5,242 APIs
(10.5 percent of all framework APIs) is dependent on our
426 key APIs in implementation. Bypassing them all is
highly challenging and tedious, if not impossible. Although
using NDK [45] seems like a plausible alternative, heavy
usage of NDK for common functions itself is an indicator of
possible malicious behaviors.

4.5 Feature-Embedded Encoding Scheme

As introduced in Section 4.2, we employ the traditional
One-Hot scheme to encode extracted features in the prelimi-
nary work [9]. The One-Hot encoding records the invoca-
tion status of tracked APIs, where 1 denotes that the
corresponding API has been invoked and 0 means other-
wise. Although this feature representation yields good
detection accuracy (96.8 percent precision and 93.7 percent
recall), it is inherently deficient in several aspects.

First, our original One-Hot encoding erases essential
information in the features, including key APIs’ invocation
hierarchy and frequency, since dimensions in the One-Hot
vector are orthogonal and binary. However, our observation
suggests that these invocation patterns are often beneficial
to malware detection [46]. As shown in Table 3, we notice
that the invocations of some key APIs in malware are often
invoked in a fixed order (i.e., forming a call chain), since
complementary APIs need to be sequentially invoked to
realize a certain function. Also, different API call chains
have distinct invocation frequencies. Moreover, to retain
such information, the One-Hot encoding can easily result in
severe dimension explosion, i.e., uncontrolled growth of the
feature vectors’ sizes. This characteristic not only brings
high memory overhead, but also is somewhat unfriendly to
tree-based models (e.g., random forest) due to expensive
tree split [47].

Classic approaches that can efficiently retain the fine-
grained features are word2vec [11] and doc2vec [48] encoding.
Compared to the bag-of-words model of One-Hot encoding,
the word embedding scheme is known to be able to preserve
the semantic patterns of input data [49]. However, our
experiments show that none of them can achieve a desirable
performance due to the skewed distribution of API

invocation frequencies in some apps. An app that frequently
invokes certain key APIs is often mistaken as malicious by
word2vec (resulting in 8 percent false positive), while one that
rarely uses key APIs are usually overlooked by doc2vec
(resulting in 9 percent false negative). To tackle the issues,
we devise a novel feature-embedded encoding scheme. Spe-
cifically, we first adopt word2vec to convert each key API into
a word embedding vector using the apps’ invocation logs.
Given that directly using the vector as the representation of
each invocation record can render frequently-used APIs
being heavily repeated (henceforth suboptimal precision),
we replace each original binary (corresponding to a key API)
in the One-Hot vector with the associated word embedding
vector. In this way, we can not only largely avoid the impact
of skewedAPI invocations, but also achieve� 20� reduction
in memory consumption compared to solely using the One-
Hot scheme for the data. Furthermore, we evaluate the accu-
racy of different MLmodels and find that random forest still
prevails with 97.1 percent precision and 96.9 percent recall.

4.6 Feature Engineering and Exposure

Hidden Feature Identification. Our examination on the
dynamic analysis results of �500K apps indicates that solely
relying on Android framework APIs is problematic due to
adversaries’ bypassing API invocations through other mech-
anisms. In practice, adversaries often exploit two alternatives
for triggering a target API’s function without direct invoca-
tion: 1) internal/hidden APIs, which are triggered by special
techniques such as Java reflection [50], 2) intents, the major
IPC mechanism in Android that enables an app to delegate
sensitive operations to other apps/services, and to detect
system events [51]. In our dataset, both techniques are
actively exploited as camouflage for the actual invocations of
certain APIs in malware. So, these “covert” API invocations
become hidden features requiring further explorations.

Fortunately, we can effectively and efficiently mitigate
this limitation without any dynamic overhead. In detail, we
add the requested permissions and the used intents as aux-
iliary features to help uncover hidden API invocations. This
is because invoking internal/hidden APIs requires the mal-
ware to first request permissions, and as far as we know
there is no practical workaround [51]. Also, we can collect
the requested permissions through static analysis of apps’
metadata, and monitor the used intents by checking the
parameters of intent-related APIs tracked in Set-S.

As shown in Fig. 13, using permissions and key APIs
as features (“A+P”) can increase the precision from 97.1 to
98.6 percent, and the recall from 96.9 to 97.5 percent.
Intriguingly, combining permissions and intents alone
(“P+I”) can also obtain sound results (98 percent precision
and 96.6 percent recall), suggesting that these two mecha-
nisms are heavily exploited by today’s Android malware.
Finally, compared to purely relying on the 426 key APIs
(“A”), a joint consideration of all three feature categories
(“A+P+I”) achieves the best results, i.e., improving the pre-
cision to 98.9 percent, recall to 98.1 percent, and F1-score to
98.2 percent. Here F1-score denotes the harmonic mean of
precision and recall: 2� precision�recall

precisionþrecall .

Feature Exposure. To better expose and manifest these fea-
tures, we further improve our automatic UI exploration

TABLE 3
Typical Call Chains of Key APIs in Logs

Call Chains of Key APIs # of
Invocations

GetDeviceId - GetSubscriberId 305200
SecretKeySpec - GetCipher - CipherInit 199395
HttpExecute - GetRunningTasks - DeleteFile 197255
GetLatitude - GetLongitude - ListDirectory 197255
CreateDirectory - DexFile -
BaseDexClassLoader

45893

SetBackGroundColor - TVSetText 20931
CreateDirectory - CreateFile 14733
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methodology targeting the Monkey exerciser’s major defi-
ciencies – redundant actions and action loops [12], which
could lead to inefficient and ineffective UI testing. For
redundant actions, we fine-tune the portions of different UI
events (e.g., touch and swipe) based on the specific category
of an app, since apps in the same category usually imple-
ment similar operations and action flows [52], and thus
often require similar UI events to expose their features. In
detail, we tune the related parameters of Monkey, e.g., pct-
touch that controls the percentage of the touch event. The
concrete parameter settings for a certain category are config-
ured based on statistic analysis of the number of callback
functions for different UI events (e.g., OnClick for the
touch event) in the apps’ code. Note that we perform
category-level instead of app-level analysis for parameter
settings since many apps are obfuscated and require high
workload to analyze.

On the other hand, action loops root in the random
nature of Monkey’s generated events, which is inherently
limited due to a lack of information regarding an app’s
interactable UI components and visited Activities. To
address this problem, we leverage the UI Automator [53]
and Robotium [54] to obtain an app’s UI layout structures
containing component information as heuristics for trigger-
ing actions and Activities. Also, we record visited
Activities to detect and avoid severe action loops. As
shown in Fig. 12, our optimized UI exerciser can achieve a
similar RAC as the original Monkey with only 3K UI events,
leading to 15 percent reduction in detection time without
any accuracy loss.

5 SYSTEM DEVELOPMENT

In this section, we present our optimization to the underly-
ing emulation infrastructure. Then we deploy APICHECKER

and evaluate its real-world performance, while the model
evolution is described in details.

5.1 Emulation Infrastructure Optimization

Enhancing Runtime Performance. Having derived the desired
features, we next focus on enhancing the underlying emula-
tion infrastructure of APICHECKER to improve its runtime
performance. We discover that the performance of default
Google Android emulator [27] is sub-optimal given its
heavyweight, full-system emulation built atop of QEMU
[55]. While this may satisfy the need of in-lab, controlled
analysis as we perform in Section 4, a real-world production
system that examines a large number of apps has much
lower tolerance fo long detection delays, since theymay neg-
atively impact developers’ experiences, as well as increase
the infrastructure expense of market operators.

Fig. 11 shows that for 30 percent apps, the original
dynamic analysis engine (Section 4.2) requires more than 5
minutes to scan each of them, which is longer than the typical
detection time of Google Bouncer [24]. To boost the runtime
performance, apart from multiple optimizations already
introduced to APICHECKER at the detection engine level
(Section 4), we further make system-level optimizations to
the underlying emulation infrastructure. In detail, we build a
lightweight emulation system to efficiently run Android and
apps on powerful commodity x86 servers. To this end, we
leverage Android-x86 [13], an open-source x86 port of ARM-
based Android, to largely avoid performance degradation
induced by software-assisted virtualization used to address
the ISA gap between ARM and x86. With Android-x86, we
are then able to introduce various hardware-assisted virtuali-
zation techniques into the underlying runtime to further
improve the performance, including Intel VT [56] and
KVM [57] that enable our system to fully explore the power
of x86 CPUs. Also, we adopt VirtIO [58], a para-virtualization
technique, to realize GPU-assisted acceleration in graphic
rendering (a computation-intensive job originally executed
by the host CPU rather than the dedicated GPU). Specifically,
we intercept guest (Android-x86) side graphic driver’s
“micro” instructions (that are decomposed and reconstructed
from OpenGL instructions by the graphic driver) within
apps’ rendering pipelines, and execute them atop the GPU
on the host (x86 server) side, thereby essentially outperform-
ing the original CPU-based software rendering. Meanwhile,
for apps that adopt Android’s native ARM libraries that may
not be able to run onAndroid-x86 [59], we integrate the state-
of-the-art dynamic binary translation (DBT) tool developed by
Intel (Houdini [14]) to translate the apps’ ARM instructions
into x86 instructions.

In total, combined with our enhanced Monkey
(Section 4.6) and Xposed, our lightweight Android emulator
runs atop of a physical x86 server equipped with a 5�4-core
Xeon CPU@2.50 GHz and 256-GB DDR memory. To fully
exploit the server’s hardware resources, we concurrently
run multiple emulators on it, with each emulator pinned to
a CPU core. Specifically, 16 emulators run on 16 cores in
parallel, with the remaining 4 cores being used for task
scheduling, status monitoring, and information logging.

Despite that our lightweight emulation infrastructure
substantially surpasses our original emulator in terms of
runtime speed, its compatibility with Android apps slightly
drops. To avoid failures of examination caused by incompat-
ibility, we modify the SystemServer service in Android-
x86 to report app hangs or crashes to the 4 cores used for task

Fig. 13. Benefits of auxiliary features (A: key APIs, P: permissions, I:
intents).

Fig. 12. Comparison of Monkey UI exerciser with our UI exerciser
regarding RAC.
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scheduling, status monitoring, and information logging. We
observe that only a trivial portion (< 1%) of apps fail to run
on the lightweight engine,mainly due to compatibility issues
rooting in Android-x86 and DBT. For incompatible apps, we
roll back to the original emulator for successful analysis. In
this way we can ensure the reliability of APICHECKER despite
sacrificing a small portion of detection speed—all submitted
apps are analyzed on our production system.

Our customized infrastructure enables APICHECKER to
efficiently analyze apps, leading to around 77 percent reduc-
tion in detection time compared to the default Android emu-
lator under the same hardware configuration, without any
accuracy loss. Tracking the 426 key APIs, we evaluate the
per-app scan time with the default Android emulator and
our customized emulator on the same x86 server (incompati-
ble apps are also considered). Fig. 14 demonstrates the opti-
mization effects of all the introduced enhancing techniques.
As shown, Android-x86 and the accompanied hardware-
assisted opportunities yield the most effective optimization
in runtime performance, reducing 70 percent of the per-app
scan time.

Preventing Detection Evasion. In Section 4.2 we have intro-
duced the techniques we used in the preliminary work [9]
to prevent emulator identification and detection evasion.
Basically, our methods of concealing the emulator are static
modifications to the system prior to emulation, including
parameter configurations and library obfuscations. Although
these improvements are able to deal with static system analy-
sis, they are ineffective facing apps’ dynamically scrutinizing
system operations and user behaviors during emulation. To
address this, we devise two techniques as follows to enable
in-situ evasion prevention. First, we intercept calls into cru-
cial system interfaces regarding apps’ operations and system
states (e.g., LocationManager, NetworkInterface and
BatteryManager) to return similar values as in real
devices.

Second, we adaptively tune the interval of Monkey
events. The malware can take the interval as a critical indi-
cator of emulation and detection; if the interval is smaller
than a given threshold, they will suppress malicious activi-
ties (become idle). In the preliminary work [9], the interval
is fixed. Hence, malicious apps could detect our emulator
by simply raising the corresponding threshold. Therefore,
once an app is constantly idle during emulation without
responding to input events (indicating that the app may
have recognized the emulation environment), we exponen-
tially increase the interval from 500 ms to quickly reach an
ideal interval. Note that we stop increasing the interval
once the overall waiting is over 1 minute to avoid significant

overhead. If the waiting time exceeds 1 minute when check-
ing an app, it is then considered to be highly suspicious and
submitted for further manual inspection. Also, real-world
observations show that in almost all cases (> 99%) this
mechanism causes less than 1 second overhead to the
analysis.

With these in-situ optimizations, controlled experiments
show that only 0.4 percent apps invoke fewer features
than on real devices, which is much smaller than that
(1.4 percent) without optimizations.

5.2 System Deployment and Performance

Distributed Deployment. Originally, each app’s analysis is
composed of nine steps as depicted in Fig. 1, among which
several steps in fact do not rely on each other and thus can
be carried out in parallel. As a result, we reorganize the exe-
cution sequence of the analysis steps, as shown in Fig. 18.
We convert the original monolithic back-to-back execution
manner into a loosely-coupled pipeline consisting of four
components – core scheduler, dynamic analysis, metadata
analysis, and model classification, which work together to
implement a publish-subscribe system. In detail, the core
scheduler extracts submitted tasks from a global message
queue and publishes it to the other components. Mean-
while, dynamic and metadata analysis channels poll for
unfinished tasks and perform app emulation (correspond-
ing to Step �1��5 in Fig. 1) and metadata extraction (Step
�6�7 in Fig. 1), respectively. When all the above analysis
tasks are finished, model classification channel can then uti-
lize the collected feature data to determine an app’s malice
(Step �8 in Fig. 1). Consequently, the per-app scan time is
reduced from 1 minute to 0.9 minutes.

Integration to T-Market. APICHECKER was integrated to
T-Market and has been running since March 2018. It exam-
ines about 12K apps every day with a single commodity
server, atop ofwhich 16 emulators run in parallel on 16 cores.

In detail, APICHECKER installs a submitted APK file on an
idle emulator. It then automates a series of interactions with
the app using our improved UI exerciser based on Monkey,
and logs fine-grained raw API invocation data in the
meantime (Section 4). Leveraging our feature encoding
scheme, we convert the collected raw data into a feature
vector, which is then input into the random forest classifier
to determine the malice of the app. In the subsequent
27 months (from March 2018 to May 2020), APICHECKER

uncovered �5K suspicious apps (i.e., vetted as malicious by
us) every month. To measure the online detection accuracy
of APICHECKER, we validate its detection results against
those generated by T-Market’s original app review process
(cf. Section 2) and our own manual checking. This validation
process has very high precision and recall but involves
heavy labor work. As shown in Fig. 15, the per-month preci-
sion during deployment is over 98 percent (98:5% � 99:1%)
and the recall is over 96 percent (96:5% � 98:1%).

As introduced in Section 4.1, the original sophisticated
app review process in T-Market has very high precision and
recall, which enables us to obtain an in-depth understand-
ing of the < 2% false positive and < 4% false negative. In
detail, the 2 percent false positive (apps) frequently adopt
key selected features, making them appear similar to

Fig. 14. Effects of optimization technologies (A:Android-x86, M:
Enhanced Monkey, G:GPU).
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malware in terms of API, permission, and/or intent usage.
Specifically, there are on average 800 apps vetted as mali-
cious by APICHECKER among all the �10K apps submitted to
T-Market each day. Fortunately, more than 90 percent of
them are updated apps that can be quickly validated based
on their previous versions. This leads to fewer than 80 apps
that require manual efforts for validation, incurring an
acceptable overhead to T-Market. Therefore, we choose to
actively avoid the false positive apps through manual
inspection every day. In contrast, the 4 percent false nega-
tive barely use the 426 key APIs we track according to our
examination of their logs. In fact, these apps often have
rather simple functionalities (e.g., displaying advertise-
ments) that are commonly taken as “mild” security threats
to end users. Consequently, for the false negative we only
passively mitigate them upon users’ complaints.

For other app markets, we note that integrating our sys-
tem is not difficult as the mature program analysis and ML
techniques in this paper are easy to implement, deploy, and
maintain.

Important Features and Malicious Behaviors. To understand
key features that are most crucial to our malware detection
model, we explore theGini indices of each tracked features [9],
including key APIs, used intents and permissions. The Gini
index is a commonmetric derived from a trained random for-
est model to quantify feature importance. We associate top
ranking key features with a total of seven behaviors as fol-
lows: 1) Attempting to obtain user devices’ private informa-
tion such as SMS message (e.g., API SmsManager_

sendTextMessage
1), phone number (e.g., permission Tel-

ephonyManager_getLine1Number), and MAC address
(e.g., API WifiInfo_getMacAddress); 2)Malicious resource
consumption such as constantly lurking in the background
that drains battery and is a common indicator of malicious
activities [6] (e.g., API Context_bindService); 3) Display-
ing ads (e.g., API WindowManager_addView); 4) Monitor-
ing system/app-level events such as critical device activities
(e.g., permission RECEIVE_BOOT_COMPLETED), network
changes (e.g., intent wifi.STATE_CHANGE), and privilege
acquiring (e.g., intentDEVICE_ADMIN_ENABLED); 5) Loading
malicious payloads (e.g., API system_InMemoryDexClas-
sLoader); 6) Intervening other apps such as app hijack-
ing [60] (e.g., API ActivityManager_getRunningTasks);
7) Enabling specific attacks like overlay-based attacks [61]
(e.g., permission SYSTEM_ALERT_WINDOW).

Fig. 16 illustrates the distribution of the abovementioned
malicious behaviors. As shown, obtaining users’ private
information accounts for the largest portion, while malware
launching specific attacks such as overlay-based attacks is
much less pervasive. For app categories, gaming apps are
most likely to manifest malicious behaviors (� 14% are
malicious), which tend to be obtaining private information,
displaying ads and loading malicious payloads. In addition,
office and system apps usually acquire restrictive permis-
sions to intercept system- or app-level events.

Model Evolution. To accommodate continuously emerging
apps and SDK’s upgrades every severalmonths, during opera-
tion we note that the detection model and the key API set
require periodic evolution. Currently, the period of key API
updates andmodel retraining is empirically configured as one
month. The retraining dataset includes the original dataset
(Section 4.1) and the subsequent newly submitted apps. The
malice of new apps is determined by both APICHECKER and
manual inspection, bearing no false positives and a small por-
tion of false negatives. Moreover, our key API selection strat-
egy stays unchanged as described in Section 4.4.

Fig. 17 shows variations in our selected key APIs’ num-
ber from March 2018 to May 2020 when we deploy API-
CHECKER, which only slightly fluctuates between 425 and
432. Hence, the per-app detection time remains stable. Note
that the model evolution process is taken into account when

Fig. 15. Online performance of APICHECKER over 27 months, from March
2018 to May 2020.

Fig. 16. Distribution of malware’s malicious behaviors.

Fig. 17. Evolution of the number of our selected key APIs from March
2018 to May 2020.

Fig. 18. APICHECKER’s distributed deployment in T-Market.

1. android.telephony.SmsManager.sendTextMessage is
abbreviated to SmsManager_sendTextMessage here. We also use
similar aliases for other mentioned APIs.
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reporting the online performance. As a result, the fluctua-
tion in detection accuracy caused by API set variations is
moderate, leading to 98:5% � 99:1% precision, 96:5% �
98:1% recall, and 97:5% � 98:6% F1-score. In general, API-
CHECKER is robust to API evolution.

6 CONCLUSION

ML-based mobile malware detection has been trending in the
last decade. However, till now we have yet to see a realistic
solution for large-scale app markets, which are crucial to the
triumph of today’s mobile ecosystem. To uncover and over-
come the real-world challenges, in collaboration with a major
app market, we implement, deploy, and maintain an ML-
basedmalware detection system that is both effective and effi-
cient. By examining the runtime usage of strategically selected
key APIs, as well as other auxiliary features, it has been detect-
ing Android malware for over two years with several system-
level optimizations, including our enhanced fast emulation
engine, automatic model evolution, and practical false posi-
tive/negative mitigation. We hope our measurement results,
system designs, deployment experiences, and data/tool
releasewill contribute to the community.

ACKNOWLEDGMENT

Thisworkwas supported in part by theNational Key R&DPro-
gramofChina underGrant 2018YFB1004700, in part by theNSF
of China under Grants 61902211, 61972313, 61822205, 61632020,
and 61632013, in part by the NSF of Tianjin under Grant
18JCQNJC69900, in part by the Postdoctoral Science Fund of
China under Grant 2019M663725, and in part by the BNRist.
LiangyiGong andHao Lin areCo-primary authors.

REFERENCES

[1] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative
android markets,” in Proc. 19th Annu. Netw. Distrib. Syst. Secur.
Symp., 2012, pp. 50–52.

[2] S. Arzt et al., “FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,” in
Proc. 35th ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
2014, pp. 259–269.

[3] M. Wong and D. Lie, “IntelliDroid: A targeted input generator for
the dynamic analysis of android malware,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2016, pp. 21–24.

[4] Tencent app market, 2020. [Online]. Available: https://sj.qq.com/
myapp/

[5] D. Wang et al., “An analogous wood barrel theory to explain the
occurrence of hormesis: A case study of sulfonamides and eryth-
romycin on Escherichia coli growth,” PloS One, vol. 12, no. 7, 2017,
Art. no. e0181321.

[6] G. Tao, Z. Zheng, Z. Guo, andM. R. Lyu, “MalPat: Mining patterns
of malicious and benign android apps via permission-related
APIs,” IEEE Trans. Rel., vol. 67, no. 1, pp. 355–369,Mar. 2018.

[7] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust malware detection in Android,” in Proc. ACM
Int. Conf. Secur. Privacy Commun. Syst., 2013, pp. 86–103.

[8] M. Yang, S. Wang, Z. Ling, Y. Liu, and Z. Ni, “Detection of mali-
cious behavior in Android apps through API calls and permission
uses analysis,” Concurrency Comput., Practice Experience, vol. 29,
no. 19, 2017, Art. no. e4172.

[9] L. Gong et al., “Experiences of landing machine learning onto mar-
ket-scale mobile malware detection,” in Proc. 15th Eur. Conf.
Comput. Syst., 2020, Art. no. 2.

[10] One-hot encoding, 2016. [Online]. Available: https://www.
sciencedirect.com/topics/computer-science/one-hot-encoding

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” in Proc. Int. Conf.
Learn. Representations, 2013.

[12] Y. L. Arnatovich, M. N. Ngo, T. H. B. Kuan, and C. Soh,
“Achieving high code coverage in android UI testing via auto-
mated widget exercising,” in Proc. IEEE 23rd Asia-Pacific Softw.
Eng. Conf., 2016, pp. 193–200.

[13] Android-x86 – Porting Android to x86, 2009. [Online]. Available:
http://www.android-x86.org/

[14] Intel Houdini, 2016. [Online]. Available:https://osdn.net/projects/
android-x86/scm/git/vendor-intel-houdini/

[15] A. Sharma and S. K. Dash, “Mining API calls and permissions for
android malware detection,” in Proc. Int. Conf. Cryptol. Netw.
Secur., 2014, pp. 191–205.

[16] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android per-
missions demystified,” in Proc. 18th ACM Conf. Comput. Commun.
Secur., 2011, pp. 627–638.

[17] D.-J.Wu, C.-H.Mao, T.-E.Wei, H.-M. Lee, andK.-P.Wu, “DroidMat:
Androidmalware detection throughmanifest andAPI calls tracing,”
in Proc. IEEE 7th Asia Joint Conf. Inf. Secur., 2012, pp. 62–69.

[18] M. Grace et al., “RiskRanker: Scalable and accurate zero-day
android malware detection,” in Proc. 10th Int. Conf. Mobile Syst.
Appl. Services, 2012, pp. 281–294.

[19] H. Cai, N. Meng, B. Ryder, and D. Yao, “DroidCat: Effective
android malware detection and categorization via app-level
profiling,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 6,
pp. 1455–1470, Jun. 2019.

[20] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-Sec: Deep learning in
android malware detection,” ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 4, pp. 371–372, 2014.

[21] W. Wu and S. Hung, “DroidDolphin: A dynamic android mal-
ware detection framework using big data and machine
learning,” in Proc. ACM Conf. Res. Adaptive Convergent Syst.,
2014, pp. 247–252.

[22] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of androidmalware in
your pocket,” inProc. Netw.Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[23] XposedBridge, 2016. [Online]. Available: https://github.com/
rovo89/XposedBridge/wiki/Development-tutorial

[24] Dissecting the Android bouncer, 2012. [Online]. Available:
https://jon.oberheide.org/files/summercon12-bouncer.pdf

[25] X. Jiang and Y. Zhou, “Dissecting androidmalware: Characterization
and evolution,” in Proc. IEEE Symp. Secur. Privacy, 2012, pp. 95–109.

[26] W. Enck et al., “TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” ACM Trans.
Comput. Syst., vol. 32, no. 2, 2014, Art. no. 5.

[27] Emulator, 2020. [Online]. Available: https://developer.android.
com/studio/run/emulator

[28] Monkey test tool, 2008. [Online]. Available:https://developer.
android.com/studio/test/monkey.html

[29] M. Sun et al., “Design and implementation of an android host-
based intrusion prevention system,” in Proc. 30th Annu. Comput.
Secur. Appl. Conf., 2014, pp. 226–235.

[30] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: Hindering
dynamic analysis of android malware,” in Proc. ACM 7th Eur.
Workshop Syst. Secur., 2014, Art. no. 5.

[31] S. Dey, N. Roy, W. Xu, and S. Nelakuditi, “ACM HotMobile
poster: Leveraging imperfections of sensors for fingerprinting
smartphones,” ACM SIGMOBILE Mobile Comput. Commun. Rev.,
vol. 17, no. 3, pp. 21–22, 2013.

[32] Anti-hooking techniques, 2015. [Online]. Available: https://
d3adend.org/blog/?p=589

[33] J. Lee and H. Kim, “QDroid: Mobile application quality analyzer
for appmarket curators,”Mobile Inf. Syst., vol. 2016, pp. 1–11, 2016.

[34] Scikit-learn, 2010. [Online]. Available: http://scikit-learn.org/
stable/index.html

[35] S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman, “Leakage in
data mining: Formulation, detection, and avoidance,” ACM Trans.
Knowl. Discov. Data, vol. 6, no. 4, pp. 1–21, 2012.

[36] J. H. Zar, “Significance testing of the spearman rank correlation coef-
ficient,” J. Amer. Statist. Assoc., vol. 67, no. 339, pp. 578–580, 1972.

[37] S. Silvestri, R. Urgaonkar, M. Zafer, and B. J. Ko, “A framework
for the inference of sensing measurements based on correlation,”
ACM Trans. Sensor Netw., vol. 15, no. 1, pp. 1–28, 2018.

[38] M. N. Schulz, J. Landstr€om, and R. E. Hubbard, “MTSA–AMatlab
program to fit thermal shift data,” Analytical Biochem., vol. 433,
no. 1, pp. 43–47, 2013.

GONG ETAL.: SYSTEMATICALLY LANDING MACHINE LEARNING ONTO MARKET-SCALE MOBILE MALWARE DETECTION 1627

Authorized licensed use limited to: Tsinghua University. Downloaded on February 21,2021 at 05:06:32 UTC from IEEE Xplore.  Restrictions apply. 

https://sj.qq.com/myapp/
https://sj.qq.com/myapp/
https://www.sciencedirect.com/topics/computer-science/one-hot-encoding
https://www.sciencedirect.com/topics/computer-science/one-hot-encoding
http://www.android-x86.org/
https://osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/
https://osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://jon.oberheide.org/files/summercon12-bouncer.pdf
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://d3adend.org/blog/?p=589
https://d3adend.org/blog/?p=589
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html


[39] X. Fan et al., “BuildSenSys: Reusing building sensing data for traf-
fic prediction with cross-domain learning,” IEEE Trans. Mobile
Comput., to be published, doi: 10.1109/TMC.2020.2976936.

[40] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evo-
lution in the android ecosystem,” in Proc. 28th Annu. Comput.
Secur. Appl. Conf., 2012, pp. 31–40.

[41] Axplorer, 2017. [Online]. Available:https://github.com/reddr/
axplorer

[42] PScout, 2018. [Online]. Available: https://github.com/dlgroupuoft/
PScout

[43] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app with-
out actually seeing it: UI state inference and novel Android
attacks,” in Proc. 23rd USENIX Conf. Secur. Symp., 2014, pp. 1037–
1052.

[44] T. Yang, Y. Yang, K. Qian, D. C.-T. Lo, Y. Qian, and L. Tao,
“Automated detection and analysis for Android ransomware,” in
Proc. IEEE 17th Int. Conf. High Perform. Comput. Commun. IEEE 7th
Int. Symp. Cyberspace Safety Secur. IEEE 12th Int. Conf. Embedded
Softw. Syst., 2015, pp. 1338–1343.

[45] Android.com, “NDK,” 2008. [Online]. Available: https://
developer.android.com/ndk

[46] A. Arora, S. K. Peddoju, and M. Conti, “PermPair: Android mal-
ware detection using permission pairs,” IEEE Trans. Inf. Forensics
Security, vol. 15, pp. 1968–1982, Oct. 2020.

[47] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 785–794.

[48] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proc. 31st Int. Conf. Mach. Learn., 2014,
pp. 1188–1196.

[49] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word
embeddings to document distances,” in Proc. 32nd Int. Conf. Mach.
Learn., 2015, pp. 957–966.

[50] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
“UNVEIL: A large-scale, automated approach to detecting ransom-
ware,” in Proc. 25th USENIX Conf. Secur. Symp., 2016, pp. 757–772.

[51] A. Felt et al., “Permission re-delegation: Attacks and defenses,” in
Proc. 20th USENIX Conf. Secur., 2011, Art. no. 22.

[52] S. Hao et al., “PUMA: Programmable UI-automation for large-
scale dynamic analysis of mobile apps,” in Proc. 12th Annu. Int.
Conf. Mobile Syst. Appl. Services, 2014, pp. 204–217.

[53] UI Automator, 2009. [Online]. Available: https://developer.android.
com/training/testing/ui-automator

[54] Robotium, 2018. [Online]. Available: https://github.com/
robotiumtech/robotium

[55] F. Dang et al., “Understanding fileless attacks on Linux-based IoT
devices with HoneyCloud,” in Proc. 17th Annu. Int. Conf. Mobile
Syst. Appl. Services, 2019, pp. 482–493.

[56] R. Uhlig et al., “Intel virtualization technology,” Computer, vol. 38,
no. 5, pp. 48–56, 2005.

[57] C. Dall and J. Nieh, “KVM/ARM: The design and implementation
of the Linux ARM hypervisor,” ACM SIGPLAN Notices, vol. 49,
no. 4, pp. 333–348, 2014.

[58] R. Russell, “virtio: Towards a De facto standard for virtual I/O
devices,” ACM SIGOPS Operating Syst. Rev., vol. 42, pp. 95–103,
2008.

[59] Q. Yang et al., “Mobile gaming on personal computers with direct
android emulation,” in Proc. 25th Annu. Int. Conf. Mobile Comput.
Netw., 2019, Art. no. 19.

[60] V. G. Shankar and G. Somani, “Anti-Hijack: Runtime detection
of malware initiated hijacking in android,” Procedia Comput. Sci.,
vol. 78, pp. 587–594, 2016.

[61] Y. Yan et al., “Understanding and detecting overlay-based
android malware at market scales,” in Proc. 17th Annu. Int. Conf.
Mobile Syst. Appl. Services, 2019, pp. 168–179.

Liangyi Gong received the BS and PhD degrees
from the School of Computer Science and Tech-
nology, Harbin Engineering University, Harbin,
China, in 2010 and 2016, respectively. He is a
post-doctoral researcher with the School of
Software and BNRist, Tsinghua University. His
research interests include the areas of network
security and mobile computing.

Hao Lin received the BS degree from the School
of Software, Tsinghua University, Beijing, China,
in 2020. He is currently working toward the PhD
degree with the School of Software, Tsinghua
University, Beijing, China. His research areas
mainly include network measurement and mobile
systems.

Zhenhua Li (Member, IEEE) received the BS and
MS degrees from Nanjing University, Nanjing,
China, in 2005 and 2008, respectively, and the PhD
degree from Peking University, Beijing, China, in
2013, all in computer science and technology. He is
currently an associate professor with the School of
Software and BNRist, Tsinghua University. His
research areas cover cloud computing/storage/
download, big data analysis, content distribution,
andmobile internet. He is amember of ACM.

Feng Qian (Member, IEEE) received the BS
degree from the Shanghai Jiao Tong University,
Shanghai, China, and the PhD degree from the
University of Michigan, Ann Arbor, Michigan. He
is an assistant professor with the Computer Sci-
ence and Engineering Department, University of
Minnesota, Twin Cities. Prior to joining UMN, he
worked with AT&T Labs and Indiana University.
His research interests cover mobile systems, AR/
VR, wearable computing, real-world system
measurements, and system security.

Yang Li received the BS degree from the School
of Software, Tsinghua University, Beijing, China,
in 2018. He is currently working toward the ME
degree with the School of Software, Tsinghua
University, Beijing, China. His research areas
mainly include big data analysis, machine
learning, cloud computing/storage, and network
measurement.

Xiaobo Ma (Member, IEEE) is currently an asso-
ciate professor with MOE Key Lab for Intelligent
Networks and Network Security, Faculty of Elec-
tronic and Information Engineering, Xi’an Jiao-
tong University, Xi’an, China. He is also with
Shaanxi Province Key Laboratory of Computer
Network, Xi’an, China. He served as a co-chair of
ACM CoNEXT 2019 Student Workshop. His
research interest include cyber security.

Yunhao Liu (Fellow, IEEE) received the BS
degree from Automation Department, Tsinghua
University, Beijing, China, and the MS and PhD
degrees in computer science and engineering
from Michigan State University, East Lansing,
Michigan. He is currently a professor and dean at
Global Innovation Exchange, Tsinghua University.
His research interests include sensor network
and IoT, RFID, distributed systems, and cloud
computing. He is a fellow of ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1628 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Tsinghua University. Downloaded on February 21,2021 at 05:06:32 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TMC.2020.2976936
https://github.com/reddr/axplorer
https://github.com/reddr/axplorer
https://github.com/dlgroupuoft/PScout
https://github.com/dlgroupuoft/PScout
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://github.com/robotiumtech/robotium
https://github.com/robotiumtech/robotium


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


